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ABSTRACT

Constructing a connectionist network for context-free language parsing can
be compared with parsing sentences in such a way that the actual (pre-) ter-
minals or words become irrelevant. Only the structure of possible sentences
is important. We introduce the notion of meta-parsing to denote this way of
constructing a network and apply the idea to connectionist CYK and connec-
tionist Earley parsing.

1 Introduction

Connectionist networks are strongly interconnected groups of very simple processing units. Such
networks are studied in natural language processing since their inherent parallelism and distri-
buted decision making allows an integration of syntactic, semantic and pragmatic processing for
language analysis. See, €.g., [Waltz88] and [Cottrell89]. By isolating the syntactic component ~
without abandoning the connectionist paradigm - it becomes possible to study context-free pars-
ing in environments where we can make different assumptions about types of networks, learning
rules and representations of concepts. Only few authors have considered context-free language
parsing in connectionist or neural networks. It is possible to distinguish a dynamic programming
approach based on the CYK algorithm [Fanty85], a Boltzmann machine approach [Selman87]
and an interactive relaxation approach [Howells88]. We follow Fanty’s connectionist approach
to CYK parsing. In this paper the emphasis is on the building of the network rather than on the
parsing. Moreover, we discuss properties such a network will have. The method is generalized
to connectionist Earley parsing and also in this case it is the construction of the network which
gives rise to interesting observations about patterns of node configurations in the network.

2 Fanty’s Connectionist CYK Parser

For convenience we recall the standard CYK algorithm. As usual, assume that the grammar is in
Chomsky Normal Form (CNF). For any string x =aa; * * * a, to be parsed an upper-triangular
(n+1)x(n +1) recognition table T is constructed. Each table entry ¢; ; with i < j will contain a sub-
set of N (the set of nonterminal symbols) such that A €1 ; if and only if A =%a;,; - - - a;. String
x belongs to the language if and only if the start symbol S is in ¢y, when the construction of the
table is completed. Initially, entries ¢; ; with i <j are empty. The input string is available on the
matrix diagonal (cf. Fig. 1).

(1) Compute ¢;;,1, as i ranges from 0 to n -1, by placing A in f; ;,; exactly when there is a pro-
duction A — q;,; in P, the set of productions.



(2) In order to compute ¢t ;, j—i>1, assume that all entries with Isj, k=i and kl=ij have
been computed. Add A to ¢ ; if, for any k such that { <k<j, BEt;, CEY jandA—=BCis a
production rule and A is not already present in ¢; ;.

a; [01]02]03]04]05

a, 1213|1415

ay | 232425

a, | 3,435
as | 45
3

Fig. 1 The upper-triangular CYK-table.

We now discuss the connectionist version of this algorithm. The table’s diagonal will be
used for representing the input symbols. For each nonterminal symbol each entry in the table
which is not on the diagonal will represent a configuration of nodes. These nodes allow top-down
and bottom-up passing of activity. We first explain the bottom-up pass. Consider a particular
entry, say ¢;; with j—i =2, of the upper-triangular matrix. In the traditional algorithm, a nonter-
minal symbol X is added to the set of nonterminal symbols associated with the entry if there are
symbols Y €1; , and Z €1 ; such that X —YZ is in P. In the connectionist adaptation we already
have a node for each nonterminal symbol in entry ¢; ;. Rather than adding a symbol, here node X
at position ¢; ; is made active if node Y at position #; ; and node Z at position # ; are active. In
general there will be more ways to have a realization of the production X —YZ at position £ ;.
For example, a node for X at entry ¢, 5 can be made active for a production X —YZ if there is an
active node for Y at ¢, and for Z at t, 5, or for Yat ¢, 3 and for Z at ¢35, or for Y att, 4 and for Z
at t4 5. This separation is realized with the help of match nodes in the configuration of each entry
of the table. The use of match nodes is illustrated in Fig. 2 for a node for X at position ¢;5 of a
CYK-table. The three match nodes, one for each possible realization of X —YZ, for this node at
this particular position are shown. For match nodes to become active all of their inputs must be
on. The node for X becomes active when at least one of its inputs is on.

