The Dynamics of Description

Jan van Eijck

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
&
OTS, Trans 10, 3512 JK Utrecht, The Netherlands

Abstract

In static semantics of natural language, the use of definite and indefinite
descriptions encounters certain difficulties. This paper shows that these
problems can to a large extent be overcome by switching to a dynamic
perspective, and demonstrates how description operators acquire a new
lustre and attractiveness in a dynamic setup.

The paper first presents a dynamic assignment language with 5 and &
assignment in the style of dynamic predicate logic [10]. The constructs for
n and . assignment allow a very straightforward analysis of indefinite and
definite descriptions in natural language. It is shown how the standard (5,
10] way of defining the semantics for these leads to a Russellian treatment
of definite descriptions. A Hoare style calculus for this system (2 subset
of the calculus from [5]) is introduced and briefly discussed. It is shown
how the Hoare style rules allow us to calculate static truth conditions, or
equivalently, static falsity conditions of dynamic representation structures.

Next, the dynamic semantics is enriched with error states, intended
to monitor failure of uniqueness presuppositions for definite descriptions.
The rules for ¢ assignment can now take the presuppositions of the nse of
definite descriptions into account, which gets us a Strawsonian treatment
of definites. It is briefly indicated how a Hoare calculus for the error state
semantics might be devised.

1985 Mathematics Subject Classification: 03B65, 68Q55, 68S10.

CR Categories: F.3.1, F.3.2, 1.2.4, 1.2.7.

Keywords and Phrases: semantics of natural language, dynamic interpre-
tation, Hoare logic, knowledge representation languages.

33

1 Descriptions in Static Logic

Descriptions are used in logic in a variety of ways. As an example, consider
the way in which Hilbert and Bernays use them. In Hilbert & Bernays [13], a
definite descriptor ¢z : p(z) is introduced, and it is proposed that a ¢ term may
be used after it has been proved that there is a referent and that the referent is
unique.

(1) 3eple).
VaVy((e(z) A p(y) =z = y).
p(ez 1 p(z)).

The proposal is meant to capture mathematic usage only, but it is a fairly close
approximation of the use of definite descriptions in natural language, as iniended
by the language user. If someone uses a definite description in a given context,
he or she intends the phrase to refer uniquely in that context. Because of the
unicity requirement, the definite descriptor cx : ¢(z) is rather difficult to handle.

Interestingly, Hilbert and Bernays also introduce a notation for indefinite
descriptions. They use 7z : ¢(z) for an arbitrary member from the set of things
satisfying . The use of 7 terms for natural language analysis is advocated in
Reichenbach [17]. As in the case of ¢ terms, it is necessary to ensure that a pre-
supposition is fulfilled. The indefinite descriptor is introduced by the following
schema.

(2) Jzp(z).

v(nz : p(z)).
Hilbert and Bernays remark that the indefinite descriptor nz : p(z) is difficult
to handle because of the requirement that there be ys. However, unless in the
case of the unicity requirement for definite descriptions, this defect can easily
be remedied. .

To improve on the concept of n terms, Hilbert and Bernays introduce an
operator € to refer to arbitrary objects satisfying a predicate ¢, or to an arbitrary
member of the universe in case there are no ys. In case there are s, ez : ¢(z)
denotes an arbitrary ¢, in case there are no gs, €z : p(z) denotes an arbitrary
non-p. Hilbert and Bernays are not concerned with the semantics of e-terms;
the e-terms are introduced as a proof theoretic device, and it is proved that if
T ¢ ¢ where T' and ¢ are e-free, then I' . In other words: a deduction
of an e-free formula from e-free hypotheses that uses e-terms can always be
replaced by an e-free deduction. This means that it is unnecessary to define
truth conditions for arbitrary formulae with epsilon terms. Such e-terms are
introduced by axioms of the form (3).

(3) o(t) — p(ev : p(v)/t).

Here ¢ can be any formula and ¢ can be any term.

34

In this paper I will demonstrate, among other things, that : terms and
7n terms can be made to behave very nicely in dynamic logic, and that in a
dynamic setting there is no need for ¢ terms at all.

2 The Dynamics of Picking an Arbitrary ¢

In static logic, the command ‘Pick an arbitrary ¢’ is awkward, because there
may not be such a . The introduction of € terms to remedy this defect does not
really help, because the semantics of € terms is unintuitive. A semantic account
(see Leisenring [16]) involves a choice function & that picks out a member of the
universe for every definable subset of the universe. Given a particular choice
function @, the interpretation of ez : p(z) is the object d that & assigns to the
set [(z)]. In case there are no gs, the term ez : p(z) will refer to the individual
that is the value under & of the empty set.

Suppose we apply this to natural language, and translate an indefinite noun
phrase such as a man as an epsilon term. Suppose we use the noun phrase
twice. The second use of ¢ man will then refer to the same individual as the
first. This is hardly ever what we want. In some cases this bug can be fixed by
using a translation ey : (man y Ay # (ez : man z)), a description that refers to
a different individual than ez : man z, but this ploy can never be a systematic
remedy. What we want, instead, is to employ different choice functions as we go
along, and to let the interpretation process fail in case no appropriate choice of
¢ is possible because there are no ¢s. It turns out that dynamic logic for natural
language in the spirit of Barwise and Groenendijk & Stokhof [2, 10] gives roughly
the results we want, on condition that one disregards the presuppositions of the
use of descriptions.

