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1 Introduction: The problem of ambiguity in Natural Lan-
guage Processing

In order for a natural language expression to be interpreted, its intended meaning must be
discovered. Sometimes, however, the intended meaning cannot be determined uniquely from
the expression alone. If this is so, the expression is called ambiguous.

Ambiguous phenomena are a serious problem for natural language processing. Ambigu-
ity has been identified as the main obstacle for automatic translation of natural language
[Bar-Hillel 60], as well as for other natural language processing tasks. Yet, in a way, am-
biguity has never been taken seriously, for it is usually assumed that all ambiguities can
be resolved. Barwise and Perry, for instance, claim that, although sentences can be am-
biguous, utterances cannot ([Barwise and Perry 83|, pp. 39-41). Each particular utterance
of an expression is an utterance of it in a certain “way” that removes all ambiguity. In
accordance with this idea, if ambiguity is treated in practical systems, it is usually treated
in the manner in which an illness is treated: in order to get rid of it. (See, for instance, the
survey [Hirst 87].) The result of ambiguity resolution is a formula from which all ambiguity
has been removed and which does its job — database query, or whatever — in standard
ways.

However, I think that complete ambiguity resolution is not always possible. It is of
little use to ask whether an utterance situation must, in principle, always contain enough
information to afford complete disambiguation. What counts is that in practice, it is often
notpossible to extract enough information. There is an abundance of arguments for this
position. Most importantly, (1) the use of background knowledge to discard impossible or
unlikely readings is notoriously problematical (e.g. [Bar-Hillel 60], or [Carter 87]). Further-
more, (2) there are indications that the use of prosodic cues for the disambiguation of spoken
language is not very promising, either [Huber 89]. In addition, (3) a text may be perceived
incompletely: if, in a sequence of sentences, one sentence disambiguates the second, then
if the first sentence is not perceived, the second one remains ambiguous. Furthermore, (4)
ambiguity may sometimes be ezploited, when something is left in the vague on purpose. And
finally, (5) even when purely syntactical disambiguation procedures exist, disambiguation
has been proved to be sometimes computationally intractable [Ristad and Berwick 89].

Under the circumstances, it is natural to ask whether disambiguation is always necessary.
In this paper, I will inquire how ambiguous expressions may be put to use at a point where
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2 AMBIGUITY AS INCOMPLETE INFORMATION 2

they are still ambiguous. Thus, it might be possible to ‘treat’ ambiguities without getting
rid of them. Reasoning with ambiguous expressions could augment resolution strategies.
Thomason once worded generally held views when he hypothesized that

%... there is no serious point to constructing an artificial language that is not disambiguated”
([Thomason 73], note 5).

The design and study of such languages is precisely the strategy that I want to advocate.
The scenario for the rest of this paper goes as follows. In section 2, a view of ambiguity

will be put forward that describes ambiguity as incomplete information. Section 3 sketches

the outlines of a family of “ambiguous logics”. Some conclusions are presented in section 4.

2 Ambiguity as incomplete information

An ambiguous expression is, by definition, less informative than any of its disambiguating
paraphrases. Therefore, like so many other phenomena in the semantics of natural language,
ambiguity has to do with incomplete information. Consequently, the logic of ambiguity is
bound to have close analogies with the logic of partial information, a branch of logic that
has been studied extensively in recent years [Blamey 86|, [Langholm 88|, [Fenstad e.a. 87],
[Muskens 89].

In principle, the viewpoint of incomplete information can be exploited for the analysis
of ambiguity in many different ways. Perhaps the most straightforward account would
be skeptical of all the different readings that semanticists have attributed to purportedly
ambiguous expressions (cf. e.g. [van der Does and Verkuyl|) and postulate one meaning,
while the other “readings” are simply specializations of this common meaning. However,
such a straighforward account cannot always work. Suppose a grammar generates only
one meaning ||X|| for an expression X, and suppose that this meaning incorporates the
commonalities between all the readings of X, in the sense that || X|| is the strongest meaning
that logically subsumes all possible meanings that X may ever have. Then imagine a pair
of sentences A, B, where A is ambiguous between readings A;, Az, where A; is logically
weaker than A,, while B can only mean A;. Then ||A|| = ||B|| = A;, since A, is precisely
what A; and A; have in common®. But now consider the negations not A and not B. The
sentence not A is ambiguous between —A; and —A;. The weakest of these two is not —A4;
but —A;, and therefore —A; is what the two have in common, so ||-4| = —Az. On the
other hand, ||-B|| = —A4;, so ||=A|| # ||-B]|, even though ||A|| = ||B||. Consequently, the
current account cannot define negation in a compositional fashion, which shows that taking
the commonalities is not a viable approach to ambiguity. Ambiguity is not merely a kind of
nonspecificity: somehow, the different readings of an ambiguous expression must be taken
into account.

