Common Denominators and Default Unification*

Martin van den Berg and Hub Priist
Department of Computational Linguistics, Faculty of Arts,
University of Amsterdam

1 Introduction

For a correct analysis of natural language discourse the notion syntac-
tic/semantic parallelism, expressing the sharing of structure by successive
clauses, is an important device. It plays an important role in establishing
semantic coherence [Polanyi85], structuring the discourse [Scha& Polanyi88],
and resolving VP-anaphora [Priist&Scha90] and Gapping (in [Steedman90]
some kind of process like ours is assumed).

In the framework we are developing, which is a unification grammar for
discourse, the sharing of syntactic/semantic structure is a basic notion. Cru-
cial for the incorporation of a new sentence (in general: of a discourse unit)
in the preceding discourse is a method to establish what the structure they
share is. In particular, suppose we want to add a sentence S to a discourse
C. What we are looking for is a mechanism to determine the maximal part
of the preceding structure C that is compatible with the possibly incomplete
structure resulting from this new sentence S. This maximal compatible part
can then be combined with § to form what we call the context dependent
meaning of that sentence. In the case that S is incomplete, for example
when it contains a VP-anaphor or exhibits gapping, this process can add
new information. We call this compatible part the common denominator!
of C and S.

The formal problem addressed in this paper is the definition of the notion
of the common denominator A¢B of two expressions A and B, such that A¢{B

*We would like to thank Mary Dalrymple, for pointing out a mistake in an earlier
version of this paper and Gosse Bouma for his constructive criticism. Also thanks to
ghost-coauthor Remko Scha.

'In [Priist&Scha90] this was called the common ground, but we changed the name to
prevent confusion with other uses of that term.

is that part of A that is still compatible with B. The dual notion default
unification, A>> B, is defined as B unified with as much of A as possible.
Default unification is a notion that is closely related to the notions default,
or non-monotonic, inheritance and priority union.

Below we show that common denominators and default unification can
be defined on any structure that allows for generalization and unification
and that they can be defined in terms of these notions.

2 The Common Denominator

It will not come as a surprise that the two sentence (1) and (2) have some-
thing in common, and that what they have in common is sentence (3). We
call (3) the (Most specific) Common Denominator of (1) and (2).

(1) John eats lasagna.
(2) Bill eats lasagna.
(3) X eats lasagna.

Because they have something in common they contain redundant informa-
tion. Sentence (2) could be paraphrased as: And the same holds for Bill.
That is of course exactly what we do in ordinary language:

(4) John eats lasagna.
(5) Bill does too.

The question is: how do we manage to interpret (5) as (2)? At first sight,
it might be suggested that we can do this because (5) shares part of its
structure with (4). But that is not true, because it is exactly the part which
has been deleted which is the part that would have been shared had it been
there — it is not there to help determine it! (if it were there we would not
need it). We are not looking for shared, but for deleted information.

So how do we determine the structure that these two sentences share?
The description above gives a good suggestion how to go about finding it. If
the second sentence was constructed by deleting what it has in common with
the first sentence, then if we look what parts of the first sentence conflict
with the second and leave these parts out, then the rest is a good candidate
for that common part. In words we can describe the process we are looking
for as follows:

Find a sentence §, such that S is more specific than the incomplete (=
too general) sentence (5) and such that what § and the preceding sentence
(4) have in common is exactly that in which § differs from (5). This may
seem dangerously close to a circular definition, but it is on the safe side of
the divide, as was argued in [Priist&Scha90] and is shown below.

This process, where an incomplete object (sentence 5) is unified with as
much of the default information (sentence 4) as is possible, we call default
unification, because, as we will see below, it is related to the notion of that
same name in [Bouma90a, Bouma90b].

The above suggests that the process works on sentences. In fact, this
is somewhat of a simplification. The process actually works on the propo-
sitions expressed by those sentences, in [Priist&Scha90, Priist,Berg&Scha)
we identify these with their derivation trees, coded as unreduced lambda-
terms?. For the moment we will simplify this even further and consider
PROLOG like expressions.

