Logical Omniscience and Inconsistent Belief !

Jan O.M. Jaspars

Institute for Language Technology & Al
Tilburg University
PO Box 90153
5000 LE TILBURG
THE NETHERLANDS

EMAIL: jaspars@kub.nl

Abstract

In this paper we investigate a modal logic which has been set up by a Kripke
semantics in which accessible worlds can cluster, inspired by the so-called fusion
semantics of Rescher and Brandom [ReB]. This modal logic is motivated from an
epistemological viewpoint. A cognitive agent is free to confuse his “doxastic al-
ternatives” (accessible worlds). Such an agent is then said to believe a proposition
whenever it is verified by some world in every accessible fused set. This causes the
underlying logic to be abnormal (weaker than K). In terms of epistemic logic, we
have a partial disappearance of logical omniscience, and moreover we are able to
deal with inconsistent beliefs, such that an agent does not have to believe every-
thing whenever he is confronted with mutually contradictory information. From
a technical point of view the fused Kripke semantics stands relatively close to the
ordinary Kripke semantics among other abnormal modal logics?.

1 Introduction

Logical omniscience is the problem that we inherit from possible worlds analysis of
cognitive propositional attitudes, such as knowledge and belief. The knowledge or
belief of a cognitive agent is interpreted as being inversely proportional to its uncertainty.
Possible worlds accessible to the agent define this uncertainty, since every such world
might be the real one. What an agent knows or believes is then determined by the
information that is verified by all these accessible worlds (uncertainties).

The problem of logical omniscience arises by the strict logical behavior of these
worlds [Ran] [Hinb]. This means that our agent has to know or belief all the logical
consequences of its knowledge or belief, which seems to be much too idealistic. This
problem is related to the representation of inconsistent belief, because whenever an

IThis research is supported by the programme ‘Dialogue management and knowledge acquisition’
(DenK) of the Tilburg-Eindhoven Organization for Inter-University Cooperation (SOBU).

The similarity of fused and normal Kripke semantics for modal logic entails easy meta-theoretical
proofs, which can be adopted from standard modal logic. For a more technical elaboration on fused

semantics see [Jas].
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agent has inconsistent belief, it has to belief everything, due to his logical omniscience.3

This phenomenon is an extremely unnatural consequence of logical omniscience.

Most often these two problems are solved by liberalizing the logical behavior of
possible worlds in two directions. Firstly, a possible world can leave a proposition
undefined. Such a world has an incomplete or partial character with respect to this
proposition. Secondly, a world can belogically impossible in the sense that it overdefines
a certain proposition. It recognizes such a proposition as both true and false.

In this paper we will focus on the impossible character that worlds may have as
doxastic alternatives. Here we will only concern ourselves with representing inconsis-
tent belief and its consequences with respect to the logical omniscient capacities of a
cognitive agent. According to us the fourth truth-value (both = both true and false)
is not necessary for representing inconsistent belief states. We propose an alternative
analysis for overdefinedness, using fusion of classical worlds, of which the basic ideas
were originally introduced by Rescher and Brandom [ReB]. In the set up presented in
this paper an agent may confuse its accessible worlds.

1.1 Belnap’s machine

The four valued approach towards inconsistent beliefs started with Belnap’s article on

machines that have to deal with inconsistent information [Bel]. He motivated his four

valued logic by a machine dialogue. Suppose we have a naive machine that cannot dis-

tinguish different users, let alone weigh the information by assigning reliabilities to the

users. Belnap was concerned about how such a machine would have to reason without

believing everything whenever it would be confronted with contradictory information.
Consider the following configuration.

3Possible world models for inconsistent belief are these models in which there are no possible worlds
accessible to the agent.