Y<12> Z<25> Y<13> Z<35> Y<l4> Z<45>

Fig. 2 Bottom-up passing of activity.

In the figure only match nodes for separate realizations of the same production are included.
Match nodes should also be included at this position for all possible realizations of the other
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productions with lefthand side X. In this way all the inputs that can make the node for X at this
particular position active can be received in a proper way.

In our explanation the assumption j —i =2 for entry ¢; ; was made. We assume that there is a
node for each terminal symbol in each position at the diagonal of the matrix. Since the grammar
is in CNF we have realizations of productions of the form X —a in the entries ¢;; with j—i=1.
Also in these entries match nodes are needed since different terminal symbols can have the same
nonterminal as lefthand side. We assume that there is a node for each terminal symbol in each
position at the diagonal of the matrix. Recognition starts by activating the nodes which
correspond with the input symbols. Then activation passes bottom-up through the network, first
with realizations of productions of the form X —a, next with realizations of productions of the
form X —YZ. The input is accepted as soon as the node for the start symbol in the topmost entry
of the column of the last input symbol becomes active.

A straightforward construction of the network for a particular grammar can be performed as
follows. We have to choose an m, the maximum length of the strings that can be processed by
the network. For each entry ¢ ; with i <j of an upper-triangular (m +1)x(m +1) table T we have to
introduce the nodes and the connections which allow the passing of activity we discussed above.
This can be done diagonal by diagonal:

(0) For each a €XU{3} introduce a node for a in entry ¢; ;, O<i sm.

(1a) For each production rule A —a and for each entry ¢; ; of T with j—i=1 introduce a match
node for A in ¢; ; and connect it with the node for a ing ;.

(1b) For each collection of match nodes in an entry ¢; ; with j—i =1 that correspond with the same
nonterminal introduce a node for that nonterminal in ¢ ; and connect it with its match
nodes.

(2a) For each k, i <k <j, such that there is a node for B in ¢;4, a node for C in f j and a produc-
tion rule A —BC in P introduce a match node for A in ¢; ; and connect it with the nodes for
B and C in t; and ¢ ;, respectively.

2b) For each collection of match nodes in an entry ¢; ; that correspond with the same nontermi-
Y p
nal introduce a node for that nonterminal in ¢; ; and connect it with its match nodes.

A more global look on the network learns us that in each entry of a particular diagonal the
same collection of nodes and match nodes will be introduced. Since the set of nonterminals is
finite we obtain a ‘regular’ pattern of diagonals. A node for a nonterminal A is introduced in an
entry ¢; ; if and only if A can generate a string of length j—i. An appropriate name for building
the metwork for a particular grammar should therefore be meta-CYK-parsing. Although we
obtain in this way diagonals with entries that have nodes for the same set of nonterminals they
can differ in the number of match nodes. As an example of meta-parsing consider the following
context-free grammar in CNF. The symbol | separates the different alternatives of a nonterminal
symbol.

S—AB| AC C—AB
A-—a D—AB
B—b| DE E—b

In Fig. 3 we show the nonterminals in the entries of the upper-triangular table for which nodes
and match nodes will be introduced. On the second diagonal (j—i=1) we have nodes for nonter-
minals with the property that they can generate strings of length 1, at the third diagonal (j -i=2)

89



those for strings of length 2, etc.

AB|SC SC SC

ab E D SB D SB D
AB|SC sSC

ab E D SB D SB

AB|SC sC

ab E D SB D
AB|SC

ab E D S B

b AB|SC

E D

ab AEB

ab

Fig. 3 Meta-CYK-Parsing.

