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Abstract

The paradigm of the so-called M-rules in the ROSETTA
translation scheme 1is formulated in an enriched
lambda-calculus over patterns. The ROSETTA principle
itself is not explained. Patterns are introduced by means of
an abstract grammar and application of a rule is a
generalised beta-conversion. Based upon the notion of
morphological similarity of patterns, it is shown how the
rules satisfy an inversion principle: if a rule is applicable to
a pattern and yields a result, the latter can be used together
with the rule to reconstruct the pattern. An example shows
how rules operate on a given English sentence (of a simple
class) to produce an abstract representation of the sentence;
this object can be used as the basis for the transfer to
another language. If the identity transformation is chosen,
the original sentence can be recovered.

1. Rules as lambda-abstractions

In the sequel we shall need the concept of a pattern, which we introduce by means of

an abstract grammar as follows:

pattern ::= variable | constant | pattern (sel : pattern)*

Among the constants we distinguish constructors (e.g. BRANCH, LEAF ...) and values
from a domain suitable for intended applications - e.g. in linguistics. The selectors
(indicated by sel) are used to select either information associated with the constructors
or subpatterns. A pair selector - selected value can be seen as a pair attribute - attribute

value belonging to a particular constructor.

SENTENCE <mod:decl,voice:active>; . . . . attributes and values

<subject:varl>,

<aux:VERB <stem:’be’,form:sing3>;>,
<head:VERB <stem:var2,form:’ing’>;>
.. .. selectors and subpatterns
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Here we have two constructors: SENTENCE and VERB, the latter occurring in
subpatterns.

As shown ’;’ is used to separate the two classes of pairs selector - selector value: mod
and voice are attributes, subject aux and head are selectors. Further varl and var2 are
variables.

As a matter of convention we shall write instead of the sequence of pairs
<lipatl>,<2:pat2>,...,<mpatn> 1n >0

the following
<patl>,<pat2>,...,<patn>

Over the patterns we define a A-calculus, starting with the concept of an expression,
defined as follows:

expr ::= pattern | expr expr | A pattern . pattern

The case of an expression applied to an expression is functional application; further we
have A-abstraction.

B-reduction and B-abstraction are conceptually the usual ones; the necessary unification
is achieved by matching patterns with variables in them with patterns. We illustrate their
use by an example:

(MCONS ;<y>,<x>) . (BRANCH *; <x>,<y>) ) (CONS ;<5>,<4>) =
BRANCH *; <4>,<5>

where x and y are variables. Starting from the A-abstraction we have here B-reduction.
Note that we use in this example the symbol * to indicate that the attributes and
attribute values for the constructor BRANCH are of no importance (but they are kept
under the reduction); * can be seen as a free variable and will be used as such in the
sequel.

Further note that selectors 1 and 2 are used to select subpatterns.

The following is an example of B-abstraction:
Starting from (BRANCH *; <4>,<5>), the form

(X (CONS ;<y>,<x>) . (BRANCH *; <x>,<y>) ) (CONS ;<5>,<4>)

is derived.
Evidently this is not the only possible B-abstraction. The following result is also correct

( N (LIST ;<x>,<y>,<z>) . (BRANCH *; <x>,<y>))
(LIST;<4>,<5>,<a>)
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Suppose, however, that we introduce the rule
R = A(CONS ;<y>,<x>).(BRANCH *; <x>,<y>)

R is applicable to (CONS ;<a>,<b>) for any instantiation of a and b and we know
already

R (CONS ;<5>,<4>) = BRANCH *; <4>,<5>
Conversely, we might ask what value of the variable x satisfies
R x = BRANCH *; <4>,<5>
Because of the given form of R we know (via unification)
x = CONS ;<u>,<v>
with u and v variables, so that R x = BRANCH *; <v>,<u>

which yields (BRANCH *; <4>,<5> by another unification

Definition (morphological similarity)

Two patterns P and P’ are (morphologically) similar iff

a) they are two variables

b) they are the same constant

c¢) they have at top level the same constructor and the same selectors
and the selectors select similar patterns.

Similar patterns thus are ’almost the same’; the nesting structure is the same and they
differ at most in the variables in corresponding positions.

Definitions (rules an licabili

A rule is a h-abstraction over patterns.

A rule AP.Q is applicable to a pattern P’ if P unifies with P’ (i.e. P is similar to P’ and
the variables in P can be instantiated such that P = P’).

According to this definition a rule can have the form Ax.Q where x is a variable and Q
a pattern possibly containing x. By convention we do not allow the form Ac.Q where ¢

is a constant.

Fact (inversion principle)

Part 1 : construction of argument

If R is a rule then x can be constructed such that R is applicable to x.

This fact is verified as follows: Let R be AP.Q. Suppose that R is applicable to x; then
P is similar to x. P cannot be a constant, if it is a variable we choose a variable for x. If
P is not a constant or variable but a more general pattern, we can evidently choose a
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pattern x such that P is similar to x; x will in general contain free variables. [

Part 2 : uniqueness of constructed argument

If a rule R of the form AP.Q is applicable to both x and y, and if Rx = Ry then x =y.
This fact is verified as follows. Let x be given, and construct y similar to x. P is similar
to x. Since R is applicable to y, P is similar to y too. Since the similarity relation is
symmetric and transitive, x is similar to y and the other way around.

Construct y similar to x. Since Rx = Ry the free variables of y must necessarily be the
same ones as those in x. This means thaty = x. U

The statements of Part 1 and Part 2 together prove the fact that rules obey an inversion
principle. It is a matter of further analysis to formulate a weaker version of the similarity
relation, should this be necessary from a linguistic point of view.

2. ROSETTA rules

The so-called M rules in the ROSETTA translation scheme can be considered to be
rules in the sense of section 1. We shall illustrate this by the following example. Let the
pattern S be

SENTENCE <mod:decl,voice:active>;
<subject:NP <number:sing,person:3>;
<det:ART <sort:def>;>,
<head:NOUN <stem:’boy’,number:3>;> >,
<aux:VERB <stem:’be’,form:sing3>;>,
<head:VERB <stem:’sleep’,form:’ing’ > ;>

The constructors are written in capital letters, the selectors are subject, aux, head and
det. In this example there are no variables; the pattern S corresponds to the surface
structure of the sentence

’the boy is sleeping’

which is a sentence of a particularly simple class. Most of the following applies to all
sentences of that class.
We shall subject S to the M rule given as follows

R1 = A(SENTENCE <mod:decl,voice:active >;
<subject:varl >,
<aux:VERB <stem:’be’,form:sing3>;>,
<head:VERB <stem:var2,form’ing’>;> ) .

A
(R1 ;<1:varl>,<2:VERB <stem:var2,form:’ing’ >;> )
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Using functional application and putting R1 S = S1, we have
A
S1 = (R1 ;<NP<number:sing,person:3>;
<det:ART <sort:def>;>,
<head:NOUN <stem:’boy’,number:3>;> >,
<VERB <stem:’sleep’,form:’ing’>;> )

A
R1 is here a constructor which serves as the name of R1 (ROSETTA convention).

Next S1 is subjected to the M rule given as follows

R2 = \(var ;<NP <number:ing,person:3>;
<det:ART <sort:def>;>,
<head:NOUN <stem:’boy’,number:3>;> >,
<VERB <stem:’sleep’.form:’ing’>;> ) .

A
(var ; <R2 ;<NOUN <stem:’boy’,number:unspecified>;>,
<VERB <stem:var2,form:undef>;> )

A
Again R2 is the name of R2. As formulated here we note:

A
1. application of R2 does not suppose that the constructor R1 is
present at top level,
2. as formulated here attribute values under NOUN and VERB are changed.

If they are to be kept the rule gets a simpler formulation:

A(varl ;<NP <number:sing,person:3>;
<det:ART <sort:def>;>,
<head:var2> >,

<var3>) .
A
(varl ;<R2 ;<var2> >,
<var3> )

Putting R2 S1 = S2, we have
A A
S2 = (R1; <R2 ;<NOUN <stem:’boy’,number:unspecified>;> >,
<VERB <stem:’boy’,form:undef>;> )
Also (R2 (R1 S)) = S2. Further, in view of the inversion principle, S can be recovered

from S2 by solving

S2 (in fact x = S1)

X

x from R2 x
y fromRly

and then identifying y with S.
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3. Conclusions

The paper shows that formulating M-rules as lambda-abstractions over patterns gives a
way of describing transformations as used in ROSETTA which is besides nicely readable,
also readily amenable to implementation. The ROSETTA system is described in a
number of reports from the Philips Machine Translation Project of the Research
Laboratories at Eindhoven, see for instance Sanders (1988), and is not explained in any
detail here.

A suitable notation for patterns and rules is given and implementation of the rules can
be effectuated along the lines proposed for programming languages like MIRANDA (cf.
Peyton Jones (1987)). The rules satisfy the theoretical requirement of an inversion
principle, which is formulated in the context of the intended application (machine
translation of sentences from one natural language to another); the principle states that
a sentence (i.e. a pattern) must be recoverable from patterns which have been derived
from it by successive applications of M-rules.

Inversions are formulated as beta-abstractions in combination with the relevant M-rules.