3 Constructing the Common Denominator

The process of calculating the common denominator, the subject of this
paper, is something that has the character of unification combined with
some aspects of generalization to give it some spice.

For the moment, assume that VP-anaphors are anonymous variables
(borrowing some PROLOG terminology) — holes in the formula that have
to be filled. Then the example sentences above translate as

(6) eat - Lasagna(john)

(7) — (el

The common denominator of these two is
(8) eat-Lasagna(_)

it seems that to get this result we sometimes we have to unify: eat-lasagna
with __ results in eat-lasagna and sometimes have to generalize: john with
bill gives __. How can we ever resolve this?

In fact, what happens is the following. We look at the two expressions
term-wise. If two terms unify we take the unification. If they do not unify
we take the generalization.

In the end we might want to use some good theory of propositions. One candidate
for this could be property theory [Chierchia87].

The structure formed by the logical representations of the sentences (includ-
ing those containing holes) is that of a partial order®. In terms of this order
we get the following definition.

A sentence ¢ is a specification of a sentence P, written as ¢ =X 1, if there
is a substitution o for some of the holes in v such that o(¢) = ¢. In that
case we also say that ¢ is a generalization of ¢.

a simple example:
(9) eat-Lasagna(john) < eat-Lasagna(__),

where john can be substituted for the hole.

A slightly less simple example is given by the sentence Every man loves girls
who sing. Any of (10) to (13) could follow it (if we interpret the pronoun
them as a hole).

(10) Every boy loves girls who sing
(11) Every boy loves girls who do [too]
(12) Every boy loves them [too]

(13) Ewvery boy does [too]

Now this is a very particular example. In general, we have to take unification
variables into account. This causes the order to be a pre-order®. Another
problem is caused by the fact that a variable might occur more than once,
and that the value substituted for that variable has to be the same for all
occurrences of it. The way to go about this is to define the ordering using
the variable substitutions explicitly. The general definition of the pre-order
becomes:

A sentence ¢ is a specification under o of a sentence 1, written as ¢ X, V¥,
iff o substitutes values for the variables in ¢ such that o(¢) = 1. A sentences
¢ is a specification of a sentence v, written as ¢ X 1, iff there is such o.

As before we also say that 1 is a generalization of ¢.

3This order is the well-known subsumption relation between the terms of the unification
structure. In general, a unification structure has terms with unification variables. In that
case the ordering is a pre-order, because terms that only differ from each other by some
variable renaming are different but equivalent under the ordering. Here, because of the
absence of variables, it is a partial order.

In terms of the ordering we can define unification and generalization quite
easily. The most specific generalization (msg) of ¢ and 9 is that general-

ization p of both ¢ and v such that every generalization p of both ¢ and ¢
is more general than x. If we write ¢ — x for ¢ < x, we can represent this
in a diagram as (fig.1).

AN

The dual notion of this is the most general unifier (mgu) of ¢ and) is that
specification x of both ¢ and v such that every specification p of both ¢ and
¥ is more specific than x. Using the same arrows, we can also give a picture

for this (fig.2).

We write X = ¢ Ll ¢ for the msg of ¢ and 1, and ¢ N ¥ for their mgu, and
for convenience sometimes speak of the generalization and the unification.
One thing that complicates things a bit is that, given the definitions, there
is always an msg, but not always an mgu. If ¢ and 4 do not have a unifier,
we sometimes write ¢ M1 = L but this is only a shorthand, L is not an
actual object. Other formalisms do add L to the structure, but this is at
the cost of always having to mention it as an exception, so we prefer to keep
it outside the structure.