‘Rescher and Brandom motivated their semantics with fused worlds from an ontological viewpoint.
They only introduced a wider semantics. For possible world semantics for modal logics they gave a
transformation for ordinary possible world models to fused possible world models, such that the classical
normal minimal modal logic is still valid, and so logical omniscience is still there. In this paper we will
look at fused possible world models with a free accessibility-relation. Vardi [V86] already used Rescher
and Brandom’s approach for doxastic logics. There is only one big difference with our approach. In Vardi’s
models an agent confuses all his doxastic aiternatives. This is what he calls local reasoning. We will look at
possible world models, in which the degree of (con)fusion is arbitrary.
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One user, A, tells the machine that p is the case, while another user, B, tells him the
contrary: —p. If a user C were to consult Belnap’s machine on p, it would respond: “pis
both true and false”.

There are a few pragmatic problems related to this analysis. A and B’s utterances on
p are taken to be incomplete by Belnap’s machine. A’s utterance is interpreted as “true
is one (element °) of the truth values of p”. Successively, B’s contradictory addition
disambiguates the interpretation of p in a four valued interpretation. Such a dialogue
strategy is illegal according to two of the conversational maxims of Grice [Gri]. Firstly,
the machine interpreted A’s utterance as if A and B were not sure of the content of their
messages. Furthermore, the machine acts as if A and B are withholding information.
By the first argument Belnap’s machine violates the maxim of quality, and by the second
argument the maxim of quantity.

Consistent information would be taken to be incomplete. If B did not contradict A,
and if C would afterwards consult the machine on p, it would give him the ridiculous
answer: “p is either only true or both true and false”. Maybe there are ways to get
around this, but Belnap does not give us the techniques.

Besides these obligations, four valued logic does not safeguard us from inconsisten-
cies. If A were saying that p is only true - an addition that is not necessary in Gricean
dialogues — it would still contradict B’s message. In order to deal with such a situation,
following Belnap’s argumentation, we would have to equip our machine with sixteen
truth values. ®

1.2 Rescher and Brandom’s machine

A much better idea of dealing with inconsistent information is to interpret such informa-
tion as fusion of consistent parts (classical worlds), such as was introduced by Rescher
and Brandom [ReB]. In a possible world framework for logics of belief this must be

SIn four valued logic truth-values are taken to be subsets of the classical truth values. @ is the truth value
undefined. {true}, {false}, {true, false} stand for “only true”, “only false” and “both true and false”
respectively.

L2)

Following this line would make any 202" valued logic as useful as four valued logic. One may argue

that A and B may only be two-valued reasoners. This unfair play would have to be paid off if messages

come from other Belnap machines.
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interpreted as an agent that confuses his uncertainties or accessible worlds.” Different
worlds are taken to be identical by this agenit. In the case of Belnap’s dialogue situation,
the machine (con)fuses the users A and B. But it would not conclude p A —p because no
one told him so. The following figure illustrates the thought of a machine which would
think in the fashion of Rescher and Brandom.

/Ipl/=True
/1=pl/=True

/lp&-pj/=False

-p B

The machine believes all the messages that it gets from the fused group of users. It
takes the users as its information sources, and would believe anything whenever it is
verified by at least one of these. 8

In this paper we will take Rescher and Brandom’s fusion as the source of inconsis-
tencies. We will construct a modal logic, in which a belief-operator gets explicit status
in the logic, such that it is possible to have inconsistent beliefs without concluding the
absurd (1). Contrary to four valued logic ° we will not withhold the agent from con-
cluding everything from L, but rather stop him from joining inconsistent information.
In general we do not have the following derivation, which is valid in normal modal
logic.

Op A O-p=> O(pA -p) = Op 10

In our fused modal logic the first implication is no longer valid. In four valued logics
the seccnd consequence is eliminated.

7Lots of human inconsistent beliefs seem due to confusion of time-points.

8Such an avoidance of concluding the absurd proposition L, can be compared by interpretation of large
religious works as the bible. A believer believes everything that the prophets and evangelists tell him.
However it does not necessarily have to believe propositions that would follow from joining information
from different messagers. This differs from political reasoning, where four valued logic seems to have large
popularity. “Yes and no” is not only an answer that makes sense in political debzte, but it is often taken to
be mysteriously interesting.

%See [Lev] for a modal logic using four valued logic.