The transformation needed for the transfer from one language to another is not
considered in the paper.
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Abstract

This paper presents generalizations of several common parsing algorithms for parsing lan-
guages with bounded discontinuous constituency. An examination of the original algorithms
shows how they maintain the three crucial properties of minimality, soundness and complete-
ness. Respectively, these properties require that a parsing algorithm find a given analysis at
most one time, that every analysis is an analysis defined by the grammar and that, if the lan-
guage is decideable, every analysis will be found. This allows us to explain straightforwardly
how the generalised algorithms extend the original ones. We also consider the computational
complexity of the classes of grammars parsed by these algorithms briefly.

1 Introduction

An outstanding characteristic of modern grammatical theory is that it has become increasing
lexicalist, i.e., that most grammatical information is encoded in the lexicon and that the syn-
tactic components of grammars have become increasingly impoverished. This is true to varying
degrees of Government and Binding Theory (GB) and Lexical Functional Grammar (LFG) and is
particularly true of the development of first Head Grammar (HG) and then Head-driven Phrase
Structure Grammar (HPSG) from Generalized Phrase Structure Grammar (GPSG).

In HPsG, this has been carried to the point where all syntactic and phonological information
is encoded in signs. Syntactic structure is encoded as a complex feature-structure which is the
value of a DAUGHTERS (DTRS) attribute and not as a tree. The PHONOLOGY (PHON) attribute
of a sign is a sequence of atoms representing the phonology (or orthography) of the entire sign.
The mapping from the DTRs attribute to the PHON attribute is determined by a relation called
order-constituents.! The following implication states the relational dependency of the value of the
PHONOLOGY attribute on the value of the DTRs attribute in phrasal signs.

*Formerly also of Vakgroep a-informatica, Universiteit van Amsterdam.

! Although Pollard and Sag ([14]; henceforth P&S) state “the phonology value of a phrasal sign is specified as
a function, called order-constituents, of the sign’s daughters value”, order-constituents is really a relation since
a given set of daughters may give rise to more than one possible word ordering in languages with semi-free word
order.
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PHON order-constituents([D)

phmaal—sign[ ] = DTRS [i]

This implication is taken to be a “language specific principle of grammar”. That is, the relational
behaviour of order-constituents is language specific. What is of fundamental importance here is
that this relation cannot order the phonology of a sign in terms of daughters since there is in
general no linearly ordered encoding of all the daughters of a phrasal sign.

For example, in a head-complement sign, DTRS takes as its value a feature structure contain-
ing a HEAD-DAUGHTER feature and a COMPLEMENT-DAUGHTERS feature which is a sequence of
complement daughter signs.

HEAD-DTR |[...]
DTRS | - lePsDTRS (--4)

However, in a filler-gap sign, DTRS takes as its value a feature structure containing a FILLER-
DAUGHTER feature and a HEAD-DAUGHTER feature.

FILLER-DTR [...]
PTRS | EEAD-DTR [..]

Therefore it is impossible to derive the order of the PHON value by concatenating the phonologies
of the daughters from left to right (where all the daughters are ordered). This leaves us with the
situation that signs determine word order directly instead of word order being determined by the
“leaves” of surface syntax trees as in standard syntactic-based approaches to word order.

This makes a great deal of freedom available for determining word order. Among other things,
it means that it is possible to define the mapping from syntactic structure to phonology to allow
bounded discontinuity. By bounded discontinuity we mean phenomena such as Mittelfeld “scram-
bling” in German and so-called “cross-serial” dependencies in Dutch as opposed to unbounded
discontinuity such as Wh-movement.

For example, it is possible to define the mapping such that the phonologies of two daughter
constituents get interleaved in the phonology of the mother. Consider the following example from
P&S (ex. 373, p. 189).

PHON (the walked poor to old the man store) -‘

HEAD  [MAl v]]

SYN|LOC
SUBCAT ()

PHON (walked to the store)
HEAD-DTR

< [PHON (the old man)] >
COMP-DTRS

DTRS

Notice that in this example, constituency boundaries place no constraints whatsoever on the
possibility of of “interleaving” the phonologies of daughters (and permuting them arbitrarily)
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to produce the phonology of the “mother”. Such a state of affairs characterises the so-called
W?* languages. Of course, there is hardly a linguist to be found who really believes in the
existence of such languages. However, there has been a steady progression of linguists who
have proposed “string combination/composition operators” stronger than simple concatenation
to provide solutions for apparent cases of discontinuity (i.e., nonadjacency of subconstituents)
rather than appealing to “noncanonical” syntactic representations.? A short list of these include
Bach’s left- and right-wrap operators ([2, 3]), Pollard’s head-wrapping operators ({13]), the order-
conslituents relation of HPSG ([14]), Dowty’s ordering and attachment operators ([6]), Reape’s
domain union operator ([16, 17, 18]) and the cb (combine) predicates of van Noord ([11]).

One way to conceive of the use of these operators is in terms of derivation trees. Given a local
tree

(MDr, ..., Dy)

(for n > 1) each daughter D; will be annotated with the string it derives. Associated with the
mother node M will be a string combination operator far(z1,...2,). M will then be annotated
with fa(w(D1),...,7(Dy)) (where w(D;) is the string that D; is annotated with for each ¢). That
is local trees will be pairs of (X, 7) where X is a syntactic category and = is the string it derives.
To put it informally, each node “knows” what string it derives.

Since we are bringing syntactic categories and their derived string (at least) together into a unit, I
will henceforth call these units signs following the practice of both HpsG and ucGe. Thus, the word
“category” will refer unambiguously to syntactic category and not any larger unit of linguistic
structure. However, in what follows, I will typically not include either phonological (PHON) or
derivational (DTRS) information (attributes) in the sign since we will not be considering any
particular set of string combination operators. Rather our goal, will be to investigate parsing
algorithms which can be used with any grammar which constructs derived strings within the
signs themselves.

Given that a grammar of this type determines word order in the sign, the question that arises is
what the parser should do. The answer is very simple. Given a grammar G with a set of produc-
tions of the form M — Dy, ..., Dy, for each production, assign an arbitrary order to any daugh-
ters which are not already ordered. Call the new grammar formed G’. Then consider the language
L(G’) generated by G'. Next, define the language LP*™ = {s'|s € L(G') and permutation(s,s')}
where permutation(s, s’) is true iff s’ is a permutation of s. LP*™™ is the permutation closure of
L. We say LP*™ is permutation-complete or permutation-closed. This means that for an input
string of length n, we have to consider every permutation of the string when parsing, i.e., we have
to consider n! permutations and the parsing problem is for permutation-complete languages.

One might object at this point that a particular grammar will never actually have a search space
that large and that the algorithms should be specialised to build the string-combining operations
directly into the parser. There are two responses to such criticism. First, we have set out to find
parsing algorithms for a class of grammars whose nonterminal symbols determine word order.
Therefore, it is the function of the grammar to determine order and not the parsing algorithms.
Furthermore, as such theories of word order evolve, the mechanisms for detemining word order
are likely to change. Thus, it is premature to “fold” theories of word order and their string-
combination operations into the parser.

Second, the primary goal of this work is to identify what changes need to be made to a class of
algorithms to make them parse permuatation-complete languages while maintaining the properties

2The term operators strictly suggests that they are in fact functions. In §8 we will consider an “operator” which
is only relational.
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of minimality, soundness and completeness (assuming that the original algorithms have those
properties). Minimality requires that any given derivation is only produced once. Soundness
requires that the parser only accepts strings which are in the language generated by the grammar.
Completeness requires that the parser produces every derivation of a string that is generated by
the grammar.

We will now present several common parsing algorithms all of which are minimal, sound and
complete and show how they can be generalised to parse permutation-complete languages while
maintaining the three properties described. In what follows, the parsers will be presented as
Prolog programs. We will sometimes make use of the Definite Clause Grammar (DCG) notation
to simplify the presentation. In each case, we will present a Prolog version of a common algorithm
and then present its generalisation along with an informal indication of why the generalised
parser is minimal, sound and complete. We will also assume a uniform rule format of the form
rule(Mom,Kids) where Mom is the mother sign and Kids is a Prolog list of daughter signs. (For the
head-corner parser, rules take the form rule(Head ,Mom,Kids) where Head is the head daughter.)
Lexical entries are of the form lexicon(Sign,Word) where Sign is the sign of the word Word.
Lexical entries could be easily generalized to allow lists of words but we won't consider this
refinement here. No particular assumptions are made about the structure of signs except that
they are Prolog unifiable terms. This restriction can be easily eliminated by making the call to a
specialized unification predicate explicit but we won’t bother to here.

2 A generalised top-down parser

A simple top-down parser which uses the Prolog control strategy can be defined with just three
predicates for the type of grammars that we consider. parse/3 takes as input a (possibly unin-
stantiated or partially instantiated) sign, a list of words and returns a suffix of the list. (We will
assume henceforth that this is always instantiated to [J.) The first clause finds a rule the head
of which the goal sign Mom unifies with and finds the list of daughter categories Kids.

parse(Mom) -->
{rule(Mom,Kids)},
parse_kids(Kids) .