Until now we have discussed a network which accepts (or rejects) a string. In order to
obtain a representation of the parse tree(s) a second, top-down, pass of activity is necessary. To
perform this top-down pass we assume that each node mentioned so far consists of a bottom-up
and a top-down unit. The bottom-up units are used as explained above. In Fig. 4 both bottom-up
and top-down passing of activity is illustrated in a configuration of nodes for an entry f; ; with
j-i=2. Each node is represented as consisting of a leftmost or bottom-up and a rightmost or
top-down unit. A top-down unit becomes active when it receives input from its bottom-up coun-
terpart and at least one external source. In order to activate the top-down unit of the node for the
start symbol in the upper right corner of the table we assume that it receives input from its
bottom-up counterpart and from the node at position ¢, ,, where n is the length of the input, which
is used to represent endmarker $ of the input and which is made active when parsing starts.
Hence, when the input is recognized this unit becomes active and it passes activity top-down. All
top-down units which receive this activation and activation from their bottom-up counterparts
become active. Hence, activity is passed down to the terminal nodes and the active top-down
nodes of the network represent the parse tree(s).

Y<12> Z<25>

Fig. 4 Top-down and bottom-up passing of activity in CYK parsing.
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If the grammar is not in CNF, and if we forget about details on the distinction between ter-
minal and nonterminal symbols, then, rather than looking for only two symbols in the table which
may constitute a righthand side of a production, it now becomes necessary to consider combina-
tions of two, three, or more symbols. In general, if the longest righthand side has length p, then
O (n”~') matches are necessary for each of the O(n?) elements of the CYK recognition table.
The O (n”~!) matches translate into O (n”™!) possible realizations of productions for each of the
O (n?) entries of the CYK-table. Therefore the number of connections for each node will be pro-
portional with n”~! and the total number of nodes in the network will be proportional with n?*!.
The parse in the connectionist network completes in O (n) time.

3 A Connectionist Earley Parser

We recall the (tabular version of the) Earley context-free parsing algorithm. For any string
X =aia, - - a, to be parsed an upper-triangular (n +1)x(n +1) recognition table T is constructed.
Each entry ¢; ; will contain a set of items of the form A — -8, where A — af is a production rule
and the dot - is a symbol not in NUZ. The computation of the table entries goes column by
column. The following two functions will be useful. Function PREDICT:N—2", where
D = {A—0o-B|A —=oB EP}, is defined as

PREDICT(A) = {B— B |B—>aBEP, o=>*c and 3 yE V* with A=*By}.
Function PRED: 2" —2? is defined as PRED(Y) = U PREDICT(A).
AEX

Initially, 1o o = PRED({S}) and all other entries are empty. Suppose we want to compute the ele-
ments of column j, j>0. In order to compute ¢; j With i = j assume that all elements of the
columns of the upper-triangular table to the left of column j have been computed and in column j
the elements ¢ ; for i < k < j have been computed.

(1) AddB—aaf-ytot;;if B—>oaPy€Eyjq,a= aj and f=*¢.

(2) Add B—aAB+y to ¢ ;, if, for any k such that i <k <, B—=aAPYEL, A>w EY; and
B=>*¢.

(3) AddB—aABytot;;if B—>a:AByEL,;, B=>*¢ and there exists C €N such that A =*C and
C—>(1)'€t,-,j.

After all elements ¢; ; with O =i < j -1 of column j have been computed then it is possible to com-
pute ¢; ;.

(4) LCtX] = {A EN IB —>a-ABEt,71,05151—1} Then t],j =PRED(X])

It is not difficult to see that A—a-BEy; if and only if there exists yEV* such that
S=>*a, -+ a;Ay and a=>*g;,, - - - a;. Hence, in ¢y, we can read whether the sentence was
correct. The algorithm can be extended in order to produce parse trees.

Various parallel implementations of Earley’s algorithm have been suggested in the litera-
ture. The main problem is the parallel computation of the diagonal elements ¢;;, for Osi=<n.
The solution is simple. Initially all elements ¢;;, 0=i <n, are set equal to PRED(N), where N is
the set of nonterminal symbols. The other entries are defined according to the steps (1), (2) and
(3). As a consequence, we now have A —a-B €, ; if and only if a=*g,,, - - - a;. Computation
can now be done diagonal by diagonal:
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(1) Sett;; equal to PRED(V), O=i=n.