Another complication is that neither msg nor mgu (if it exists) need to
be unique. The fact that we can always exchange one variable for another is
easy to remedy; just divide out the variables by taking equivalence classes
under the order. However, in other cases this might not always be possible?.
In such cases we can only define the set of msg’s and the set of mgu’s. The
whole argument of this paper can be reformulated in terms of some object
being one of the msg’s of some other objects, but this only complicates
matters without adding anything essentially new, so we leave that as an
exercise for those who need it and will only sometimes add the provision
“(up to equivalence)” to remind the reader of possible problems.

In terms of msg and mgu we can now easily define the notion of most
specific common denominator (mscd). Here is a definition that works for

‘cf. footnote 6.

our purposes, and almost works in the general case.

The mscd of ¢ relative to i is that generalization x of ¢ that unifies with
¥ such that every generalization v of ¢ that also unifies with 1 is a gener-
alization of x.

We will write ¢¢y for this msed (cf. fig.3).

Now this might have been all there is to this definition, if not for a slight
complication. Even if the msg and the mgu (if it exist) are always unique
(upto equivalence), the mscd defined in this way does not have to be. We
already saw that in our simple example of discourse parallelism the mscd is
always unique, because variables do not play any role in that framework. If
variables do occur in a formula they can cause problems if they occur more
than three times. The following is an example of this:

Let X,Y, Z, P,Q) denote variables, and a,b constants. Both X XY and
Y X X satisfy the conditions given above for being the mscd of X X X relative
to aPb, although they are not equivalent under renaming of variables. They
are both generalizations of X X X, unify with aPb and there does not exist
a more specific object satisfying these conditions.

XYZ
” /\
¢L/) XYY VYYX
: L
¢ (] XXX aYh
I !
p ? () aIT’b
fig-3 (oty)Ny fig-4 abb aab

In the light of this you have two choices, either you live with it, and consider
it an actual ambiguity or you try to do away with it. There is something to
say for both positions, but, at least for the moment, we choose the latter.
It seems to reflect our intuitions best. But given that these intuitions are
formed by an example that does not need variables anyway, we might not

be the best judges in this case®.

following a suggestion by Dalrymple et.al., we might try to see the ambiguity in VP-

Our stand-point might be formulated like this. If a connection between
positions in a term fails, a connection that is expressed by the fact that the
same variable occurs on the connected positions, the complete connection
should be thrown out, and not only part of it. The simplest solution is to
just take the msg of all the candidates of the previous method. In the case
of the example this would result in the not unreasonable XY Z (fig. 4).

We can now give the complete “algorithm” of mscd calculation:

a) find the set C‘(qb, ¥) of objects x, such that x is more general than ¢,
and x unifies with 1,

b) define C(¢,7) to be the set of those elements in C(, ¥) such that no
element in C(¢,) is more specific than 1t,

c) take the msg of C(¢,).

Or in one big formula:

(14) ¢ty = msg{x.¢ X x&Y N x # L&-3p.(¢ 2 p&yNp # L&p < X)}

Remarks

e The definition of the mscd is an all or nothing definition. We really
throw away everything of a connection that conflicts on some of its
positions, and not only the connection between the conflicting posi-
tions. for example, suppose we have X XX X and aPQb, this gives
C(XXXX,aPQb)={YXXX,XXXY,XXYY}, and this results in:
XXXX¢aPQb = XYZP. No connection between the positions is
preserved.

e The result of unifying the mscd of ¢¢) with 9 is the default unification
of ¥ with ¢, ¢>>1 = (¢¢¢) N ¢ . The notions common denominator
and default unification are each others dual.

o Another way of defining unification is to say that ¢ and 1 unify if there
is one substitution o such that o(¢) = o(v) . The formulation we use
here is more convenient because it makes sure that the variables in ¢

anaphora like John kissed his wife and so did Bill, which is ambiguous between a reading
where bill kissed his own wife and one where he kissed john’s wife, as a case where the
mscd is ambiguous. However, we will have to look at this in more detail before we can
say anything detailed about this.