Another overly simplistic idea would be to replace the notion of “the meaning” ||¢||
of an expression ¢ by the notion of “the set of meanings” of ¢ (in suggestive notation,
llli¢llll). This account would fail to take into account that a choice for one meaning as the
intended meaning of an expression depends on choices for the meanings of its subexpressions.
Even more seriously, there may be dependencies between the interpretations of different
occurrences of an ambiguous expression. For instance, if one ambiguous word occurs twice
(once in a question and once in the answer to the question, for instance), there seems to

More precisely, A; is the logically strongest statement that subsumes both readings (i.e. A; and Aj) of
A.
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be a tendency to interpret both occurrences in the same way. It should be stressed that
if dependencies are not taken into account, then the logical consequences are drastic. For
instance, in order for (¢V ~¢) to be a theorem of an ambiguous logic, the two occurrences of
¢ must be kept constant. In this paper, I will act on the assumption that there is a tendency
towards equal interpretation of different occurrences, and then the crucial difficult question
becomes: how much coherence is obligatory? For sometimes, different interpretations for
different occurrences of constants must be allowed. For instance, green must be able to have
different readings in I am not so green as to eat green bananas [Landsbergen Scha 79). Note,
however, that the logic of the situation enforces the “unexperienced”-reading upon the first
occurrence, whereas the second occurrence can only be used in the sense of a green colour,
thus overruling what seems to be a natural tendency. Nevertheless, it might be a rule that
whenever possible, different occurrences of a constant in a text must be interpreted in the
same way. Varieties of this hypothesis will be investigated in later sections.

A nice perspective that combines the viewpoint of incomplete information with the
necessity of coherent interpretation can be obtained as follows. First, I adopt Barwise and
Perry’s idea of a “way to interpret” an expression. (Henceforth: a mode of interpretation,
or simply a mode.) However, we drop the assumption that an utterance situation must
always provide complete information. Ambiguity, then, is the case where there is incomplete
information about how an expression is interpreted. Consequently, it is modelled by an
incomplete mode of interpretation. The idea of a mode suggests a certain constancy: it
seems plausible that larger stretches of text can be interpreted according to one and the
same mode of interpretation. It is this strategy of incomplete modes that will be employed
in the following sections.

3 The logic of Ambiguity

In order to develop a logic for ambiguous expressions which is based on the notion of a mode
of interpretation, Imwill first give formal content to this notion (section 3.1), after which, in
section 3.2, I will set up and compare a number of alternative logics for a language with
ambiguous expressions. I will, for now, largely restrict our attention to the case of lezical
ambiguity, although it will be indicated how the same ideas may also be applicable to, for
instance, derivational ambiguities.

3.1 Ways to interpret ambiguous formulas

In this section, the notion of a mode of interpretation will be formalized: an analogon of the
notion of an interpretation model that is suitable to deal with ambiguous constants.

3.1.1 Lexical ambiguity

We will proceed in three stages. First, I will define the notion of an admzissible mode. Then,
a class of “most preferred” admissible modes will be carved out , which are called coherent
modes. And finally, the notion of a disambiguation for ambiguous constants will be defined.

Firstly, an interpretation function must be allowed to have different values for different
occurrences of a constant. Therefore, I will assume that any two occurrences of a given
constant are different expressions of the language. Different occurrences of a constant a
can be distinguished explicitly by the use of superscripts (!, a?), for purposes of reference
to them. Furthermore, an interpretation function € must be defined on occurrences of
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constants. Now, if we call a model new-style a mode, then a mode must contain a domain and
an interpretation new-style. In addition, the set of possible meanings for a given ambiguous
constant must be constrained. Perhaps the most natural way to encode this is by Meaning
Postulates, which must now hold for all occurrences of constants. For instance, the meaning
postulate

Vz(Pitcher' (z) « Vase(z)) vV Vz(Pitcher'(z) « Baseballplayer(z))

will now say that each occurrence pitcher® of the word pitcher must either mean the same
as vase, or the same as (somewhat inaccurately) baseballplayer. In addition, conventional
Meaning Postulates have to spell out the relationships between nonambiguous constants.
For instance,

Vz(V ase(z) — Inanimate(z)),

expresses that, in an admissible model with interpretation &, all occurrences vase’ and
inanimate’ of the words vase and inanimate must be interpreted in such a way that ¥(vase')
C ¥(inanimate’). Thus, I define

A mode m =< D, S > is admissible if all meaning postulates are true in m.

As a side effect of the meaning postulates, the semantic types of the nonambiguous constants
induce a set of possible types for ambiguous constants. For instance, if baseballplayer is of
type ty, (h for human) while vase is of type t; (f for furniture), then the meaning postulate
formulated above implies that pitcher can be of either type.

Consider a text 7 and a classical model M =< D,I >. When ambiguous constants
enter the picture, I will say that an interpretation new-style S eztends (is an extension of )a

classical interpretation I if it treats all occurrences of unambiguous constants in accordance
with I:

Q extends I if, for all occurrences o' of unambiguous constants o, (o) = I(a).

Now, given these notions, how can one define the notion of a coherent mode? Note that,
in classical logic, an interpretation function provides a perfectly coherent “way to interpret”
nonlogical constants, just as the assignment to variables provides a way to interpret variables.
However, for the modeling of ambiguity, coherence must now be qualified since models must
be allowed to make exceptions. As we have seen, an interpretation that interprets the
constants in the sentence I am not so green as to eat green bananas must be allowed to
interpret the two occurrences of the word green differently. There are several ways to
implement this idea. For instance, one may use a default rule that prefers one meaning,
but comes up with a second option whenever the default is overruled by contextual factors.
However, I will formulate an even more thoroughly “coherent” proposal in which as many
occurrences of constants as possible are interpreted equally.