(2) Setd=0. Assuming f;;.4 has been formed for 0 =i =n-d, increase d with 1 and compute
t;jforOsi<n-dandj = i +d according to:

(2.1) AddB—aaBytot;;if B—aaPy€tj1,a =a, and P=*¢.

(2.2) Add B—>0AB-y to ¢;; if, for any ksuch that i <k <j, B=aABYE i, A0 ELY;
and =>*¢.

(2.3) Add B—oABy to ¢ ; if B—oABYEL;;, p=>*¢ and there exists CEN such that
A=*CandC—w €Y ;.

We are now sufficiently prepared to introduce a connectionist Earley parser. The network
that is built defines again a limit on the lengths of the strings it can process. Hence, we have to
choose an m and for strings longer than m the network should be extended. To obtain connec-
tions according to the rows and columns of the table, input string a, - - - a, will be offered to the
network on the positions 71 5 to £, ,- The nodes and connections can be introduced diagonal by
diagonal:

(0) For each entry ¢;;, Osi <m, introduce nodes in t;; for each a€ZU{$} and for each item in
PRED(N).

(1) Introduce a match node for B—>aaf-y in t; ; if there is a node for B—avafy in ¢;j_; and
B=*g. Connect it with this node and with the node for a in ¢ ;.

(2a) For each k, i <k <j, such that there is a node for B—aABy in f;; and a node for A =" in
4, and p=>*¢, introduce a match node for B—aA By in ¢; ; and connect it with these two
nodes.

(2b) For each collection of match nodes in an entry ¢; ; that correspond with the same item intro-
duce a node for that item in ¢; ; and connect it with its match nodes.

(3a) Introduce a match node for B — APy in ¢ ; if there is a node for B—aAfyint;;, p=>*¢
and there exists CEN such that A=>*C and ¢; ; has a node for C—w. Connect the match
node with these two nodes.

(3b) Finally, do once more step (2b), but now to obtain nodes for the match nodes introduced in
step (3a).

We now use the name meta-Earley parsing for building this network. In each entry of a
particular diagonal the same collection of nodes and match nodes are introduced and we obtain a
periodically returning pattern of diagonals. A node for an item A — o is introduced in entry #; ;
if and only if o can generate a string of length j—i. That is, on the first diagonal (j —i =0) we have
nodes for items of the form A —o-p where o has the property that it can generate the empty
string, on the second diagonal (j —i =1) o of item A —>o-f can generate strings of length 1, etc.
For each item we can determine in advance to what entries it will belong. Although we obtain in
this way diagonals with entries that have nodes for the same set of items, they can differ in the
number of match nodes. As an example consider the following grammar

S—A| B A—aAa | & B—bbBb | ¢
In Fig. 5 we show the items in the entries of the upper-triangular table for which nodes and match

nodes will be introduced during meta-parsing. The sets of nodes that are displayed in the entries
from 13 to tog constitute the pattern that repeats itself in the table. For example grammar G
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with rules

S—NP VP | S PP PP—*prep NP
NP—*n | *det *n | NP PP VP—*y NP

a simple analysis shows that all table entries ¢;; with j~i>3 will contain a node (and match
nodes) for each of the following items:

S—NP-VP| NP VP:| S-PP| S PP-
NP —NP-PP | NP PP-

PP — *prep NP-

VP —*py NP-

Hence, apart from the number of match nodes (a number that increases when sentences become
longer) the structure is obtained from only one subset of the set of all items.