-~

and 1 are always different, even if they are written as the same letter.
In other words, variables are made local to the formula, which is as we
think it should be.

e The above uses only term-unification. No accidental identifications
between terms exist. There is nothing sacred about this. The above
reasoning holds for any pre-order. If the msg is unique, so is the mscd.
If it the msg is not unique, then neither is the mscd. If the mgu is not
unique, you have to be careful and check whether what you get is what
you want®.

4 Two applications of the Common Denominator

4.1 anaphora

We already discussed VP-anaphora above. NP-anaphora is just as simple
and the current framework sheds some light on the distinction between topic
and focus. Look at the following examples (capitals indicate stress):

(15) John is having dinner. He has veal with potatoes.
(16) John is talking to Bill over dinner. He pours him another wine.
(17) John is talking to BILL over dinner. HE is the one with the answers.

Without wanting to claim that the following is a complete theory of pro-
noun resolution, we might hypothesize the following. The main influence
on deciding what refers to what is the syntactic/semantic relations between
the sentences. What we do is compare the derivation trees of sentences and
try to map them onto each other.

We like to represent these trees in terms of lambda-expressions, but it
should be stressed that these are syntactic lambda terms: Dz(f(z)(9) #
f(g). It is just a convenient one-dimensional way of writing the deriva-
tional history. Trees are now compared, taken the common denominator
of, and default unified, by doing term-unification on the lambda-terms in

6For an example of a unification structure that has a non-unique unification take the
following. Suppose the language contains a relation, say something like a conjunction A,
that is associative for the unification operator. In our way of formulating this corresponds
to the property of the ordering: ((¢A P)AX) 2 (¥ A(¢AX)). Then (8 A¥)AX)M(XAY)
results in X = (¢ A¢) and Y = x, whereas (¢ A (¥ Ax)) (X A Y) results in X = ¢ and
Y = (¢ Ax), which is not the same, although (¢ A¥)Ax) and (¢ A¥) Ax) are equivalent
by associativity. The unifier of two terms is not always unique.

the standard way, interpreting pronouns as “holes” in the formula. Exam-
ple (15) translates as [Az.(have-dinner(z))](john) for the first sentence and
[Az.has-veal(z)](__) for the second. Calculating the common denominator
of these results in __(john) and, finally, default unifying this with the tree
of the second sentence gives the end result [Az.has-veal(z)](john). The ad-
vantage of coding trees as non-reduced lambda-expressions is obvious: their
reduction gives the meaning of that sentence.

In the same way we can describe what goes on (16). Sentence one
translates as: [Az)y.(talkOver Dinner(y,x)))(bill)(john) and the second as
[ApAg.pourWine(q,p)](__)(__). Calculating the common denominator gives
__(bil))(john), resulting in a context dependent meaning for the second sen-
tence of the form: pourWine(bill)(john)

Example (17) can be used to show how we might try to deal with
topic/focus in our framework. The hypothesis we would like to put for-
ward is, that the topic/focus structure is articulated in the structure of the
derivation of the sentences. Stressing of words is seen as a essential part
of syntax contributing to the derivation. Instead of the derivation of (16)
given above, the interpretation of the stressed (17) is the formula

(18) [ApAg[AzAy(talkover Dinner(y,z)))(p, q)](john)(bill)

You might say that stress pushes the stressed term to the outside. This is
not so far fetched if we compare this with a theory of topic/focus that is
quite well-known, namely that of Mats Rooth [Rooth85]. In that framework
terms that are in focus in some sentence are first marked with a special
index during the syntactic analysis that constructs the derivation tree of
that sentence. Then the topic is constructed by replacing the focused terms
by variables. If there is only one stressed term in the sentence, this results
in the topic being the a set of alternative values that could have occurred in
place of the actual value (which was stressed on the location of the variable).
In general, when there are more variables, the result is a lambda term. Our
last example is formalized as something like:

the topic: [ApAg(talkOverDinner(q,p))]
the meaning: [talkOver Dinner(john, bill))