1915, Rescher and Brandom's terminology one does not believe self-inconsistent information.
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2 Fused modal logic

To start with we define the language that we will use. The language L" is just the
propositional language together with a modal operator O, which symbolizes a single

agent’s belief.
Definition 1
LC is the smallest set such that

IP C L°, where IP is a finite non-empty set of primitive proposi-
tions.
w€ LY = -pe[”
weLP, Ype Ll = (pAy)eL"
w€ LY = Ope L”
Furthermore we use well-known abbreviations such as 7,.,V,— and ©

(T := pV-p, L= =T, oV = ~(~pA-¥), ¢ — ¥ 1= (pVY), Op:= ~O-p).
O should be interpreted as ‘the agent believes that .

The fused Kripke semantics has the following straightforward format.
Definition 2

A fused Kripke-frame is a pair (W, R) consisting of a non-empty set of worlds
W, and an accessibility-relation R C W x p(W)/{0}. R links worlds to
non-empty sets of (fused) worlds.

A fused Kripke-model is a triple (W, R, V) such that (W, R) is a fused Kripke-
frame, and V a local valuation: V : W x IP — {0,1}.

Ordinary Kripke-models with accessibility relations in W x W, can be understood as a
best case of this fused semantics. The Rescher and Brandom-like thinking machine in

the Belnap dialogue configuration is then a worst case.
Truth-conditional semantics is realized by the following composition:
Definition 3
Let M = (W, R,V) be a fused Kripke-model, and let w € W.

M,wEpe V(w,p)=1forallp € IP
MuwE-p& Mwpep
MwEpAy S MuEp&MwEy
M,wEDp & VW CW: (wRW'= (3w’ e W': M,v' = p))
$ = ¢ for ® C L" means that every world in any model that verify all

formulae in ® also verifies ¢. = ¢ means that ¢ holds in all worlds of any
model.

-1
-1



We will use single lower case letters as denotations for single worlds (v,w,z,y, 2),
while capital letters denote non-empty sets of worlds (V, W, X,Y, 2).

The last clause of the truth-conditions states that for every accessible set of worlds,
there must be at least one element that verifies .

Observation 1
Fe=FDp
Fe—1=>F0p— 0y
K O(p — %) — (Op — DY)

A counter-model of the last formula, the so-called K-axiom (or distribution-schema), is
given by the simple model M, depicted below.

",
u,
*s,
",

M,yEp— g andso M,wEO(p — q)
M,z k= p, therefore M, w = Op
M,z £ gand M,y £ ¢,and so M, w j£ Og

This falsification of the so-called K-axiom, deminishes the logical omniscient capacities.
Beliefs are no longer closed under logical consequence. Of course some parts of logical
omniscience remain. For example we still have necessitation: one always believes all
tautologies. The fused model depicted above is also a counter-model for (O A Oy) —
O(p A 9). Simply substitute p for ¢, and -p for 1.

Definition 4

RB!! is the minimal fused modal logic. In RB there is one global axiom,
stating that all propositional tautologies are RB-theorems.

A.Q}"pc(p=>§}—ﬂg (,012

Besides this global axiom, there are three inference rules.

1 After Rescher and Brandom.
12pC is the classical propositional calculus.
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R1. +rp ¢ =t rp Op (Necessitation or Generalization)
R2. ¢, ¢ — ¥ Frp ¥ (Modus Ponens)
R3. Frp ¢ — ¥ =>Fgrp Op — Oy

This logic is complete and sound with respect to the class of fused Kripke-models.
Soundness of RB has already been checked by observation 1 for the main part. Note
that all worlds in the fused models are classical, and therefore the propositional calculus
is part of RB. The completeness can be proved in Henkin style. We build a model of
maximal RB-consistent sets: the fused canonical model. This model turns out to be a
countermodel for every formula which is not an RB-theorem.

2.1 The canonical model
At first we define the notion of maximal RB-consistent sets.
Definition 5
A set A C L" is said to be RB-consistent if for every sequence {a;}i2; C A:
Yre ~(a1 A .. A am)

A set T C LP is said to be a maximal RB-consistent set if it is RB-consistent,
and it is maximal in the sense that it has no proper RB-consistent extension.