Coherence can now be enforced by requiring that $ contains a minimum of exceptions,
given a text, the classical interpretation that & extends, and the meaning postulates. Let
the agreement number of an interpretation new-style, with respect to a text, denote the
number of occurrences of constants in that text that are interpreted equally:

Q’s agreement number, relative to a text 7, equals
| {< o,of >:1# j & o' and & occur in 7 & ¥(a') = F(c’)} |.

The notion of a coherent mode can now be defined as follows:
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Let M be a model < D,I >. Then a mode m =< D, >, where Q extends I,
is coherent with respect to a text 7 and M if

— (1) m is admissible, and ¥ does not lead to type conflict in 7.

— (ii) there is no extension &' of I that fulfils (i) and that has a higher agreement
number, relative to r, than $.

We will also call an interpretation coherent with respect to a text if it is contained in a
coherent mode for that text. Conversely, I will say that a mode m eztends a model M if the
interpretation function contained in m extends the one contained in M. To illustrate the
definition of a coherent mode, suppose there are two occurrences, !, a? of the constant « in
a text 7, while the only coherent interpretations for o that do not lead to a type conflict in
7 are {a,b,c}, and the only coherent type-correct interpretations for a? are {b, c,d}, then a
coherent model has two different options: either S(a!) = S(a?) = b, or Y(a?) = I(a?) =c.
This illustrates that a text can allow more than one coherent extension. It may even
happen that two different constants have occurrences in a text, and that the definition of a
coherent model allows either one of them (but not both) to be interpreted equally on all its
occurrences. To illustrate, consider the text

T = F(a)&F(ag)&G(a),

where a is ambiguous between a; and ag, and F is ambiguous between Fj, which is ap-
plicable to a3 but not to a;, and F,, which is applicable to a; but not to as.?2 Suppose,
finally, that G is applicable to aj, but not to a;. Then r contains contradictory information
about the types of F and a, as it were. As a result, either F or a must allow exceptions in
its interpretation®. The earlier natural language example shows what happens when con-
text forces two occurrences of the same constant to have different interpretations: the first
occurrence of green is forced to mean unezperienced, while this meaning is impossible in
combination with the CN bananas.

The current “dynamic” formulation of coherence pushes coherence as far as possible. For
instance, restrictions on the possible values of an occurrence o' may even influence what
values a later or earlier occurrence o’ can take. This can be illustrated if, in the earlier
example of the text 7, the conjunct F(a3) is omitted. In the resulting text, G causes its
argument, the second occurrence of a, to be interpreted as ay, and this enforces the same
reading a; upon the first occurrence of a. In other respects, however, the present proposal is
a relatively conservative choice, since the only kinds of “pressure” on coherent models that it
takes into account are coherence and type-conflict. A more adequate account would also take
into account whether an interpretation is plausible in other ways. Logically inconsistency
is a case in point. For instance, suppose F is an ambiguous predicate. Then one might
argue that an interpretation that attributes the same interpretation to both occurrences
of the predicate F in the formula F(a)&—F(a) is not coherent, since no model that does
this can make the formula true. However, this idea would introduce some obvious technical
complications into the definitions that I would rather avoid, except in some occasional
remarks.

It may be that predicates F, and F; exist in the language, but this is not essential. In the latter case,
F\ and F, can be seen as shorthands for arbitrary meanings.

%To be precise, coherent modes can either have F* (i.e. the first occurrence of F) = F? (i.e. the second
occurrence of F) = F,, but then ¢ must allow an exception: ¢! = a; and a? = a;; or a! = a? = q,, but then
F must allow an exception: F' = F; and F? = F,. Note that both interpretations have the same agreement
number.
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However, we are still one step removed from a full formalization of a “way to interpret”
ambiguous constants. For, a mode of interpretation gives a full interpretation of unambigu-
ous as well as ambiguous constants, whereas we only want to formalize how the meaning of
ambiguous constants depends on the meaning of unambiguous ones. Therefore, a “way to
interpret” ambiguous constants can be formalized as a disambiguation function u that has
a model as it argument and a mode as its value. The set Dis of possible disambiguations is
defined as follows:

Dis is the set of functions u that have a model M =< D, I > as argument and
a mode u(M) as value, and such that, for all M, it holds that p(M) =< D, >,
for a certain & that eztends I.

So, where a mode is the “ambiguous” equivalent of a classical model, a disambiguation
function (henceforth, a disambiguation) formalizes the idea of a way to interpret ambiguous
constants. Whenever the distinction between ambiguous and unambiguous constants is
relevant, the more complex terminology of disambiguations has to replace the notion of a
mode.

3.1.2 Combining lexical and other ambiguities

In this section, I will indicate very briefly how the idea of a “way to interpret” an expression
might be generalized beyond the case of ambiguous constants.