4.2 default unification of feature structures

Studying implementations of unification grammars with feature structures,
in particular HPSG, Gosse Bouma [Bouma90a, Bouma90b] developed a no-
tion of default unification not unlike ours. This is used to implement the

notion of an almost-always-applying feature structure. We can then add de-
fault structures to the unification grammar, which function as default rules,
to be applied if nothing blocks them. Roughly speaking, this functions as
follows. As long as a default “rule” being considered can be unified with
the structure under construction by the grammar it is unified with it, but
if it is incompatible with the structure as constructed thus far the default
structure is ignored. This notion is closely related to the notion “adding as
much as possible” described in the previous section and it is no coincidence
that this was also called default unification.

In order to examine in more detail how we might implement default
unification for feature structures in the common denominator formalism
we first have to find a way of formalizing feature structures so that the
terminology of the previous chapters applies. To do this, we define a flat
representation of feature structures, define the ordering of the structures
in terms of these representations, and then calculate the default unification
that follows from this ordering. We will simplify things somewhat to keep
the axioms manageable, but we don’t think that anything essential is left
out.

4.3 Feature structures

The feature structures used in most grammatical theories like HPSG are
labeled non-cyclical re-entrant finite atomic graphs. This mouthful means
the following: there is a set of atoms A, a set of labels, called features, F,
and a set of feature structures defined in terms of these as follows:

(19) a. If a is an atom, then a is a feature structure.

b. If f is a feature and ¢ a feature structure, then o ¢ is a feature
structure.
S0 .
c. If f, g are features and @, feature structures, then g<¢ is a feature

structure.

It might be thought to we forgot the re-entrancy that these structures also
have. However, we will not distinguish between two (or more) sequences of
features, fi =)f} : f2:...: f{*) and fo=(f}: f2 ... fI), being
re-entrant or being non-re- entrant but having the same value. As far as we
are concerned the following equality holds:

jl/:\d)._ /¢
N /T In &

10

The reason we think we can identify these is that the grammatical properties
expressed by a feature structure are expressed by the paths from the root
to the leaves through the structure. Then any structure is equivalent to the
fan-form structure that you get by taking all of these paths and combining
them together in a graph that is only connected at its root.

We will also make a notational simplification. We will code atoms as
special features ending in one fixed atomic value T. This gives an equivalent
class of structures (with every atom a replaced by a sub-feature structure
= T) and does away with the need for separate axioms for atoms.

We also want to be able to express that certain sequences of features
having the same value, without having to specify explicitly the value that
they share. This is where we do use re-entrancy in a non-trivial way. Say
that we have sequences f; = IR ER: 1"“),...,fn =18 20

n) we have

[t

(20) d. If fi,..., fn are sequences of features, then 1<E>- is also a fea-

ture structure.

.,

n

Note that this is essentially different from the earlier structures in that it is
an incomplete structure. It lacks the actual value that the features share.
If we fill this value in, we get a complete structure back.

The set of structures as definied above is in fact a bit to large. Not
all values can occur after a given feature. It does not make sense to say
that the value for the feature number is transitive, or that the gender is
singular. For any feature f in a given feature algebra we are given a set
adm(f) of admissible features. Furthermore, not all features can be present
simultaneously. It makes sense that a specific pronoun has the features
singular and male, but it does not make sense to say that it has the features
singular and plural — the latter pair is just not compatible’. So for any
two features f, g, comp(f,g)is true when f and g are compatible, and false
otherwise. A subset V of some set W is said to be maximally compatible if
any element in W that is not in V' is incompatible with at least one element
in V. We will use these sets below to define both the actual structures and
the relations between these.

"Note that the example makes use of atomic feature, i.e. features that are atoms in
Bouma’s system. He seems to assume that only atoms are ever incompatible, and that
if two (normal) features are admissible for a given feature f, they are also compatible.
Certainly some of his results seem to depend on this assumption (cf (22) and the last
example of this section).