VA D T : A is not RB-consistent.

Observation 2
Let T’ be a maximal RB-consistent set.

e I' Frp ¢ = € I'. In particular, all RB-theorems are in T'.
e p¢l & el

o pAYET & pelandy €.
pevyelspelToryel.

By these maximal RB-consistent sets we construct the canonical model of RB.
Definition 6
The canonical model of RB is the triple Mrp = (WrB, RrB, VrB) such that

Wap is the (non-empty) set of maximal RB-consistent sets.
I' RrpG © VOpeT3A€G:p€ Aforalll' € Wgpg,and G C Whp.
Vep(T,p) =1« peT foralll € Wgp,andp € IP.

Theorem 1

For any maximal RB-consistent setT and forall p € L":

Mrp,TE o €T
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The proof of this Henkin-style theorem leans on two lemmas. The first lemma, known
as the Lindenbaum-lemma, states that every consistent set has a maximal consistent
extension. This claim holds for RB because it contains the classical propositional calculus
[HuCl.

Lemmal If A is an RB-consistent set, then there exists a maximal RB-
consistent extensionT': A CT.

Lemma 2 If Oa A =08 is RB-consistent, then also a A - is.13

proof
Suppose a A - is RB-inconsistent.
trp ~(aA-B) =pctre a = B =r3trp Da — OB =pctrp ~(Dar-0p)

And so, Oa A =08 is also RB-inconsistent. &

proof of theorem 1.

By structural induction on the construction of formulae. The theorem is by
definition of Vgp valid for primitive propositions. The induction-steps for
- and A are immediately derived from the induction-hypothesis. The only
step that needs some clarification is the O-step.

Let O¢p € T. Clearly we obtain by the definition of Rgp, that for all G such
that T RrpG there exists A € G such that ¢ € A. By theinduction-hypothesis
we conclude that for all such A: Mgp,A £ . From this conclusion we
obtain directly Mgg,T = Op

Let Op ¢ T. Let {a;}icrcv be an enumeration of the set {a | Oa € T}
Because ~O¢ € I' we have RB-consistency of Oa; A =O¢ for every ¢ € I.
By lemma 2 we conclude that a; A ¢ is RB-consistent for every ¢ € I. Let
G := {T;}icr be a set of maximal RB-consistent sets such that I'; extends
{a;, ¢} for all i € I. Clearly, I' RrpG because for all Oa € T there exists a
certain T; € G such that a € T;. Because -p € I; for all T; € G, and so by
observation 2 ¢ ¢ T; for all T; € G, we infer from the induction-hypothesis
Mgp,T; £ pforallT; € G, and so Mpp,T | Op. &

corollary RB is complete w.r.t. the class of fused Kripke-models.
proof

Let & i/rp . This causes & U {—¢} to be RB-consistent. Let I be a maximal
RB-consistent extension of this set. By theorem 1 we conclude immediately
Mgp,T = aforalla € ®and Mgp,T £ p,andso @ |£ ¢. &

1 classical modal logic we have for any set of formulae A if AU{~Da}is K-consistent, then D7AU {-a}
(= {¢ | Op € A}U{-e}) is K~onsistent. This weakening in fused modal logic is completely compensated
by the more liberal accessibility relation for reaching completeness.
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2,2 Full and slim models

The following observations show that we can freely limit the accessibility-relation some-
what by the ordinary subset-relation. We may restrict the large class of Kripke-models
to what we call full, or slim, models.

Definition 7

Let F = (W, R) be a fused Kripke-frame. The slimmed frame of F is the fused
Kripke-frame F' = (W, R}) such that

zRYY & zRY &YY' C Y : notzRY'
The filled frame of F is the fused Kripke frame F' = (W, R") such that

zR'Y & zRY' forcertainY' C Y.

If M = (W, R,V) is a fused Kripke model, we say that M* = (W, R}, V) is
the slimmed model of M, and M = (W, R', V') is the filled model of M.