A “way to interpret” a derivationally ambiguous expression is, of course, basically a
derivation. There are several ways to model a derivation. One option is to view a derivation
tree as a relation between occurrences of syntax rules and a number of things that are either
occurrences of syntax rules or occurrences of basic expressions (i.e. of constants) of the
language. This relation of immediate dominance holds between an occurrence of a basic
ezpression and an occurrence of a syntax rule if the basic expression is one of the arguments
of the syntax rule; gnd it holds between an occurrence S 2 of a syntaz rule and an occurrence
S1 of a syntax rule if S? is the rule occurrence that formed one of the arguments of S1.
For instance, the derivation of the logical formula ((¢ V ¢)&x) can be described by the
relation {< x,& >, < V,& >, < ¢,V >, < ¢,V >}. (Here, & denotes the syntax rule that
introduces conjunctions, etc.)

It seems that the notion of coherence applies to derivations as well as to constants and
syntax rules. For instance, the argument

A1l old plants and trees were green

All very old plants and trees were.green

is intuitively valid, since if old applies to the entire CN plants and treesin the premiss, then
so must very old in the conclusion, but if it applies only to plants, then the same holds
for very old. As before, coherence must allow exceptions, since one occurrence of a syntax
rule may be forced to have one reading, while another occurrence of the same rule may
be forced to have another reading. Therefore, let the agreement number of a derivation
relation R denote the number of pairs (< ',y >, < z* y" >) in R, where 7' and z*
are different occurrences of the same basic expression or syntax rule, while y’ and y" are
different occurrences of the same syntax rule. Then a stipulation of the following type may
be postulated:
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3 THE LOGIC OF AMBIGUITY 7

R is a coherent derivation relation for a text 7 iff

— (i) R is a derivation relation that encodes a possible derivation for r, and
— (ii) there may not exist a derivation relation R’ for 7 that fullfills (i) and that
has a higher agreement number than R.

Thus, assume that R is the derivation relation that encodes the derivations of the two
sentences that make up the above-mentioned argument, and assume that R is coherent.
Furthermore, call the rule that combines an adjective and a Common Noun S,4, and call
the rule that combines two Common Nouns to form a conjunctive Common Noun S,,4. Then
coherence requires that these two syntax rules stand in the same relation of dominance in
both of their occurrences. In other words, the two sentences must have nearly isomorphic
derivation trees. As a consequence, the above-mentioned inference must hold, as is easy to
see.

Complete modes of interpretation. In this way, we have arrived at two components of
a “way to interpret” expressions: a coherent mode and a coherent derivation relation. To
catch up with discussions in section 2, I will call a pair that consists of an Interpretation
function and a Derivation relation a (complete) mode of interpretation. Let the agreement
number of m, with respect to r, be the sum of (the agreement number of M w.r.t. 7) +
(the agreement number of R). As promised, here is a tentative definition of coherence that
corrects the flaws of “apartheid” in earlier stipulations:

A mode m =< Q, R > is an coherent (complete) mode of interpretation, given
a text r, iff

— (i) & fulfils all Meaning Postulates and all components of m together succeed
in attributing a meaning to 7, and

- (ii) m contains a minimum of exceptions in the sense that there is no mode m'
that fulfils (i) and that has a higher agreement number than m.

.
Incomplete modes of interpretation. Now that I have defined the notion of a complete
mode, how can incomplete modes be defined? I propose to use an elimination approach
[Landman 86] for the modeling of incompleteness and to view related concepts accordingly.
Thus, a set of complete modes m constitutes an incomplete mode m, and an incomplete
mode m is at least as strong as an incomplete mode m' if m C m'.

In the next section, I will use the devices developed here to address questions of truth
and logical consequence in an ambiguous language.

3.2 Reasoning under lexical ambiguity

In dealing with inferential properties of ambiguous expressions, attention will be restricted
to lexical ambiguity. The inclusion of derivational ambiguities would lead to additional com-
plications, since derivational ambiguity jeopardizes the notion of a subformula and therefore
also the possibility of direct recursive definitions. Therefore, a complete mode consists of a
domain and an interpretation function new-style only and we will see how a logic can be set

up.

3.2.1 Varieties of logical consequence

The first milestones on the way to a theory of logical consequence are truth and falsity. Truth
with respect to a complete mode is basically a classical notion, except for the fact that the
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clause for an atomic formula must allow different interpretations for different occurrences
of constants:

R¥(a!,...,al) is true with respect to a mode m =< D, ¥ > <«
< ¥a),...,¥(al) > € I(RF).

There are several plausible options for truth as well as falsity with respect to an incomplete
mode m. In particular, one may require truth (falsity) in all or in some complete modes,
and one may either or not restrict attention to modes that are coherent with respect to the
formula in question:

Strong: ¢ is true with respect to an incomplete mode m <> ¢ is true in all
admissible m em (or: in all m em that are coherent w.r.t. ¢ and the model that
m extends),

Weak: ¢ is true with respect to an incomplete mode m <> ¢ is true in at least
one admissible m em (or: in at least one m em that is coherent w.r.t. ¢ and the
model that m extends),

and similarly for falsity. All these options can be motivated convincingly. For instance,
the weak versions give a speaker the benefit of the doubt. If one does not know what a
sentence is intended to mean, and if it allows a true interpretation, then the polite thing to
do is consent. The strong versions, on the other hand, take a careful approach: they reckon
with the worst, in order to avoid misunderstandings. This illustrates that, in an ambiguous
setting, logical concepts become ambiguous themselves.