The daughters are then parsed one after the other by parse_kids/3.

parse_kids([]) --> [].

parse_kids ([Kid|Kids]) -->
parse(Kid),
parse_kids(Kids) .

The second clause for parse calls connects/3 to take the first word Word off the input string and
return the tail. The sign Sign which is the input to parse and Word are passed to lexicon/2 to
see if there is a lexical entry for Word of sign Sign.
parse(Sign) -->
connects (Word),

{lexicon(Sign,Word)}.

connects (Word, [Word|Rest], Rest).
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This completes the description of the basic top-down parser. The major point to note is that
connects forces a strict left to right discipline for unifying lexical entries with signs. To generalise
this algorithm to a permutation-complete one we must allow the possibility that any word in the
input string can be unified with the current sign. We do this by changing the second clause to
parse so that it calls a predicate delete instead of connect.

parse(Cat) -->
delete(Word),
{lexicon(Cat,Word)}.

delete/3 nondeterministically deletes an element from its input list.

delete(X, [X|L],L).
delete(X,[Y|L1],[YIL2]) :-
delete(X,L1,L2).

Consider the following trivial grammar. The categories v and n subcategorise for the arguments
in the list in the second argument position. sign(n, [],NSem) is an NP, sign(v, [],VSem) is
an S, sign(v, [sign(n, [],NSem)],VSem) is a VP and single common nouns subcategorise for
determiners as in HPSG, sign(n, [sign(det,[],DSem)],NSem). The first rule is like ‘Rule 1’
of P&S. It combines a head with one argument with that argument to give a mother with no
arguments. The second rule is like ‘Rule 2’ of P&S. It combines all of the arguments of a verb
except the first NP argument with the verb to produce a VP.

% lexicon(Word,Sign)

lexicon(john,sign(n, [J,john)).

lexicon(mary,sign(n, [],mary)).

lexicon(boy,sign(n, [sign(det, [0 ,Det)],boy(Det))).
lexicon(dog,sign(n, [sign(det, ] ,Det)] ,dog(Det))).
lexicon(kicked,sign(v, [sign(n,[],X),sign(n, [],Y)],kicked(X,Y))).

lexicon(the,sign(det, [],the)).
lexicon(his,sign(det, [],his)).

% rule(Mother,Daughters)

rule(sign(Cat, [],Sem), % ‘Rule 1’
[sign(Cat, [X],Sem),X]).
rule(sign(v, [sign(n, [],NSem)],Sem), % ‘Rule 2’

[sign(v, [sign(n,[],NSem),X|Y],Sem),X|Y]).

Notice that this grammar will produce two analyses of “john loves mary”, one where John loves
Mary and one where Mary loves John.

| ?- parse(X, [john,mary,loves],[]).
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X = sign(v,[] ,loves (john,mary)) ? ;
X = sign(v.[],loves(mary,john)) ?
no

The parser will also assign these two analyses to the 3! = 6 different permutations of [john,loves ,mary].

[john,loves,mary]
[john,mary,loves]
[loves, john,mary]
[loves,mary, john]
[mary, john,loves]
[mary,loves, john]

Notice also that the sentence “john loves john” receives two analyses, one where the first john
is the first argument of “loves” and the second the second and one where the first john is the
second argument and the second the first.

| ?- parse(X,[john,loves,john],[]).

X = sign(v,[],loves(john,john)) ? ;
X = sign(v,[],loves(john,john)) ? ;
no

This does not mean that the parser is not minimal however. Different occurrences of john are
being assigned to different argument roles. It is easy to see that the generalised parser is sound,
complete and minimal since it considers all permutations of the input string and is identical to
the usual top-down parser (which is minimal, sound and complete) in all other details.

3 A generalised left-corner parser

In this section, I'll present a left-corner parser. The presentation is very similar to that in
[12] and I will only briefly describe its workings here. First, we define the notion of lefi-
corner. lefi-corner(X,Y) is true iff X = Y or there exists a rule Z — X, D;,..., D, and
left-corner(Z, X). The left-corner parser is a bottom-up parser which uses the left-corner relation
to determine which rules to try. This helps limit the search space compared to a naive bottom-up
parser which traverses the entire search space.

parse/3 is similar to the same predicate in the top-down parser. It removes the first word
from the input list, finds the sign of the word WSign in the lexicon and then calls the predicate
left_corner/2 with WSign and the goal sign Sign. connect/3 is defined as for the top-down
parsers.

parse(Sign) -->
connect (Word) ,
{ lexicon(Word,WSign) 1},
left_corner(WSign,Sign).
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left_corner/4 has two clauses. The first says that a sign is a left-corner of itself. The second 5ays
that a daughter Kid is a left-corner of an ancestor node Top if the daughter is the first daughter
in a rule with mother sign Mom, the rest of the daughters can also be parsed and the mother
sign Mom is the left-corner of the ancestor node Top. This implements the abstract definition of
left-corner(X,Y’) above precisely.

left_corner(Sign,Sign) --> [].
left_corner(XKid,Top) -->
{ rule(Mom, [Kid|Kids]) },
parse_kids (Kids),
left_corner(Mom, Top) .

parse_kids/3 is defined exactly as for the top-down parsers.

As with the top-down parser, generalisation is trivial since the input string “drives” both algo-
rithms. Therefore, we just need to replace the goal connect (Word) with the goal delete(Word)
in parse/3 precisely as we did in the top-down case.

parse(Sign) -->
delete(Word),
{ lexicon(Word,WSign) },
left_corner(WSign,Sign).

delete/3 is defined exactly as for the generalised top-down parser. The generalised algorithm is
minimal, sound and complete for the same reasons that the generalised top-down parser is.

4 A head-corner parser

In [11], Gertjan van Noord presents a “head-corner parser”. Abstracting from the details of his
presentation a bit, the head-corner parser can be seen to be a variant of the generalised left-corner
parser.® van Noord considers a class of grammars which have the semantic head property. This
means that the semantics of every constituent is a projection of a lexical head called the seed.
The notion of the seed is defined inductively. The seed of a tree is the seed of its head. The
seed of a lexical head is the head itself. Grammatical theories like HPSG and ucGg also have the
semantic head property. This has also been described in the context of generation algorithms
in [5], [9],[10],[20] and [21]. Typically, grammars with the semantic head property also project
some lexically specified features from head daughters to mothers. This takes the form of the Head
Feature Principle in GPsG and HPsG. This means that there will be lexical feature sharing between
the root of a tree and its seed. van Noord’s intuition is that the combination of shared syntactic
and semantic information should be effective in cutting the lexical search space in parsers for
discontinuous constituency, and by implication, permutation closed languages.

The necessary changes occur in two predicates: parse and the second clause of head_corner,
which replaces left_corner. A predicate head/2 is defined which is grammar specific. It is
the equivalent of the Head Feature Principle. It projects some of the syntactic and semantic
information from the goal sign onto a (partially specified) lexical seed. parse takes the goal

3The algorithm is similar to but more general than the “head-driven parsing algorithm” of [8]. It is unclear
what relationship the algorithm bears to the “head-driven parser” presented in [15].
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sign Sign and projects some of its information onto the sign WSign.* Then lexicon is called
nondeterministically with WSign to hypothesize possible lexical heads. This returns a word Word
which delete tries to delete nondeterministically from the input string. Notice that in the left-
corner parser Word is uninstantiated when delete is called but in the head-corner parser it is
instantiated.®

parse(Sign) -->
{ head(Sign,WSign),
lexicon(Word,WSign) },
delete(Word),
head_corner(WSign,Sign).

In the second clause of head_corner, the head daughter Head replaces the (arbitrary) daughter
Kid in the left-corner parser. Rules are of the form rule (Head,Mom,Kids) where Head is the
head daughter, Kids are the other daughters and Mom is the mother sign. As in the left-corner
parsers, the first argument (Bead) is required to be one of the daughters of the rule and then the
rest of the daughters Kids are parsed by parse_kids. Finally, the mother sign Mom and the goal
sign Top are passed to head_corner analogously to the left-corner parsers.

head_corner(Sign,Sign) --> [].
head_corner (Head,Top) -->
{ rule(Head,Mom,Kids) },
parse_kids(Kids),
head_corner (Mom,Top) .

Given the soundness of the head relation with respect to the grammar and the fact that the
generalised left-corner parser is minimal, sound and complete, it is easy to see that the head-
corner parser is also minimal, sound and complete.

The predicate head is very simple. It just unifies the major category symbol and semantics of
the goal and the seed.

LOf course, if the goal sign is the totally unspecified sign, lexical search will not be reduced at all.

5In van Noord’s version, delete/3 is replaced by the predicate subset/3 to allow for complex lexical heads
which have discontinuous components, e.g., Dutch and German separable prefix verbs and English particle-verbs.
subset and its subsidiary predicate select_chk are defined as follows.

subset([J,P,P).

subset ([H|T] ,PO,P) :-
select_chk(H,P0,P1),
subset (T,P1,P).

select chk(E1, [E1|P],P) :- !.
select_chk(E1, [H|PO],[HIP]) :~
select _chk(E1,PO,P).

The cut in the first clause of select_chk can be eliminated if one wants to allow two analyses for sentences like
“john loves john”.