11

We would prefer to define the ordering and the msg, mgu and mscd
directly in terms of the feature structures themselves, but writing rules for
such two dimensional objects is a bit clumsy. We therefore define a linear
language that is equivalent to it. Given a set of features F, the set of feature
structures FSTR is the smallest set such that:

(21) a TeFSTR
b.Iffe Fandg:¢ € FSTR then f : g : ¢ € FSTR, provided
g€adm(f)
c. f:9p€,9:v€ FSTR, then f : ¢ A g : ¢ € FSTR, provided
comp(f,g)
d. fi,e..,fo € F*, then[fi,..., fu] € FSTR

As a consequence, feature structure containing incompatible sub-branches
or non admissible sub-structures are excluded. For example, if we follow
what seems to be the general assumption, that the following properties hold
for adm and comp:

(22) a. All atomic features are incompatible.
b. all non-atomic features f,g are compatible.

c. the set of features admissible after a feature contains either only
atomic features or only non-atomic ones.

the feature structures will not include an object of the form a A b, for a,b
atomic features. Consequently, no unification defined in terms of the order-
ing can give it as a result (it doesn’t exist, so how could it). We will see
thatthis will make a M bundefined, or, in terms given earlier, aNb = L. This
is what we expect for atoms, given our assumptions.

4.4 Ordering the Feature Structures

For the expressions defined by (21) to mean the same as the re- entrant
formulas we want it to represent, we have to define rules for how to use it.
In particular, expressions that represent the same feature-structure should
turn out to be equivalent under the ordering we define below, otherwise this
representation is not of much use.

The following ordering gives the required structure The ordering of the
feature structures is inductively defined by the following axioms:

12

first five axioms that are standard for all subsumption orderings of the kind
we are looking for:

(a) T=T

(b) fg iff f=g¢g

(c) (f:¢9)=2(g:9) ff f=gando=y

(d) (@A) 2 (xAp) i dXxandyp=<p

Next there are four structural axioms to make sure that the linear formulas

are order insensitive and really represent the graphs that are “actual” feature
structures:

(e) (pAY) 2 (¥AP) always

(f) (BA(PAX)) 2 (WA AX) always

(g) f(@AY)2(f:0Af:9) always

(h) (fronf:d)2f:(¢AY) always

Then there are two axioms that says that you can glue on new branches at

will to make a structure more specific, but that if the branch is the same it
doesn’t add anything:

(i) dAP <P always
() dXPpANo always

And finally we have to give axioms to make sure that the expression for
re-entrancy does what we expect it to do:

(k) [fi7fbv--,fh]:5[fbvﬂ-7fh]
(1) [fla.qla”',gm] A [flaf??"'vfn] j [fl,f2,'--vfnaglv"'sgm]
On) Lh,jbw-°sj£]A /\ fl:g:j /\[fl:gy'uvfh:g]

gev gevV

(Il) /\[fl:.q’""fn:g]j[flaf%"'afn]/\/\flzg

geV geV

Where (m) and (n) hold for all maximally compatible subsets V' of adm(f;)N
... Nadm(f,).

These axioms characterize feature structures, including the underspecified
re-entrant ones, completely. Lets look at some consequences of this defini-
tion. We will write ¢ = 9 if both ¢ < 1 and ¢ > ¥. Let V be any maximally

13

compatible subset of adm(f;)N...Nadm(f,), then
(23) AUrig s faig)E SN A frzg

gev gev
(24) ioeoos fal AN freg=(f o RIA N faig
gev gev
A special case that is of some interest is the case where fi,..., f; take only

atomic features. combining axioms (m) and (n), with the fact that atomic
features are mutually incompatible, The following properties can be seen to
hold:

(25) [fi,--sfA]AN1:a= fizaA.. . ANfaia

(26) i, for-e s Al A ria 2 [fi, sy fal A faie

(27) [fi, faor. s S>> h a2 (i, for - fal A fiia

(28) [fiofos faseen fal>friaANfo: 02 [fa..., fu] NfiiaAfo:d

One of the interesting properties of the default unification as described in
[Bouma90a, Bouma90b] is that as much information as possible is preserved.