Now that versions of truth and falsity have been defined, the next step is to define logical
consequence. A priori, there are many possibilities. The principle that logical consequence
should preserve truth does not suffice here, since there are so many sorts of truth around.
The situation is similar to the one for truth and falsity. Firstly, one may assume complete
disambiguation and define logical consequence relative to a certain disambiguation u, or
one may abandon the assumption of complete knowledge and quantify over possible disam-
biguations. Secondly, in the latter case, one may either quantify existentially or universally.
Thirdly, in all these cases, one may either or not require that a mode of interpretation is
coherent for the text of the inference. Finally, as we have seen in section 3.1, one may take
into account whether a certain disambiguation can lead to a consistent interpretation of the
premisses of an argument.

Let me illustrate these choices. To save space, I use some abbreviations: I will write
m = ¢ for “¢ is true with respect to m” and M will stand for the set of admissible modes.
Assume that A is a formula and 7 is a text, that is, a sequence of formulas. Then a version
of ambiguous consequence that assumes complete disambiguation without taking coherence
into account can be formalized as follows:

(a) Ambiguous consequence relative to a disambiguation; noncoherent:
TEuA 4 YmeM (m = p(M), for certain M) = (m =7 = m[ A).

A coherent version may be formulated as follows:

(b) Ambiguous consequence relative to a disambiguation; coherent:
Ty A ©4p YmeM (m = u(M), for certain M) =>
m is coherent w.r.t. 7U{A} and M = (mE71 = mE A).
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A more subtle, partial version of coherence will be illustrated below, where versions of
inference are discussed that are not parametrized by a disambiguation. Consistency can
be taken into account by requiring the existence of models that make the premisses true
with respect to the disambiguation in question. Thus, a “consistent” version of (a) may be
formalized as follows:

(a)' = version (a) + consistency:
TEy A €4y ImeM(m = u(M), for certain M &mpE71&
VmeM (m = u(M), for certain M) = (mE71 => m [ A).

Given my assumption, throughout this article, that very often no disambiguation is avail-
able, “supervaluational” approaches, which quantify over possible disambiguations, are of
more concern to us than parametrized ones. In supervaluational accounts, one may restrict
quantification to a subset Dis’ of Dis, to formalize incomplete disambiguation of constants.
Now, weak versions would require logical consequence with respect to some complete modes
in Dis’, while strong ones require logical consequence with respect to all of them. I will
mostly leave the domain of quantification implicit and write, for instance, Vu to mean
VueDis', for some suitable Dis’ C Dis.
If coherence is not taken into account, the following definitions result:

(1) All admissible modes, strong:
TEA Gur Yu,M (u(M)eM = (u(M) Er = p(M) E A4)).

(2) All admissible modes, weak:
TEA €4 WM (W(M)M = (u(M) E1 = p(M) E A)).

The behavior of these notions will be studied in the next section. Note that the require-
ment of consistency can also be superimposed on unparametrized inference. For instance,
quantification in (1) and (2) may be restricted to those u for which IM(u(M) k= 7). Fur-
thermore, as we have seen, quantification can be restricted to coherent modes. The most
straightforward option is to give these definitions the following counterparts:

(3) Total coherence, strong: 7= A 4.5 VM, p,m(m = u(M) =
((m coherent w.r.t. rU {A} and M) = (mEr = m [ A))).

(4) Total coherence, weak: 7 |= A ©goy IUVM, m(m = u(M) =
((m coherent w.r.t. U {A} and M) = (m 1 = m [ A))).

The strengths of the logics. The logics that I have described are widely different,
extensionally. In particular, noncoherent varieties are very weak. It is easy to see that the
two noncoherent versions of unparametrized inference are no stronger than their coherent
counterparts:

T*=1A =>'T’=3A.
TE2 A =714 A

In fact, 7 =1 A “hardly ever” holds. For instance, it does not hold generally that ¢ =1 @,
since an occurrence of an ambiguous constant in the premiss can be interpreted differently
from an occurrence in the conclusion. And if a formula ¢ of predicate logic contains only
ambiguous constants, then it cannot be a theorem at all. For instance, &, Vz(F(z) —
F(z)). Only those theorems hold that do not depend on ambiguous material at all. A
typical theorem is G(a) =1 G(a) v F(a), where G and a are unambiguous constants. It
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3 THE LOGIC OF AMBIGUITY 10

does not matter whether F is ambiguous or not, since theoremhood does not depend on this
disjunct. Thus, noncoherent ambiguous consequence is not a very prolific notion.

Weak versions of ambiguous consequence (F24) have different characteristics. Most
notably perhaps, weak notions tend to be at least weakly inconsistent. For instance, the
weak version of the totally coherent calculus is inconsistent: one can easily find ¢ for which
E2 ¢ and =2 —¢. The “weak and admissible” calculus is even strongly inconsistent, since a
formula of the form ¢&—¢ can be validated by chosing different interpretations for constants
in the two occurrences of ¢. Note that especially weak inconsistency is not a straightforward
argument against these logics, since it may be argued that beliefs ¢ and —¢ are only syntactic
contradictories, to be resolved by an interpreter by chosing different interpretations for the
two occurrences of ¢.