6 The nondeterministic lexical access before deletion from the input string seems like it might be inefficient if the
number of lexical heads projected from the goal sign is potentially very large. van Noord’s implementation includes
the obvious remedy to this problem. Lexical access is restricted to just those words which occur in the input string.
Notice that the calls to lexicon and delete are in the reverse order to the calls to connect and lexicon in the
left-corner parser. It is precisely this reversal which gives rise to the possible reduction in the search space.
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% head(Goal,Seed)
head(sign(Syn,_,Sem) ,sign(Syn,_,Sem)).

Now consider the previous grammar but with the rules rule/2 replaced by rules of the form
rule(Head ,Mom,Kids) where Head is the head daughter of the corresponding rule of arity 2.

% rule(Head,Mother,Daughters)

rule(sign(Cat, [X],Sem),
sign(Cat, [],Sem),
[x1).

rule(sign(v, [sign(n, [] ,NSem) ,X|Y]],Sem),
sign(v, [sign(n, [1,NSem)],Sem),
[xivl).

With this grammar the following examples can be parsed yielding four analyses each corresponding
to his dog kicked the boy, the dog kicked his boy, his boy kicked the dog and the boy kicked his dog.

| ?- parse(X, [the,boy,kicked,his,dogl,[]).

X = sign(v,[],kicked(dog(his),boy(the))) ? ;
X = sign(v, [],kicked(dog(the) ,boy(his))) ? ;
X = sign(v,[],kicked(boy(his),dog(the))) ? ;
X = sign(v, [],kicked(boy(the),dog(his))) ? ;
no

| 7- parse(X, [the,his,kicked,boy,dog],[]).

X = sign(v,[],kicked(dog(his) ,boy(the))) ? ;
X = sign(v, [],kicked(dog(the),boy(his))) ? ;
X = sign(v,[],kicked(boy(his),dog(the))) 7 ;
X = sign(v,[],kicked(boy(the) ,dog(his))) ? ;
no

5 A generalised shift-reduce parser
In this section, we present a standard shift-reduce parser. Shift-reduce parsers have been advo-

cated by Shieber, Tomita and Pereira among many others. [1] (Chap. 5) provide a thorough
introduction to a variety of shift-reduce algorithms. The one we present here should be very
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familiar to a computational linguistics audience. The following description will therefore be fairly
brief.

The shift-reduce parser is a nontabular, bottom-up parser which uses a stack as its main data
structure. When a constituent has been parsed it is added to the top of the stack. At this
point there are two choices. Either the stack is left unaltered and further constituents are parsed
bottom-up (a “shift”) or else a rule is chosen nondeterministically and there is an attempt to
unify the n daughters of the rule in reverse order against the top n elements of the stack. If
the unification is successful, then the top n elements of the stack are popped and the mother is
pushed on the stack. This is called a “reduce” step. The key here is that the stack elements are
in reverse order to the way they were parsed. Therefore, their terminal strings conform to the
input list.

Therefore, there are two major predicates: parse/3 which takes an input list of words to be
parsed, an input stack and an output stack. The input list is successfully parsed when a single
sign is left on the stack and the entire input list has been consumed.

parse/2 is simply used to initialize the stack to be empty in parse/3.

parse(L,X) :-
parse(L, [1,X).

parse/3 has two clauses. The first simply returns a single element stack if the input string is
empty. This is the termination condition mentioned above. The second clause is tail-recursive on
the input list. It takes the first word off the input list, finds the word’s sign in the lexicon, passes
it to the predicate reduce along with the stack and gets a new stack back. This is then passed
tail-recursively to parse with the rest of the input list.

parse([]1, [X], [X]).

parse( [Word|Words], StackO, Stack) :-
lexicon(Word, Sign),
reduce(Sign, Stack0, Stackl),
parse(Words, Stackl, Stack).

The predicate reduce/3 implements the “shift” and “reduce” operations. The first clause simply
“shifts” the sign onto the stack. The second attempts to find a rule with n daughters which which
unify with the top n elements of the stack (in reverse order). This yields a new stack which is
then recursively passed to reduce along with the mother sign Mom. If no additional reductions
can be performed, then the shift clause succeeds and control returns to parse.

reduce(Kid, Stack, [Kid|Stack]). % shift
reduce(Kid, Stack0, Stack) :- % reduce
rule(Mom, Kids),
find_kids(Kids, [Kid|Stack0], Stackl),
reduce(Mom, Stackl, Stack).

The predicate find_kids unifies the daughters of a rule against the top of the stack in reverse
order, deleting the daughters from the stack.

find_kids(Kids, Stack0, Stack) :-
reverse(Kids, RevKids),
append (RevKids, Stack, Stack0).
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We’ll now present a generalised version of the shift-reduce parser described above for permutation-
closed languages.” The first important point about the generalised parser is that it replaces the
stack with a multiset (which we will represent as a Prolog list). Thus, the parser might be called
a “multiset parser”. parse/2 is defined exactly as for the previous parser. parse/3 is also defined
exactly as for the previous parser except that we rename any variables Stackn by Multisetn.

parse([1, [X],[X]).

parse([Word|Words], MultisetO, Multiset) :-
lexicon(Word, Sign),
reduce(Sign, MultisetO, Multisetl),
parse(Words, Multisetl, Multiset).

The first clause of reduce remains the same, i.e., it “shifts” the sign into the multiset. The
second clause is slightly different. As before a rule is found with mother Mom and daughters Kids.
However, instead of shifting Kid into the multiset prior to finding elements of the multiset which
unify with the daughters of the rule, a call to delete/3 requires that Kid be one of the daughters
Kids of the rule. The rest of the daughters KidsExceptKid are removed from the multiset by
subset/3 which returns the remaining multiset elements. This replaces find_kids in the shift-
reduce parser. Finally, reduce is called recursively with the mother sign Mom and the multiset
analogously to the shift-reduce parser.

reduce (Kid, Multiset, [Kid|Multiset]). % shift
reduce(Kid, Multiset0, Multiset) :- % reduce
rule(Mom, Kids),
delete(Kid,Kids,KidsExceptKid),
subset (KidsExceptKid, MultisetO, Multisetl),
reduce (Mom, Multisetl, Multiset).

subset/3 is defined in the usual way in terms of delete/3 (without a cut).

subset ([], Multiset, Multiset).

subset ([H|T], MultisetO, Multiset) :-
delete(H, Multiset0, Multisetl),
subset (T, Multisetl, Multiset).

Now reconsider the grammar of §2. If the following goal is given to the Prolog interpreter,
| ?- parse([the,boy,kicked,his,dog],X), write(X), nl, fail.

then the following four analyses are produced:
[sign(v, [],kicked(boy(his) ,dog(the)))]
[sign(v, [],kicked(dog(the) ,boy(his)))]

[sign(v, [],kicked(boy(the),dog(his)))]
[sign(v,[],kicked(dog(his),boy(the)) )]

"The generalised algorithm was developed jointly with Evelyn van de Veen and Pete Whitelock. A version of
this algorithm is described in [22].
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The second clause of reduce would be exactly analogous to the corresponding clause of the
shift-reduce parser if it was of the form:

reduce (Kid, MultisetO, Multiset) :-
rule(Mom, Kids),
subset (Kids, [Kid|Multiset0], Multisetl),
reduce(Mom, Multiseti, Multiset).

However, in this case there is no guarantee that Kid becomes one of the daughters in the rule
application. This destroys the minimality of the algorithm. It is fairly easy to see why. Imagine
an input list [a,b,c,d,e] and rules and lexical entries:

rule(ab, [xa, xbl).
rule(abc, [xc, abl).
rule(abcd, [xd, abcl).
rule(abcde, [xe, abcd]l).

lexicon(a, xa).
lexicon(b, xb).
lexicon(c, xc).
lexicon(d, xd).
lexicon(e, xe).

Since the shift clause of the algorithm will always succeed first, the signs of all the lexical en-
tries in the input string will be shifted into the multiset so we will end up with the multiset
[xe,xd,xc,xb,xa]. The ab rule can then be applied and a reduce step performed. The other
three rules can also be applied giving three more reduce steps leading to an eventual parse of the
input string as category abcde. However, on backtracking, the last lexical category shifted into
the multistack, namely xe, will eventually be removed and a reduce step will be attempted. But
then the ab rule can still apply. We can also remove xd and apply the ab rule and then remove
xc and apply the ab rule. So the non-minimality comes from the interaction of the subset and
reduce predicates and the rules. For an input string of length n, we will always have a choice
of shifting every lexical entry in the input string and then reducing, shifting the first m lexical
entries (for each 0 < m < n) and then reducing or just shifting exactly what is required for
the various rules and then reducing. The resulting combinatorial blow-up will occur even with
linguistically motivated grammars. Notice as well, that the number of times that a particular
“analysis” is found will not be constant across the different analyses. This is a complex factor of
the order of the words in the input string and the rules in the grammar.

So, what is it about the following definition of reduce which makes it minimal?

reduce(Kid, Multiset, [Kid|Multiset]). % shift
reduce(Kid, MultisetO, Multiset) :- % reduce
rule(Mom, Kids),
delete(Kid,Kids,KidsExceptKid),
subset (KidsExceptKid, MultisetO, Multisetl),
reduce(Mom, Multisetl, Multiset).