A model M (or frame F) is said to beslimiff M = M} (F = F!). A model M
(or frame F) is said to be full iff M = M' (F = FT).

Observation 3

The canonical model Mgg is full.

Theorem 2

Let M = (W, R,V) be a fused Kripke model. Forallw e W: M,w = ¢ &
MY wE ¢ & M, wl= o forall formulae ¢ € LC.

proof

Easy by induction on the construction of formulae. &

corollary RB is sound and complete with respect to the class of slim fused Kripke
models, and also with respect to the class of full fused Kripke models.

It turns out that the class of full models is easier to handle for giving semantical

characterizations of systems that extend RB. The only logics that we will be dealing
with here are logics for belief.
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3 Confused belief
Definition 8

Thelogic of confused belief, 14 denoted by CB, is the logic RB with the following
two axioms added:

Fecp ~0OL
Fcp Op — OOp

The first axiom tells us that the agent never believes the absurd proposition L. The
second axiom states the so-called positive introspection of an agent. Whenever an agent
believes a proposition, he always believes that he believes it.

These axioms are from modal logic known as Ver and 4 respectively. These axioms
were accepted by Hintikka [Hina] in his axiomatization of belief, D4 (= K + Ver + )15,
The only thing that has changed here with respect to Hintikka’s axioms is that K (logical
omniscience) has been cancelled. Characterizing these axioms semantically, we end up
with a similar class of models as for D4 in normal modal logic [HuC]. D4 is characterized
by the class of serial transitive normal Kripke models. Reshaping seriality in a fusion-

like way does not give any complication. Accommodating a new concept of transitivity
in this setting is somewhat nastier. The following notation helps.

Let M = (W, R, V) be a model:

XRY ©Vze X:zR'Y
XLZY@EI:EX:::RTY

In the first case all members of a set of worlds X have a successor-set in Y, in the second
case there exists such a world in X with a successor-set in Y.

Definition 9
A fused model M = (W, R,V) is said to be serial if it has no dead-ends:
vz3Y : zRY (zRTW).
A fused model M = (W, R, V) is said to be F-transitive if
Vz,Y,Z:zR'Y & YRZ = zR'Z

F-transitivity of a fused frame says that for every world z that has a successor-
set, in which all elements have a successor-set in a certain set of worlds Z,
this world z must also have a successor-set in Z.

Theorem 3

CB is characterized by the class of serial F-transitive models.

Y A better name is perhaps ‘possibly confused belief".

15D originally stands for the axiom Op — <. For normal modal logics (K containing) D and Ver
coincide. RB + D does obviously not coincide with RB + Ver. Note that D ‘normalizes RB : K+D=RB
+D.
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proof

We will leave seriality for RB + Ver, because it is derived similarly to the
normal case K + Ver. We will only show here that RB + 4 is characterized by
the class of F-transitive models.

Suppose that (W, R) is not F-transitive. This means there exists a world
w € W and two subsets Y, Z C W such that zR'Y and YRZ and not zR'Z
(andsoY ¢ Z). Let (W, R, V) be a model on this frame such that V(z,p) = 0
forallz € Zand V(w,p) = 1forallw € W/Z. Because z has no successor-set
in Z, we conclude M, z = Op. Furthermore because every y € Y does have
such a successor-set in Z, we conclude M,y ¢ Op forall y € Y. This forces
M,z (£ DOp.

Conversely, suppose that (W, R) is F-transitive. Let M be an arbitrary model
on (W, R) and let z be a world in W. Suppose M,z }£ OOp. This means
there exists Y C W such that zRY and forally € Y : M,y ¢ Op, and so for
all these y there exists Z, such that yRZ, and forall z € Z, : M,z % p. We
define

Z::UZI,

Clearly, zR'Y and Y RZ. By the F-transitivity we conclude zR' Z. This gives
us M,z f Op. &

Theorem 4

CB is sound and complete w.r.t. the class of serial F-transitive models.

proof

We show that the CB canonical model M¢cp = (Wcg, Res, Vep) © is F-
transitive. Its seriality isimmediately obtained by lemma 2, because maximal
CB-consistent sets always contain at least one ~O-sentence. So, for every
maximal CB-consistent set there is at least one successor-set (see proof of th.
1.