It may be expected that the totally coherent versions of inference are classically behaved,
but this turns out differently. Consider, for instance, the parametrized version of coherent
inference. Assume that the predicate constant F is ambiguous between Fy and Fy, while
only F, is applicable to the argument a and only F; is applicable to the arguments b and c.
Now consider

Fl(a) EL 3a(F2(z)) Vv F3(8) v F4(c),

where F!, F2?, F® and F* denote different occurrences of the constant F. Assume, finally,
that p is such that, for any model M, F? is interpreted as the reading Fz, while Flis
interpreted as the reading Fy. Observe that, for each model M, p(M) is coherent with
respect to the text of the inference, since the context enforces different meanings for the
different occurrences of F. To be precise, F! is forced by its argument a to mean Fy, but
F3 and F* are forced by their arguments to mean F;. Therefore, F2 must obey majority
rule and mean F;. Consequently, the argument is not valid in the coherent version of
parametrized inference, even though it is classically valid. The same example also shows
that the unparametrized version of total coherence is weaker than classical logic, since there
is at least one coherent disambiguation (namely p) that invalidates it. As we will see in the
next section, the reason for the invalidity of the inference in the two coherent systems is
characteristic: context can destroy validity.

Yet, the unparametrized version of total coherence is closely related to classical logic.
In fact, classical theorems in the strong-and-coherent versions of ambiguous consequence
can only fail to hold as a result of “majority rule”. If there is no contradictory information
about the meaning of constants, then perfect (i.e. classical) coherence is enforced. One of
the consequences of this observation is that if ¢ contains only one constant, say F, then the
defined notion behaves classically:

s ¢(F) if and only if ¢(F) is classically valid.

3.2.2 Structural Rules

In the present section, I will show that the logics described in section 3.2.1 are not just
weaker than classical logic but are more radically different from classical paradigms, since
they violate one or more of the so-called structural rules of logic. These rules do not concern
the formal properties of specific operators of a language, they govern the way in which
old results can be used and combined to yield new ones. A case in point is monotonicity,
which expresses that the addition of new premisses to an argument does not jeopardize the
inference.
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Violation of structural rules may rightly be called a trend in current logical research.
For instance, it is well-known that nonmonotonic logics have been proposed as models for
diverse varieties of reasoning. In addition, structural rules have been used to characterize
the logical properties of categorial grammars [van Benthem 90]. In the sequel of this section,
the validity of the structural rules for some of the systems of ambiguous consequence will
be tested. I will continue to concentrate on unparametrized versions, since these are more
interesting from my point of view. Finally, I will simplify and assume that quantification, in
all the supervaluational versions, is over the entire set Dis of disambiguations. The results
for versions that employ real subsets of Dis can then easily be derived as well. It is easy
to see that the order of presentation of the arguments of an inference is irrelevant even
in the coherent versions of ambiguous logic that I have proposed, since I have opted for a
“bidirectional” version of coherence. In other words, we have

— permutation invariance: n,x, ¢,k =¥ = 9,9, x,x E ¢
This allows a simple statement of all the other structural rules:

— reflexivity: n | g

— monotonicity: n =y = n,xE ¢

— contraction: n,x,x EF v =>n,x E ¢
— expansion: n,x E ¥y =>n,x,x E ¢

—cut: nE=vYand Y, xEé=> n,x E ¢

Structural rules do not concern the specific apparatus of the language (connectives, quan-
tifiers) but the general ways in which old results may be rearranged to produce new ones.
Their validity will be tested by means of expressions of a very simple language that has only
the connectives of propositional logic; atomic formulas in the style of predicate logic will be
used however, in order to illustrate the interplay between nonlogical constants of different
semantic types. The results of this enquiry will be presented schematically towards the end
of this section.

Firstly, let us consider notions of ambiguous consequence that take all admissible modes
into account. The definitions are repeated for convenience:

(1) All admissible modes, strong:
TEA ©4r Yu,M (W(M)eM = (u(M) E1 = p(M) = 4)).

(2) All admissible modes, weak:

TEA Gup IpVM (u(M)eM = (u(M) 1 = u(M) E 4)).
In the case of (1), it is easy to see that reflezivity is violated. For instance, the inference
F(a) =1 F(a) becomes invalid, since a disambiguation u may attribute different values to
the two occurrences of the predicate constant F. All the other structural rules are valid, as
one may easily verify. The situation for (2) is different. To begin with, Reflezivity holds,
since any disambiguation p that happens to attribute the same values to corresponding
occurrences of ambiguous constants must satisfy the clause for n =1 5. Similarly, most
other structural rules remain valid. Consider, for instance, monotonicity. If there is a
disambiguation u that satisfies the clause for n |=3 9, then it is easy to see that u must also
satisfy the clause for n, x =2 ¥. The only rule to fail is the cut rule.

Coneider the following counterexample: F is ambiguous between F, and F2, G is ambiguous

between G; = F; and Ga, while H is ambiguous between H; = G2 and H;. Now

F(a) =2 G(a) and G(a) |=2 H(a), but F(a) £z H(a),

since G can be “unified” with F and with H, while F itself cannot be unified with H.
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3 THE LOGIC OF AMBIGUITY 12

Thus, transitivity, a special case of the cut rule, is invalidated by the fact that different inter-
pretations may be attached to different occurrences of a constant within a larger argument.
On to the more interesting, coherent versions of ambiguous consequence:

(3) Total coherence, strong: 7|= A €aeg YM, p,m(m = u(M) =
((m coherent w.r.t. 7U{A} and M) = (m |7 = m [ A))).