The answer is that Kid (which is either a new lexical entry or the sign produced by the last
reduce step, i.e., a mother sign) is required to be a daughter in the second clause of reduce by
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the call to delete. This means that Kid is combined with subsets of the multiset in every possible
way licensed by the rules but each such combination occurs only once. The problem with the
non-minimal algorithm is that the second clause effectively acts as a shift and a reduce step.

The generalised algorithm is sound and complete for the same reasons that the standard shift-
reduce algorithm is. To elaborate slightly, the algorithm is complete precisely because the reduce
step tries to use the last sign produced as a daughter of every rule.

This characteristic of the generalised version of reduce is very important because it indicates why
the standard shift-reduce parser is minimal and complete. In the standard parser, Kid is put on
the top of the stack before the reduce step. This guarantees that it becomes (the last) daughter of
a rule if possible. The stack also guarantees that constituents (both lexical and nonlexical) occur
in the order specified by the grammar. This guarantess not only that word order is correct but
the fixed order means that a mother can be built out of a given set of daughters in only one way.
Thus, the stack is very important for maintaining minimality. We will see that this is important
in the next section where we generalise the shift-reduce parser to a parallel tabular variant.

6 A parallel tabular “shift-reduce’” parser

In this section, we’ll present a parallel tabular “shift-reduce” parser.® The parser is tabular since
it uses a chart as a well-formed substring or lemma table. It is parallel or breadth-first since it
pursues all “shift” and “reduce” steps in parallel. This will become clearer momentarily.

Before we describe the algorithm, we’ll describe the chart “edges”. An edge edge(Sign,Beg,End)
contains a sign Sign, the string position Beg of the first word of the string that it spans and the
string position End of the last word of the string that it spans. Therefore, if the first word in the
input string is the, then the edge edge(WSign,1,1) will appear in the chart where WSign is the
lexical entry for the. Similary, if the first two words of the input string are the girl and NPSign is
the sign derived from parsing the girl then the edge edge (NPSign,1,2) will appear in the chart.
That said, it is clear that a running count will need to be kept to indicate the string position of
the next word in the input string.

parse/2 takes two arguments, a list of words representing the input string and the current string
index. parse/1 just takes the entire input list and passes it to to parse/2 with the string index
1. The first clause is the termination case. If there are no more words left to process, the parser
stops. We will see later that the chart will then contain every possible analysis of every substring
of the input string.

parse(L) :-
parse(L,1).

parse([]1,.).
parse([Word|Words] ,Num) :~
(
lexicon{(Word,Sign),
reduce(Sign,Num,Num),

®The first parser I have seen of this type was written by Jo Calder. His motivation was to write a parser for UCG
grammars which did not involve a restriction-based prediction step since UCG rules contain almost no information
which could be put to such use. A brief description of his parser is given in [4]. The version I will present here is
a reconstruction of Calder’s parser. Calder’s parser is also rather ingenious since the design of the data structures
allows the grammar rules to be compiled instead of interpreted.
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fail ;
Numil is Num + 1,
parse(Words, Numil)

).

The second clause has two very important functions which are crucial to making the whole
algorithm work. First, the first word in the input list is looked up in the lexicon. The sign Sign
is then passed with the current string index to reduce. So far this is perfectly analogous to the
definition of parse for the standard shift-reduce parser. However, the next goal is fail which
causes reduce to do every reduction possible. This includes “shifting” the lexical entry into the
chart and successively trying to apply every rule. Thus, it pursues all shift and reduce steps
before considering the next word in the input string. It is in this sense that the algorithm is
parallel. When there are no more reduce steps left to try, the second disjunct is pursued. As in
the standard algorithm, it recursively calls parse with the rest of the input string, and in this
case, the string index of the first word on the rest of the input string. So, it is clear that the
standard and parallel versions are essentially the same, except that the standard algorithm works
depth-first and manipulates a stack while the tabular version works breadth-first and manipulates
a chart.

The predicate reduce/3 is also very similar to that of the standard algorithm (modulo data struc-
tures). The first argument Kid is the new constituent just built (as in the standard algorithm).
The second and third arguments are the beginning and ending string indexes of the substring
that the constituent spans.

As before, the first clause is the “shift” clause. However, instead of adding the new constituent
to the stack, it adds it to the chart. The second clause is very much like that of the original
algorithm. First, a rule is nondeterministically chosen. Then the daughters Kids of the rule
are reversed and the “new” constituent Kid is required to unify with the first daughter of the
reversed list (or to put it another way, to unify with the last daughter of the original list). This
requirement is equivalent to pushing Kid on the stack in the standard algorithm before calling
find_kids. Basically, we are insisting that if we can apply a rule, then Kid must be its last
daughter. Again, this preserves minimality and completeness. Since we know that Kid is in the
chart and unifies with the first daughter (in the reversed daughters list), we call f£ind_kids with
the rest of the reversed daughters RevKids. If all the daughters are successfully found, then we
call reduce recursively with the mother sign of the rule Mom. So it is clear that the structure of
reduce is essentially the same as that in the standard algorithm.

We haven’t discussed the role of string indexing in reduce yet. Beg2 and End2 are the string
positions of Kid. So, we want to start looking for RevKids at position Beg2-1. We call this End1
for clarity since the last constituent will occur immediately before Beg2. Therefore, find_kids
is called with End1 as the third argument and the variable Begi. It will become instantiated to
the left string index of the left-most daughter. Thus, the mother sign will span Begl - End2 and
so those are the two indexes passed to the recursive call to reduce on the mother sign Mom.

reduce(Kid, Beg, End) :- % shift
assertz(edge(Kid, Beg, End)).
reduce(Kid, Beg2, End2) :- % reduce

rule(Mom, Kids),

reverse(Kids, [Kid|RevKids]),
Endl is Beg2 - 1,
find_kids(RevKids, Begl, Endl),
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reduce (Mom, Begl, End2).

As the lowest level predicate responsible for manipulating the data structures (the chart in this
case), find_kids/3 is rather different than its counterpart in the standard algorithm. We discuss
the second clause first. First, the first daughter Kid is looked for in the chart. End2 specifies what
the right end string index should be. This will return the left end string index of that daughter.
So as in reduce, End1 is set to Beg2 — 1 for the recursive call to find_kids with the rest of the
daughters Kids. Because find_kids is always called with the third argument decremented by 1
from the left of the last constituent, when all the daughters have been found, its value is 1 lower
than what should be passed back. Therefore, the first clause increments the left index by 1 when
there are no more daughters.®

find_kids([],Beg,Begl) :-
Beg is Begl + 1.
find_kids([Kid|Kids] ,Begl,End2) :-
edge(Kid,Beg2,End2),
Endl is Beg2 - 1,
find_kids(Kids,Begi,Endl) .

We'll now present a generalised version of the parallel tabular “shift-reduce” parser. This time it
is insuffient to use beg and end indexes to represent the substring spanned by a constituent since
constituents might span a “discontinuous” substring of the input string. Therefore, we use codes
to encode the lexical entries which have contributed to the derivation of a constituent. For an
input string of length n, each code will be a bit pattern n bits long. If the ith bit of a constituent’s
code is 0 (for 1 < ¢ < n), it indicates that the constituent does not contain the ith word. For
each word of index j that a constituent does contain, the jth bit will be 1.1°

Let us say that two codes are bitwise-disjoint iff the logical AND of the two codes is 0. Further-
more, if A and B are two constituents, then they are bitwise-disjoint unless one is a descendant of
the other. Ais a descendant of B if A = B, A is a daughter of B or A is a descendant of a daughter
of B. It therefore follows that the codes of all the daughters of a mother are bitwise-disjoint.

A lexical sign of string index ¢ will be the bit string that is all 0s except for the ith bit which will
be 1. The code of a mother sign will then be the logical OR of all the codes of its daughters. A
string of length n must be analyzable as some sign and have a code of n 1 bits. For reasons of
convenience, bit strings will be encoded as Prolog lists of 0 and 1. We will see shortly that this
leads to some efficiencies.

parse/1 is similar to that of the previous parser. In this case, however, parse/1 calls parse/2
with an initial code rather than the first string index. The initial code is the code for the first
lexical item. It is created by the predicate initial_code.

parse(L) :-
initial_code(lL,Code),
parse(L,Code) .

°It is obvious that this parser is closely related to the CKY parser. Whereas the CKY parser builds all
constituents of length n before it builds any of length n + 1, the breadth-first parser builds all constituents possible
from the first n lexical entries before it considers the n + 1 lexical entry. For a reference to the CKY parser, see
[24).

10This encoding is also used by Johnson in [7]. However, he uses an alternative presentation based on sets of
pairs of integers which is equivalent and more convenient for his purposes.
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parse/2 is exactly analogous to the previous one except that it deals with codes instead of
string indexes. Therefore, in the second clause, instead of incrementing a string index, the
second disjunct increments the code. For example, if Code is [0,0,1,0,0] then Codel will be
[0,0,0,1,0]. The predicate next_code/2 takes care of the incrementing. Notice also that
reduce takes only two arguments instead of three. This is because the code does the work of
both the second and third arguments of the previous version.

parse([Word |Words] ,Code) :-
( lexicon(Word,Sign),
reduce(Sign,Code),
fail ;
next_code(Code, Codel),
parse(T, Codel) ).