LetTRcpG and GRcpG'. Let Op be an arbitrary belief-sentence in . Clearly
also OOy € T. By the two relational claims above we learn that ¢ € UG'Y,
and so ’'R¢pG’ (remember Rcg = RTCB). &

3.1 Full introspective confused belief

Sometimes the axiom of negative introspection is accepted in doxastic logic (e.g. [FaV]
[Moo)). This axiom states that if an agent disbelieves a proposition, he believes that he
does not believe it.

+ =0 — O0-0¢p

*This is the model Mgp restricted to the maximal CB-consistent sets.

ug = | J I. Note that TRrsG ¢ O°T C UG.
reg
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This axiom is known as 5 in classical modal logic. D45 is characterized by the serial
transitive Euclidean normal Kripke frames. Euclidean relations are those in which any
pair of successors of a given world are mutually related:

Vz,y,z:zRy& zRz = yRz
If we characterize RB + Ver + 4 + 5 we find the following transformation of Euclidicity:
Vz,Y,Z:zR'Y & zR'Z = YRZ

This F-Euclidicity states that each member of a pair of successor-sets of a world has at
least one element that has a successor-set in the other member of this pair. Again we
have found a close correspondence with the classical Kripke semantics. The funny thing
here is that we need to use the existential R-relation, while for transitivity we needed
the universal R. This is caused by the ‘double’ duality between  and O. O is verified
in a world whenever there exists a successor-set of which all members verify ¢.

4 Conclusions

We showed that it is possible to represent inconsistent beliefs in a possible world frame-
work. We still do not accept that an agent may believe the absurd proposition L, in
contrast to the four valued approach in which 1 is taken to be a meaningful proposi-
tion. The semantics is intuitively appealing and we stay as close as possible to ordinary
Kripke- or possible worlds semantics. The Henkin style completeness proof indicates
that we have a modal logic that is abnormal, but with a regular character. Also corre-
spondence results gave evidence for this regularity. 18 Other well known axioms such
as T = Op — ¢ and B = ¢ — OOy find similar characterizations. The first system
imposes reflexivity on normal Kripke frames. RB + T gets characterized by the fused
frames such that all non-empty subsets of the set of worlds contains an element that
has a successor-set in this set itself. Formally we obtain the following fusion-style look-
alike: VX : X RX. The system B defines normally the class of symmetric frames. RB +
B also ends up with a fusion-style version of symmetry: VX,Y : X RY = YRX; every
non-empty set of which all the elements have a successor-set in some other set, is a su-
perset of some successor-set of one of the elements of this other set. This relatively nice
behavior gives us a comfortable position between the logics that deal with inconsistent
belief. Lots of the meta-theory of classical modal logic can be adopted {Jas]

Only a part of logical omniscience has been dropped by skipping to fused modallogic
for reasoning about belief. Necessitation, that is believing all tautologies, is still there.
We think that if we have to overcome this problem, we have to incorporate fusion into
partial modal logic (see [Thil), in which total worlds are replaced by situations or partial
worlds. This challenge of uniting these two approaches really offers an alternative for
four valued logic, and it will be the main theme of further research. '*

Bjts regularity is also demonstrated by other inherited analogues, such as preservation-results [Jas}.
Eg. by appropriate modification we have closure under generated submodelling, disjoint unions and
p-morphisms (compare [Ben] [JoV] [Gol]).

19We think that four valued logic has also come up by its nice symmetric Boolean behavior [Lan] [Mus},.
It seems to us that four valued logic has become popular by the natural attractiveness of partial semantics
on the one hand, and on the other hand a kind of homesickness to two-valued logic of logicians who went
partial. Unde fined is incorporated in the set of truth-values (with equal status) and so there is a natural -
from a two-valued viewpoint — quest for a Boolean complementary truth-value overde fined.
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