(4) Total coherence, weak: 7 |= A ¢gep IuVM, m(m = u(M) =
((m coherent w.r.t. 7U{A} and M) = (m 1 = m = A))).

Let us first consider the strong version. One effect of coherence is that the relation is
reflezive. For, whenever a premiss contains a constant that also occurs in the conclusion, the
agreement number of the argument will be maximized if the two occurrences are interpreted
in the same way. But, none of the other structural rules — except for permutation tnvariance,
of course — holds. For instance, the calculus is nonmonotonic.

Suppose, the individual constant a has readings ¢, and a2, while H is ambiguous between H;
= F and Hj; assume, in addition, that F is inapplicable to a2 and that both the constant G
and H’s reading H; are inapplicable to a;. Then, using H ! and H? for different occurrences
of the constant H

F(a) [=s H'(a), but F(a),G(a) s H*(a).
The reason is that the conjunct G(a) destroys the coherence between the different occurrences
of a, thereby making available both a, and a, as possible interpretations of H?(a), whereas

the occurrence of a in H'(a) is forced to be interpreted as a;.

Perhaps unexpectedly, “majority rule” causes even the number of occurrences of a given
premiss to be significant. Thus, ezpansion and contraction do not hold.

Suppose, F is ambiguous between F; and F; = G. Assume that the reading F) is inapplicable
to a, but applicable to b and ¢, while the reading F> = G is inapplicable to ¢ but applicable to
a and b. Then

"
F(a), F(a), F(b), F(c) |=s G(b), but F(a), F(a), F(b), F(c), F(c) Fa G(b).
For, coherence forces the occurrences of F in the first inference to mean F, = G, but in the
second inference, there is as much pressure on F to mean F; as there is to mean G. As a result,
the occurrence of F in the premiss F(b) becomes free to mean either F; (which can be unified
with G) or F3, which cannot be unified with G.

A counterexample against the cut rule can be construed as follows:

Suppose a is ambiguous between ¢, and a2, and assume that ¢, is a contant that occure in the
language; furthermore, assume that G is ambiguous between G, a reading that is inapplicable
to a1, and G, = F, a reading that is inapplicable to a; but applicable to a;. Then

s F(a:1) = F(a) and =5 F(a) — G(a), but £a F(a1) — G(a).

Thie can be seen as follows: the occurrence F(a) in the second premiss forces the reading
a; upon a. But since only the reading F of G is applicable to a1, F(a) — G(a) really says
F(a) — F(a), which is, of course, a theorem. But this constraint on the meanings of G and
a does not extend to the conclusion F(a;) — G(a). Consequently, the conclusion contains a

formula that can be invalidated by chosing an appropriate interpretation.

As it happens, the weak variety of the coherent calculus behaves in the same way, as far as
the structural rules are concerned. For instance, the calculus is nonmonotonic.
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3 THE LOGIC OF AMBIGUITY 13

To see this, suppose one has two ambiguous predicate constants, F and G. Suppose the
meaning postulates say that a is unambiguous, while F is ambiguous between F; and F3, and
G is ambiguous between G, and G; = F;. Furthermore, assume that F, is applicable to the
constant b, while F3 is not. Then we have

F}(a) 4 G'(a), but F?(a), F°(b) B4 G*(a).

The reason is that predicate occurrences F* and G' can be unified to mean F; (choose a
disambiguation that extends an arbitrary classical interpretation to an interpretation new-
style that interprets both F and G as Fz), while for occurrences F? and G?, this possibility is
ruled out by the presence of the premiss F3(b), since an interpretation can only be coherent
for F(a), F(b) if it makes F applicable to b. Therefore, F? and F® must mean F,.

Also, contraction of premisses can affect a logical argument, since by dropping an occurrence
of a premiss, a previously coherent interpretation may become incoherent, as the following
example illustrates. As before, different occurrences of the constant a are numbered con-
secutively for further reference.
F(a'),F(a®),G(a%),G(a*) =4 H(a®), but
F(a®),F(a"),G(e®) 4 H(a®).
For suppose H is ambiguous between H, and H;=G, while a is ambiguous between a, and
a;. Assume, furthermore, that H, is applicable to both of these readings of g, while G ie
only applicable to az, and F is only applicable to ai. In this situation, the occurrence a®
is still ambiguous between a; and a3, since there are equal amounts of pressure on a® to
mean a; and a;. Consequently, there is a disambiguation that validates the first argument.
(Namely the disambiguation in which a® means a3, and H means the same as G.) However,
the occurrence a® can only be interpreted as a,, since that interpretation ie enforced by the
majority of occurrences of a in the second argument. As a result, the second argument cannot
be validated, for H and G cannot be unified.

A counterexample Against the cut rule can be construed as follows:
k=4 F(a1) = G(a), and f=4 (F(a1) = G(a)) = (F(a1) — G(aa)),
but %4 F(a,l) b d G(ﬂa).

For, let again a be ambiguous between a; and a3, F be ambiguous between F, and F3,and G
be ambiguous between G, and G; = Fa. Then the second premiss of this instance of modus
ponens can only be validated by interpreting G(a) as G(as), an interpretation that does not

validate the first premiss. The conclusion does not follow, as is easy to see.