The reduce/2 predicate is very similar to the reduce/3 predicate of the previous algorithm.
Modulo the change from indexes to codes, the first clause is the same. Things are also basically
the same in the second clause. A rule is chosen nondeterministically. Then the input sign is
required to be one of the daughters of the rule by the call to delete/3 (instead of the last
daughter as in the previous version). As before find_kids/3 tries to find edges in the chart that
unify with the remaining daughters. It returns MomsCode which is the code of the mother sign
(as built from the daughters’ codes as indicated above). Finally, reduce is called recursively with
the mother sign Mom and its code MomsCode.

reduce(Sign,Code) :- % shift
assertz(edge(Sign,Code)).
reduce(Kid, Code) :- % reduce

rule{(Mom, Kidso0),
delete(Kid,Kids0,Kids),
find_kids(Kids,Code,MomsCode),
reduce (Mom,MomsCode) .

In the second clause of reduce above, find_kids is called with both the daughter Kid and its
code Code. Code is an argument since the mother’s code MomsCode is constructed as the logical
OR. of all its daughters. find_kids accomplishes this as it finds acceptable edges to unify with
the rest of the daughters in the rule chosen.

The first clause is just the standard base case which returns the completed mother’s code when
all the daughters have been found. In the second clause, we find an input list of daughters, a
“cumulative” code Code0 which has been built so far and an output code Code. make_mask/2 takes
as input the cumulative code and creates a “mask”. This mask contains anonymous variables
where Code0 contains 0s and Os where Code0 contains 1s. For example, if Code0 is [0,1,1,0,1]
then the mask KidsCode would be [_,0,0,_,0]. This means that the mask will not unify with
any code which contains a 1 somewhere that Code0 does. This prevents lexical entries from
occurring in two different edges A and B unless A is a descendant of B or vice versa. KidsCode
is then used as the (partial) code for the first daughter in the list Kid when it is searched for
in the chart. This will prevent it from unifying with any edges that it shouldn’t but will also
further instantiate the mask KidsCode completely. or_code then does a logical OR on Code0 and
KidsCode producing Codel which is then used as the cumulative code for the tail recursive call to
find_kids. The use of the mask and the “cumulative” code gives an efficient way to use Prolog

118



unification to limit search in the chart. After all the daughters have been found, the mother’s
code is precisely the cumulative code and it is returned by the first clause.

find_kids([],Code,Code).

find_kids ([Kid|Kids] ,Code0,Code) :-
make_mask(Code0,KidsCode),
edge(Kid,KidsCode),
or_code(Code0,KidsCode, Codel),
find_kids(Kids,Codel,Code).

7 A generalised CKY parser

In this section, we’ll present a parser which implements the Cocke-Kasami-Younger (CKY) parsing
algorithm. The CKY algorithm is a tabular algorithm which builds all phrases of length i before
it builds any of length i + 1 for 1 < i < n for a string of length n. For context-free grammars,
edges are of the form V (4, j) where V is a nonterminal symbol which derives the substring between
string position ¢ and j (inclusive). (Of course we will generalise this to arbitrary phrase structure
grammars below.)

As in the parallel tabular shift-reduce parser, edges are of the form edge(Sign,Beg,End) where
Sign is a sign and Beg and End are the string positions of the first and last words of the substring
derived.

parse/1 takes an input list and calls initialise/3 with the input list and an initial word count
of 0. It returns the length of the list in N. initialise/3 adds edges of the form edge(Sign,I,I)
to the chart for each word in the input list with string position I between 0 and n. parse/2 is
then called with the minimum span 0 and the maximum span N to parse the lexical edges in the
chart. The span is the length of the substrings to be parsed.

% parse(List)

parse(List) :-
initialise(List,0,N),
parse(1,N).

% initialise(List,First,Last)

initialise([],N,N).
initialise([Word|Words],NO,N) :-
(
lexicon(Word,Sign),
assert(edge(Sign,NO,NO)),
fail ;
N1 is NO + 1,
initialise(Words,N1,N)
).

initialise is similar to the corresponding predicate in the parallel tabular shift-reduce parser.
For the 7 4 1th word Word in the input list, it asserts edges of the form edge(Sign,N,N) where
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N = i for each lexical entry lexicon(Word,Sign). It returns the length of the list in the last
argument.

parse/2 takes the current and maximum spans (Span0 and Span) and calls parse_left_to_right/2
to parse all substrings of length Span0. It then increments the current span Span0 and calls itself
recursively until the maximum span has been reached, i.e., the length of the input string.

% parse(Span0,Span)

parse(Span0,Span) :-
Span0 > Span.

parse(Span0,Span) :-
parse_left_to-right(SpanO,Span),
Spanl is Span0O + 1,
parse(Span1,Span).

parse_left_to_right/2 takes the current span Span0 and the maximum span Span and then
' passes the argument sequence (0,Span,Span0) to parse_left_to_right/3 corresponding to
the parameter sequence (Beg,End,Span) where Beg and End are the first and last indexes under
consideration and Span is the current span.

parse_left_to_right/3 starts at the left edge of the chart (string index 0) and tries to build
phrases of length Span (the current span). It then iterates one string position at a time to the
right checking for phrases of length Span until Beg + Span — End — 1 > 0, i.e., until no more
phrases of length Span can be built. It calls parse_substring/2 to parse every phrase between
string positions Beg and Beg + Span at each step.

% parse_left_to_right(Span0,Span)

parse_left_to_right(Span0,Span) :-
parse_left_to_right(0,Span,Span0).

% parse_left_to_right(Beg,End,Span)

parse_left_to_right(Beg,End,Span) :-
Right is Beg + Span - 1,
Right > End.
parse_left_to_right(Beg,End,Span) :-
Right is Beg + Span - 1,
parse_substring(Beg,Right),
Begl is Beg + 1,
parse_left_to_right(Begl,End,Span).

parse_substring/2 is very simple. Given string positions Beg and End, it nondeterministically
choses a rule and then calls £ind_kids/3 to find a phrase between Beg and End. It then asserts
the mother sign Mom in the chart with those strong indexes. The fail guarantees that the chart
will be complete between Beg and End.

% parse_substring(Beg,End)
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parse_substring(Beg,End) :-
rule(Mom,Kids),
find_kids(Kids,Beg,End),
assert (edge(Mom,Beg,End)),
fail.

parse_substring(_,_).

Finally, find_kids/3 takes a list of daughter signs List and beginning and ending indexes Beg
and End and tries to find a contiguous set of edges which unify with the daugther signs. The first
clause guarantees that the end of the last daughter in the phrase is End.

% find_kids(List,Beg,End)

find_kids([],Beg0,Beg) :-
Beg is Beg0 - 1.
find_kids([Kid|Kids],Begl,End2) :-
edge(Kid,Begl ,End1),
Beg2 is Endl + 1,
find_kids(Kids,Beg2,End2).

This finishes the presentation of the parser. Before we consider minimality, soundness and com-
pleteness, we will first discuss the efficiency (or rather the lack of it) of this implementation of the
CKY algorithm. The inefficiency of this implementation is due to the definition of £ind_kids.
Assume that the current span is . Then for every j s.t. 0 < j < i, the entire search space for
the span j will be researched. The only thing that prevents phrases previously built from being
added to the chart again is the first clause of £ind_kids which requires that the ending string
index of the phrase equals the ending index of the original call to find_kids.

Minimality follows from this property of £ind_kids and the definition of parse_substring which
is minimal assuming find_kids is minimal. Soundness follows from the definition of find_kids
which is similar to th e corresponding definition for the tabular parallel shift-reduce parser except
that the latter works from “right to left” whereas the CKY algorithm works from “left to right”.
Completeness is very easy to see. We revert to our earlier notation temporarily. Assume that the
chart is complete for all substrings between ¢ and j. Then, to quote from [?, p187]

“Since the table is complete for all substrings of the string between ¢ and j, we merely
need to check each rule, say, A — B;...B, in G and look for n + 1 positions kg
through k,, such that ¢ = k + 0 and k,, = j and each k; is greater than k;_,, and such
that the B,, are in the table under V(kn—1,km). If such a set of positions exists,
then A can be added to the table under V(z,j). By performing the search for rules
and positions in all possible ways, we can complete the table for V (4, 7), in which case
larger strings can be analyzed.

Thus the CKY parsing algorithm builds the table by look for phrases of type V (¢, 5)
for larger and larger j — 1.

We will now present a generalised version of the CKY algorithm which uses the codes of the
generalised tabular parallel shift-reduce parsers. The overall structure is similar to both the
former and the latter. Chart edges are of the form edge(Sign,Code) where Sign is a sign and
Code is its code.
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parse/1 takes an input list List and calls initial_code to create an initial Code as described
for the generalised tabular shift-reduce parser. initialise adds every lexical entry for every
word in the input list to the chart with its code returning the length of the list in Span. Then
as with the previous algorithm it calls parse/2 with the minimal span 1 and the maximum span

Span.

parse(List) :-
initial_code(List,Code),
initialise(List,0,Span,Code),
parse(1,Span).

initial_code/2 is a little different from its previous version. Not only does it return an ini-

tial code of the form [1,0, . ..] but also asserts a clause of the form zero_mask(ZeroMask) where
ZeroMask is a code of all zeros which is of length n for input string of length n. (zero_mask(N,ZeroMask)
creates a code ZeroMask of all zeros of length N.)