A —aAa- A —~ada-

A—aAa A—aA-a A —aAa:
PRED(N) |4 84 |5 s bp-Bb| A 70A4 | 4 —~aAa-|A—aA-a [B—bbBb| , . |H T8
2U (5} ’f,_,’;ﬁi”B;biB-st_’:’f” S-vA" B-=bbBb S—A- A—sad-a B bBBH

| A—ada |, A—aha

PRED(N) |2 7248 |B—bb-Bb|f 7444 | A —~ada- | A—ah-a |B—bbBb| ,\ .4,

DUGS) (L B orobB b S Lp | S—A- [B—bbB bl S—A

. A—ada-|, 4. A —aAa:
PRED(N) g:;gbB—-bb-Bb;_.%g_ A—saAa-|A—aA-a |B—bbBb-
2Us) (B D bBb g bop-biB TP s en- |B—bbBb| 524
S—A- S—B-
A —aAa:

A—aAa .pn| A—>aAa A4 aa-
PRED(N) B—-b-bBbB_'bbBbB—-bbBb-A—'aAa A-—al-a

2U {8} A—ad-a B;b’,’QB.b S—B- S—A- |B—bbB-b

A —aAa’

B —bbBb

B —bbB-b
S—A-

A—aAa
B —bbBb-
S—B-

A—a-Aa
B —b-bBb
A—aA-a

A —aAa-
S—A-

PRED(N)
2U {3}

. A—ada |, A

PRED(N) |46 1B — bb-Bb S
sU {8} B—bbBb

A—apa|P P03 s

A—aAa-
B—bb-Bb
B—bbB-b
S—A-

A—aAa
B —b-bBb
A—aA-a

PRED(N)
=U {8}

A—aA
PRED(N) (g 4') gy

VB [A-ada

PRED(N)
=U {$}

Fig. 5 Meta-Earley-parsing.

The network that is built is a network of ‘possible realizations’. An actual sentence will
cause the selection of those items from the network that are relevant for the structure of that sen-
tence. In order to recognize a string a; ' * - @, We activate in t; ;, Osi =n, the elements of PRED(N)
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and the node for a;, 1si=n. Activation passes bottom-up with realizations of items of the form
A —a-B. For a match node to become active all its inputs must be on. A node with match nodes
becomes active when at least one of its inputs is on. The input is accepted as soon as a node for
an item of the form S— - in the topmost entry of the column of the last input symbol becomes
active. In order to distinguish parse trees top-down parsing of activity is required. This can be
done by introducing bottom-up and top-down units of a node, in a similar way as has been dis-
cussed for connectionist CYK parsing. In Fig. 6 both bottom-up and top-down passing of activity
is illustrated in a configuration of nodes for an entry ¢; ; with j—i>1.

A—aBB2s> B—w s,

Fig. 6 Top-down and bottom-up passing of activity in Earley parsing.

A top-down unit becomes active when input is received from the bottom-up counterpart and from
an external source. In order to initiate top-down passing of activity we have a node for symbol §
in each entry ¢;; which is connected to each top-down unit associated with an item of the form
S—w- in to;. For input string a, * - - @, both the node for a, and the node for § will be made
active in entry ¢, , when parsing starts. When the input is recognized a top-down unit associated
with an item of the form S — - becomes active and it passes activity top-down. All top-down
units which receive this activation and activation from their bottom-up counterparts become
active. Hence, activity is passed down to the terminal nodes. From the active top-down units of
the network the parse tree(s) can be reconstructed.

4 Conclusions

The main contribution of this paper is the emphasis on the fact that constructing a connectionist
network along the lines suggested by Fanty can be compared with parsing sentences in such a
way that the actual (pre)terminals or words of the sentence do not play a role. The properties of
the regular patterns that show themselves in the structures of the networks have been discussed in
[Sikkel90]. In the same report, the methods discussed here are extended to include a connection-
ist version of Rytter’s algorithm [Gibbons88] for context-free language parsing [Sikkel90],
[Sikkel91]. An obvious disadvantage of the approach discussed here is the inability to parse sen-
tences of arbitrary length. Alternatives are discussed in [Howells88] and [Nakagawa88]. A sur-
vey of non-connectionist parallel context-free parsing methods can be found in [Nijholt99].
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