(29) [fog hk)>(f:(l:a)Ag:(l:a)) ¥

(f:(:a)Ag:(l:a))N[RKJA N[f:m,g:m,h:m, k:m]
m#l

where the big conjunction A is over all suitable value for m, in our case
these are expressed by the sets of admissible features. Using the axioms,
and in particular, using (n) we can see that our system gets the same result,
provided only atoms are ever incompatible (cf. footnote 7).

5 Conclusion

Mechanisms like the calculation of the Common Denominator have been
proposed before to account for a number of linguistic phenomena. Almost
always this is formulated as being the determination of some “underlying
question” that a sentence is an answer to. For example Steedman mentions
it as such in [Steedman90]. We would like to suggest that this might be
turned around. At least part of the discourse meaning of a question is to
establish an undisputable explicit common denominator, the only coherent
continuation left being to give an answer. In fact something like this has
already been suggested in [Groe&Stokh84].

14

This paper is intended to give some idea of the use of the notion of Com-
mon Denominator. The definition of the notion itself is straightforward®,
and we discussed a number of applications in a sketchy fashion to show
where a notion like this might be of some use. We think that the interested
reader can fill in the gaps herself. We hope to have shown that the Common
Denominator and his sister Default Unification are useful abstract notions
that can be applied to a great number of problems. Happy hacking!

References

[Bouma90a]
Gosse Bouma, 1990, 'Non-Monotonic Inheritance and Unification’,
in: W. Daelemans & G. Gazdar (eds), Inheritance in NL processing.
Workshop Proceedings, Institute for Language Technology and Al,
Tilburg University, The Netherlands.

[Bouma90b)]
Gosse Bouma, 1990, ‘Defaults in Unification Grammar’, in: Pro-
ceedings of the 28th Annual Meeting of the ACL, Pittsburgh.

[Chierchia87)
Gennaro Chierchia, 1987, ‘Structured Meanings, Thematic Roles
and Control’, in: G.Chierchia, B. Partee & R. Turner (eds), Prop-
erties, Types and Meaning, Vol II, D.Reidel, Dordrecht .

[Groe&Stokh84]
Jeroen Groenendijk & Martin Stokhof, 1984, Studies on the Seman-
tics of Questions and the Pragmatics of Answers, diss., University
of Amsterdam.

[Polanyi85]
Livia Polanyi, 1985, ‘A Theory of Discourse Structure and Discourse
Coherence’, in: Papers from the general session of the Chicago Lin-
guistic Society, CLS 21, pg. 306 - 322, 1985.

[Priist&Scha90]
Hub Priist & Remko Scha, 1990, ‘A Discourse Perspective on VP

Balthough its applications might not be. That should not come as a surprise. Addition
and Multiplication are extremely simple notions, but it is still far from trivial to solve a
cubic equation.

15

Anaphora’, in: Stokhof & Torenvliet (ed), Proceedings of the 7th
Amsterdam Colloquium, University of Amsterdam: Institute for
Language, Logic and Information, 1990.

[Priist,Berg&Schal
Hub Priist & Martin van den Berg & Remko Scha, manuscript, A
Formal Discourse Grammar tackling Verb Phrase Anaphora.

[Rooth85]
Mats Rooth, 1985, Association with Focus, diss. University of Mas-

sachusetts, Amherst.

[Scha& Polanyi88]
Remko Scha & Livia Polanyi, 1988, ‘An Augmented Context free
Grammar for Discourse’, in: Proceedings of the 12th International
Conference on Computational Linguistics (COLING), pg. 2227,
1988.

[Steedman90]
Mark Steedman, 1990, ‘Gapping as Constituent Coordination’, in:
Linguistics and Philosophy 13, 207-263, Kluwer Academic Publish-
ers, Dordrecht, Boston, London.

16