% initial_code(List,Code)

initial_code(List,Code) :-
length(List,N),
zero_mask(N,ZeroMask),
assert (zero_mask(ZeroMask)),
Mis N -1,
zero_mask(M,ZeroMask2),
Code = [1|ZeroMask2].

initialise/4 is again slightly different than the previous version. In addition to counting the
number of elements in the input list, it also takes an input code which is stored as part of the
edge. The second disjunct in the second clause not only increases the word count but increments
the code as described for the generalised tabular shift-reduce parser.

% initialise(List,First,Last,Code)

initialise([],N,N,Code).
initialise([Word|Words],NO,N,Code) :-
(
lexicon(Word,Sign),
assert (edge(Sign,Code)),
fail ;
N1 is NO + 1,
next_code(Code,Codel),
initialise(Words,N1,N,Codel)
).

parse/2 has roughly the same structure and function as its previous counterpart except that it
calls parse_substring/1 with the current span Span rather than parse_left_to_right.

% parse(Span0,Span)
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parse(Span0,Span) :-
Span0 > Span.

parse(Span0O,Span) :-
parse_substring(Span0),
Spanl is Span0O + 1,
parse(Spani,Span).

parse_substring/1 has the same purpose as its previous counterpart but only needs the span
information since daughters need not be contiguous. As before, rules are chosen nondeterministi-
cally and find_kids is called to find suitable daughter edges. The mother edge is then asserted.

% parse_substring(Span)

parse_substring(Span) :-
rule(Mom,Kids),
find_kids (Kids,Code,Span),
assert (edge (Mom,Code)),
fail.

parse_substring(.).

find_kids/3 takes a list of daughter signs List, returns the code of the mother sign (as explained
in the description of the parallel tabular shift-reduce algorithm) in Code and also takes the current
span as its third argument. It then creates an initial mask of all Os and calls find_kids/4 to try
to find the daughters.

find_kids/4 basically works like its correlate in the tabular parallel shift reduce parser. However,
in addition to finding edges and manipulating codes, it incrementally checks that the number of
words derived by the phrase being built does not exceed the current span. Furthermore, if we
successfully find edges which unify with every rule daughters we check that the number of words
that it “spans” is equal to the current span.

% find_kids(List,Code,Span)

find_kids(Kids,Code,Span) :-
zero_mask (ZeroMask) ,
find_kids(Kids,ZeroMask,Code,Span) .

find_kids([],Code,Code,Span) :-
number_of_ones (Code,Span) .

find_kids ([Kid|Kids],Code0O,Code,Span) :-
make_mask (Code0,KidsCode) ,
edge(Kid,KidsCode),
or_code(Code0,KidsCode,Codel),
number_of_ones(Codel,Num),
Num =< Span,
find_kids (Kids,Codel,Code,Span) .

This finishes the presentation of the generalised parser. It is even more inefficient than the
definition of the standard parser due to the definition of find_kids and the fact that substrings
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need not be continuous. I could have provided much more efficient implementations of the parsers
but they would have been unsuitably obscure for pedagogical purposes.

Minimality and soundness are preserved for the same reasons that they are in the standard
algorithm and completeness is also guaranteed since every substring of length i is analyzed before
any strings of length 7 4 1.

8 Computational complexity

Obviously, the computational complexity of each of the generalized algorithms will depend on
the complexity of the algorithm being generalized. For the algorithms which nondeterministically
delete an element of the input string, in the worst case, there are n! possible permutations of the
input string for an input string of length n. So, if we consider the top-down algorithm (which
is exponential in the worst case, i.e., O(2™)), then the complexity will be O(n!.2"). For the
generalized tabular parser, we can construct grammars which will produce edges which span
every subset of the input string, i.e., which parse the powerset of the input string. Thus the
complexity is at least exponential in both time and space.

We could go on like this and try to do a complexity analysis for each generalised algorithm which
shows how much worse it is than the standard algorithm. However, this seems like a waste of time
since we are interested in the complexity of the “nonconcatenative” grammars themselves and not
the parsing algorithms per se. Rounds [19] and Vijay-Shanker, Weir and Joshi [23] have done some
interesting work in precisely this area. Rounds ([19]) defines two classes of “logic for parsing”,
ILFP and cLFP. He proves that a language is ILFP-defineable iff it is in PTIME (polynomial
time parseable). ILFP is a formalism which characterises acceptability in terms of integers and
arithmetical operations on them. He gives examples where the head-wrapping operations of [13]
are characterised in terms of ILFP. On the other hand, CLFP characterises acceptability in terms
of strings and concatenation. It defines precisely the class of languages which are in EXPTIME
(exponential time parseable).

Vijay-Shanker et al. [23] examine classes of grammar formalisms which they characterise as linear
contezl-free rewriting systems (LCFRS). The composition operators of LCFRSs are linear (do
not duplicate unboundedly large structures) and nonerasing (do not erase unbounded structures).
Furthermore, choices during a derivation are independent of the context of the derivation.

For the purpose of showing that LCFRSs are in PTIME, Vijay-Shanker et al. make the additional
assumption that the contribution of a derived structure to the input string can be specified by a
bounded sequence of substrings of the input.

“Since each composition operation is linear and nonerasing, a bounded sequence of
substrings associated with the resulting structure is obtained by combining the sub-
strings in each of its arguments using only the concatenation operation, including each
substring exactly once.”

“A derived structure will be mapped onto a sequence z,...,z; of substrings (not
necessarily continguous in the input), and the composition operations will be mapped
onto functions that can be defined as follows.!?

''1n order to simplify the following discussion we assume that each composition operation is binary. It is easy
to generalize to the case of n-ary operations.
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f({z1, s 2n )y (U153 Una)) = (21, -+ 2Zny)

where each 2; is the concatenation of strings from z ;s and y,s. The linear and noneras-
ing assumptions about the operations ...require that each z; and y, is used exactly
once to define the strings z;,. .., 2,,." 12

Thus for context free grammars containing the following two types of productions (where the N;
are nonterminals and T is a terminal)

1. NO_'N].)"')NH
2. No——)T

there will be an associated composition operator of the form

fNo—.Nl....,N,.(zl, ceey zn) =21...Tn

(for n > 0) for each type (1) production and a composition operator of the form

no—r(z) =2

for each type (2) production. Since the two types of operators are defined only in terms of
concatenation of substrings, they fall into the class described above and therefore are in PTIME.

Now consider a definition of the concatenation or append operator over strings.

append(e,z) = =z
append(zy1,y2) = = - append(y1,y:)

Notice that the definition is recursive but is defined purely in terms of string concatenation.
Notice furthermore, that the definition is functional, thus fulfilling the extra assumptions that
Vijay-Shanker et al. make to guarantee polynomial time parseability.

Now consider the definition of the following slightly more general shuffle operation.!®

shuffle(e,e) = €
shuffle(zy1,y2) = - shuffle(y1,2)
shuffle(y1, zy2) = = - shuffle(y1,y2)

Notice that this definition is also recursive and is defined purely in terms of string concatenation.
However, the operator is not a true operator since it is not functional. That is, for two given
input arguments s;, 85, there may be several outputs. For example if s; = ab and s, = ¢d then

12Quote taken from [23]. In the original the zs are zs.
Ber 1.
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shuffle(s1, 82, abed)
shuffle(s,, 82, acbd)
shuffle(sy, 82, acdb)
shuffle(s,, 2, cabd)
shuffle(sy, s2, cadb)
shuffle(sy, 83, cdab)

It is easy to see that we can define grammars which shuffle the terminal strings of some daughters
and concatenate others. This characterizes exactly the class of grammars described in [17] and
[18]. Does this composition “relation” define languages in PTIME? Unfortunately, the answer
appears to be no.

The following theorem has been brought to my attention by Bill Rounds (p.c.).!*

Theorem 1 (Ogden, Riddle and Rounds) Let L, and Ly be two deterministic contezt free
languages. Let L = {s|s, € L, and s, € L, and shuffle(sy, s2,8)}. Then the recognition problem
for L is N'P-complete.

The following corollary follows immediately.

Corollary 2 Let L, and L; be two contezt free languages. Let L = {s|s; € L, and s; €
Ly and shuffle(sy,s3,8)}. Then the recognition problem for L is N'P-complete.

Now, let Gy = (N1, Ty, P1,51) and G2 = (N3, T3, P, S2) be two context free grammars, where for
a € {1,2}, N, is the set of nonterminal symbols, T, is the set of terminal symbols, P, is the set
of productions and S, is the start symbol of G, respectively and L; = L(G1) and Ly = L(G32).
For each production p € P,, define a composition operator f, as described above for context free
grammars. Then define G = (N W N, U {S},Th W T2, AW P, U {S — 851, 52},5) (where & is
disjoint union) for some S ¢ Ny U N3. Finally, define

f(S——oS;,S;)(zay) = Shu.ﬂie(z’y)

Then clearly L(G) = {s|s; € L, and s; € L, and shuffle(sy, 83, )}. Therefore, the recognition
problem for L is N'P-complete.