Here is a schema that summarizes the behavior of six of the proposed systems with respect
to structural rules of logic: \

Reflex- Monoto- Permu- Contrac- Expan- Cut

ivity nicity tation tion sion rule
a no no yes no no no
b yes no yes no no no
1 no yes yes yes yes yes
2 yes yes yes yes yes no
3 yes no yes no no no
4 yes no yes no no no
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4 CONCLUSION 14

The schema illustrates that, of course, monotonicity implies ezpansion. But it also suggests
that ezpansion and contraction must lead to the same results. More to the point, those
structural rules that change the context, so to speak, of the premisses or the conclusion of
an argument, are invalidated by all notions of logical consequence that employ our “less than
perfect” version of coherence. Given majority rule, context changes meaning, one might say.

In sum, all varieties show nonclassical behavior, both in terms of structural rules and in
terms of logical strength, as we have seen. There are two possible reactions to this situation.
The first is to admit that reasoning in natural language is a hazardous affair, and that, not
unexpectedly, ambiguity is one of the culprits. The other reaction is to look for repair.
For instance, one may formulate syntactic constraints on the premisses of an argument.
For instance, it may be argued that an argument as a whole must show some form of
coherence, over and above the coherence of its individual steps, and that this must be taken
into account. Thus, the weak and coherent system (4) does not allow that contradictory
statements (cf. section 3.2.1) are true with respect to one and the same disambiguation.
Likewise, one may “rescue” the cut rule in |=4, by requiring that the same disambiguation
is employed for ambiguous constants in all the premisses and in the conclusion.

It is hard to say which of the various systems for ambiguous logic is to be preferred. Indeed,
the ambiguity of the notion of ambiguous consequence may be a central conclusion of this
article.

Yet, not all the logical properties that I have used are equally consequential. A choice
might be argued along the following lines. It seems reasonable to reject those systems that
are not reflezive, since reflexivity is, in a sense, the basis of a logic. (If ¢ [~ ¢, then also
é = éV ¢, etc.) But, with some hesitation (see above), the same may be said of consistency:
arguably, a logic that allows inconsistency does not deserve the name of a logic. But if these
two dogmas are entertained, then a choice has already been enforced, since system |=3 is
the only system discussed that fulfils both of them. In addition, one might argue that this
system, the totally coherent and strong variety of ambiguous logic, is closest in spirit to
classical logic. For firstly, where classical logic forbids all exceptions in the interpretation
of constants, =3 embodies the most far-going version of coherence that is compatible with
ambiguity, as we have seen in section 3.1. And secondly, in quantifying universally over
possible disambiguations, the system emulates the situation in classical logic, where an
inference is valid only if it respects truth for all possible interpretations of its constants.

4 Conclusion

In the introduction, I have argued that complete disambiguation is often not possible. In
the rest of this article I have tried to substantiate the claim that complete disambiguation is
not always necessary. In particular, I have pointed out that the ambiguity of an expression
need not make it unsuitable to figure in a logical argument.

In the course of this paper, I have often made use of the assumption of “coherence”,
which is a specialization of the idea that different occurrences of an expression must be
somehow related in meaning. One need not accept this assumption, but then less attrac-
tive notions of ambiguous consequence tend to result. (Such “noncoherent” notions were
modelled, among others, by the notions k=1 and f=3.) The hypothesis of coherence says
that different occurrences of a nonlogical constant are interpreted equally, whenever this is
possible. However, different hypotheses can easily be substituted for this one. For instance,
in the area of structural rules, a preference for unequal rather than equal interpretation can
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4 CONCLUSION 15

easily be seen to lead to quite similar results.

One aspect of my account that should perhaps be stressed is its dynamaic character. For,
given the assumption of coherence, a suitable interpretation for an ambiguous constant can
only be determined “in context”. As a result, the process of disambiguation shares much
with the better-known process of anaphora resolution. In particular, the bidirectional notion
of coherence — which leads to permutation invariance for the premisses of an argument, cf.
section 3.2.2 — implies that even material to the right of an occurrence of an ambiguous
constant can influence its interpretation, as long as this material belongs to the same tezt.
This parallels the kataphoric phenomena that have been studied in the anaphoric literature.
Future research must further constrain the notion of a text as the domain for coherence, in
order to provide theories of coherence with more empirical content.

Quite a few logical questions are triggered by my proposals that cannot be resolved
in this paper. Firstly, any direct algorithmic implementation of the definition of, say Es,
would tend to be quite expensive, computationally. Therefore, some definitions are in need
of computationally more efficient equivalents. One unsolved question that arises here is the
question of finite axiomatizability. Second, note that a new kind of ezpressibility questions
comes up: given any set of properties of models, is there a formula ¢ that is ambiguous,
in a given ambiguous logic, between precisely these properties? Likewise, one may ask, for
each ambiguous formula in an ambiguous logic, whether all its readings can be expressed
unambiguously. Thirdly and finally, nonstandard logics usually induce nonstandard con-
stants. So the question is: are there any attractive new constants that are connected with
nonstandard logics for ambiguity? All these questions must be set aside for future research.
There is a lot of work ahead in the area of ambiguous reasoning.
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