There are two immediate responses to this result if it is correct. First, the parsing problem for most
unification formalisms is N'P-complete so this isn’t necessarily too worrying. A characterisation
of average case performance would be very useful but eludes me at the moment. Second, it
appears that the difference between the polynomial time parseability of languages defined using
concatenation or append and those which also use the shuffle relation depends entirely on whether
the composition operators are functional or just relational. The work of Vijay-Shanker et al.
implies that this is the case but there is no explicit proof of this that I am aware of. Rounds’
work is also very relevant here but again a definitive proof one way or another eludes me. For
now, I will have to leave this issue in its current rather confused state.

14The source for the original is supposed to be a paper by Ogden, Riddle and Rounds in Principles of Programming
Languages 1978. Unfortunately, I have not been able to locate it yet.
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9 Concluding Remarks

We’ve presented three classes of algorithms: (1) a class of top-down, depth-first (simple top-
down) and bottom-up with top-down filtering (left-corner and head-corner) parsers which can be
generalised to be permutation-complete by nondeterministically choosing any lexical entry in the
input string instead of deterministically choosing the first; (2) a class of bottom-up, depth-first
(pushdown) stack parsers (shift-reduce) which can be generalised by replacing the stack with a
multiset and nondeterministically choosing daughters from the multiset instead of a sequence
from the top of the stack and (3) a class of parallel tabular algorithms (Calder’s and the CKY
algorithms) which can be generalised by using codes encoding derived substrings of the input
string instead of string indexes to indicate the substrings that a constituent derives and by non-
deterministically choosing (possibly) nonadjacent edges in the chart instead of deterministically
choosing adjacent chart edges.

For each class of algorithms we have shown that they are minimal, sound and complete. For
the first class, this is easy to see since it is evident that the algorithms recognise exactly the
permutation-closure of the languages recognised by the original algorithms and do not produce
the same derivation trees for (an indexed) input string more than once.

For the second class, soundness holds of both algorithms essentially because they are both depth-
first algorithms and thus produce nonoverlapping sets of possible daughter constituents (where
nonoverlapping means that the daughters are pairwise-disjoint with respect to the substrings
of the input string they derive). Furthermore, the stack algorithm ensures correct linear order
because of the stack discipline. They are both minimal because the last constituent constructed
(either lexical or phrasal) is guaranteed to be a daughter in the next rule. This means that the set
of derivations which the constituent can be a daughter in are only tried once. Thus the algorithms
are minimal. Furthermore, this restriction contributes to completeness by guaranteeing that the
algorithm attempts to use every constituent constructed as a daughter in every rule in the rule
set. We can see by induction that the stack algorithm is complete by virtue of the stack and that
the multiset algorithm is complete by virtue of the fact that subsets of the multiset are matched
against daughters of the rule in every possible way. Thus it recognises the permutation-closure
of the language recognised by the stack algorithm.

For the third class, proof of the existence of the three properties is similar to that of the second
class. Soundness holds because the algorithms index edges with either string indexes or codes
and rule application uses the indexes or codes to guarantee that two daughters in a rule are
nonoverlapping. The adjacency restriction on string indexes ensures correct linear order in the
index algorithms. Calder’s algorithm and its generalization are both minimal for the same reason
that the second class is. They are both minimal because the last constituent constructed is
guaranteed to be a daughter in the next rule. Nothing further need be said. As in the second
class, this also contributes to proof of completeness. For the CKY algorithm and its generalization
the definitions of find_kids and parse_substring guarantee minimality. For Calder’s algorithm,
it is easy to give an inductive proof which shows that if the algorithm is complete for the first
n lexical entries in the input string then it is complete for the first n + 1 entries. For the CKY
algorithm, it is easy to give an inductive proof which shows that if the algorithm is complete for
all substrings of length n, then it is complete for all substrings of length n 4 1.

We can also give a similar inductive proof for the generalisation of Calder’s algorithm which
shows that if the algorithm is complete for the first n lexica 1 entries (i.e., every analysis of every
discontinuous substring of the first n lexical entries has been derived) then it is complete for the
first n + 1 lexical entries. Therefore the generalisation recognises the permutation-closure of the
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languages recognised by Calder’s algorithm. A similar proof is available for the generalised CKY
algorithm.

Although the task that we set out to address might have seemed a bit murky at the start, the
solution for the first class of algorithms is indeed trivial. (In fact, we could have applied the same
solution to the shift-reduce algorithm.) For the second and third classes of algorithms, however,
I think it is fair to say that we have uncovered something significant. That is, we have located
precisely why some standard algorithms are minimal and complete, and by implication, now have
a greater understanding of how to guarantee minimality and completeness for any new class of
algorithms that we might consider. We could repeat the same exercise for other algorithms but
doing so would probably be pointless unless such algorithms used entirely different techniques for
guaranteeing minimality and completeness.

Despite assertions to the contrary in the introduction, the question of specialising the permutation-
complete algorithms still looms large. We know from [23] that there is a very natural class of
languages which are parseable in polynomial time. Furthermore, we know from [19] exactly what
the class of polynomial parseable languages is. It is rather crude, to say the least, to use a
permutation-complete algorithm with a grammar which generates a polynomial time language.
Clearly, more work needs to be done on “folding in” some of the low-level string combination op-
erations into the parsers. For example, if we consider a language which uses the shuffle operator
defined above, then the use of one of the permutation-complete algorithms intact amounts to a
generate and test strategy at best. For grammars, like Pollard’s Head Grammars, such a generate
and test strategy is even more indefensible. However, for now, I will have to leave this for future
research.
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A Appendix: an example

A.1 The grammar

First, we define a simple HPSG-style grammar. We first define the symbols VP and S as follows.

VP =4¢f VI[SUBCAT(NP[NOM]))
S =gef V[SUBCAT()]

Next, consider the following lexical entries.

es: ‘it’ NPlacc]

thm: ‘him’ NP [DAT]

jemand: ‘someone’ NP[NOM]

zu lesen: ‘to read’ v([zu, sUBCAT (NP[NOM], NP[ACC])]
versprochen: ‘promised’ V[PSP, SUBCAT (NP[NOM], NP[DAT|,VP[zU])]
hat: ‘has’ V[FIN, SUBCAT (NP[NOM], VP[PSP])]

Finally, consider the following two rule schemata.

1. s — V[FIN,SUBCAT(Zy,...,Zn)],Z1,...,%n
2. VP — V|[-FIN, SUBCAT(NP[NOM],Z3,...,Zs)],Z3,...,Zn

We will now consider the following German subordinate clause.

(dap) es thm jemand zu lesen versprochen hat
(that) it him someone to read promised has
‘(that) someone promised him to read it’

A.2 The generalised shift-reduce parser

Here we give a derivation for the preceding example using the multiset parser. Each step is
indicated by an ‘S’ for “shift” or by ‘Rn’ (for n € {1,2}) for a “reduce” by rule n. Each step of
the derivation is numbered and the multiset given. Each multiset contains elements which are
pairs of syntactic category:phonology.
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Step Multiset S/R?

1. {np[acc]: es} S
2. {np[acc]: es, NP[DAT]: ihm} S
3. {np[acc]: es, NP[DAT]: ihm, NP[NOM]: jemand} S
4. {np[acc]: es, NP[DAT]: ihm, NP[NOM]: jemand, V[ZU]: zu lesen} S
5. {NP[DAT]: ihm, NP[NOM]: jemand, VP[zU]: es zu lesen} R2
6. {NP[DAT]: ihm, NP[NOM]: jemand, VP[zU]: es zu lesen, V[PSP]: versprochen} S
7. {Np[NoM]: jemand, VP[PsP]: es ihm zu lesen versprochen} R2
8. {np[NoM]: jemand, VP[PSP]: es ihm zu lesen versprochen, V[FIN]: hat} S
9. {s[FIN]: es ihm jemand gu lesen versprochen hat } R1

A.3 The parallel tabular “shift-reduce” parser

Next, we present a derivation for the same example using the parallel tabular “shift-reduce”
parser. Each step corresponds to adding another edge to the chart. Thus, the edges are listed in
order of occurrence. The syntactic category, phonology and code for each edge is listed. Where
an edge was built by a reduction step, the rule number is given.

Edge Category Phonology Code Rule
1. NP[Acc] s [1,0,0,0,0,0]
2. NpP[DAT] ihm (0,1,0,0,0,0]
3. Np[NOM] jemand [0,0,1,0,0,0]
4. vizvu] zu lesen [0,0,0,1,0,0]
5. vP[zv] es zu lesen [1,0,0,1,0,0] 2
6. v[psp] versprochen [0,0,0,0,1,0]
7. vP[PSP] es ihm zu lesen versprochen [1,1,0,1,1,0] 2
8. V[FIN] hat [0,0,0,0,0,1]
9. s[FIN] es ihm jemand zu lesen versprochen hat [1,1,1,1,1,1] 1
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