Consider mini discourse (4), where the hearer is asked to take two different
individuals in mind.
(4) A man walked in. He sat down. Another man walked in.

Since we intend the reading where ke is anaphorically linked to the earlier
indefinite and another is anaphorically constrained (to borrow a term from
Barwise [2]) by that same indefinite, we may use indices to indicate the intention.
I follow Barwise [2] in using superscript indices for antecedents and subscripts
for anaphors.

(5) A man® walked in. Hey, sat down. Another; man® walked in.

What intuitively happens when one processes discourse (5) can be described as
follows. First one is invited to focus on an arbitrary man. Then one is asked to
consider a choice of man where that man walked in. Furthermore one is asked to
focus on a choice of man where that man sat down as well. Next one is assumed
to keep this choice of man in mind, and again to pick a reference to an arbitrary

35

man, but in such a way that that man is different from the first man. Finally
one is to consider a second choice of man where that second man walked in.

This account sounds like a piece of imperative programming, which suggests
that its meaning can be given in terms of a translation into a programming
language. Here is such a translation (tense is ignored), in a language which
has the same expressive power as the dynamic predicate logic of Groenendijk &
Stokhof [10], but which reveals its imperative programming nature a bit more
clearly.

(6) nv; : man vy; walk-in vy; sit-down vy;
Nz : (v2 # v1; man v2); walk-in va.

The programming language employed in (6) has two kinds of basic statements:
assignments and tests. Sequences of statements are formed with the sequencing
operator ;. The assignments are non-deterministic, which means that semanti-
cally the program is not a function from states to states, but a relation between
states (or equivalently, a function from states to sets of states). Test statements
narrow down the set of output states. A test relates an input state that satisfies
it to itself, and a input state that does not satisfy it to nothing at all.

I will fix the meaning for this assign-and-test mini-language by giving a
dynamic semantics for it. For good measure, I will also provide a set of Hoare
style rules for the representation language. The advantage of this addition is
that the Hoare style rules provide a link to notions of static semantics. This
allows us to take snapshots of truth conditions at various stages in the disconrse
processing, so to speak. Stated otherwise, the Hoare style rules allow us to
consider projections from dynamic logic to static logic, in the sense of Van
Benthem [3].

3 Dynamic Assignment Logic: Syntax and In-
formal Semantics

This section is meant as a brief introduction to dynamic predicate logic in its
undisguised form as an imperative programming language. We have already
encountered atomic tests, sequential program composition, and indefinite as-
signment; in the syntax description of DAL (Dynamic Assignment Logic) below
we add implication, negation and definite assignment.

In natural language, one does not engage in explicitly bookkeeping with
regard to the ‘slots’ used for keeping track of individuals mentioned in discourse.
One just keeps them in mind, and does not confuse them, that is all. One could
make sure that in DAL the slots do not get confused by stipulating that new
assignments to variables which are already ‘active’ are forbidden (see Van Eijck
& De Vries [5]), but it turns out that such scrupulousness is unnecessary.

The set of programs of DAL has as its terms a set CUV, where C is a set of
individual constants and V a set of individual variables. Individual constants

36

are needed in the translation of proper names. Individual variables will be used
in the translation of indefinite and definite descriptions and in the translations
of anaphoric pronouns.

Given a set of terms and a set of relation symbols, the set of DAL programs is
the smallest set such that the following hold.

1. 1 is a program.
2. If t;,1; are terms, then t; = ¢, is a program.

. If Ris an n-place relation symbol and ¢4, .. .,1, are terms, then R(¢; - -2,)
is a program.

(2]

If m) and 7, are programs then (7y; 7,) is a program.
. If #y and =, are programs then (r; = 73) is a program.
If 7 is a program, then - is a program.

If 7 is a program and z is a variable, then 7z : 7 is a program.

® N> oo s

If = is a program and z is a variable, then ¢z : 7 is a program.

I will follow the usual predicate logical convention of omitting outermost paren-
theses for readability. Also, it will become evident from the semantic clause for
sequential composition that the ; operator is associative. Therefore, I will often
take the liberty to write 71; 72; 73 instead of (71; m2); 73 or my; (ma; 73). Also,
i1 # t2 will be used to abbreviate —¢; = ¢, (cf. example (6)).

The remainder of this section is devoted to an informal account of the dy-
namic semantics of atomic test predicates, implication and negation of DAL
programs, and 7 and ¢ assignment. The next section will give the formal dy-
namic semantics.

Semantically, what we are interested in is states, functions from the set of
DAL variables to individuals in a model. Semantically, DAL programs act as
state transformers: a DAL program maps input states to sets of output states.
A program maps an input state to the set of all possible outputs the program can
produce for that input. A program which is a test will on input A either produce
output set {A} (in case the test succeeds) or output set § (in case the test
fails). Programs which may produce non-singleton sets are non deterministic;
for some inputs there is more than one possible output state. Examples of non
deterministic programs are 7 assignment programs; the program 7z : 7 has, on
input A, the set of all states which may differ from A in the fact that they have
another z value, namely some value that satisfies .

I will use T as an abbreviation for —.L. The program T is a test which
always succeeds; in other words, it is meant to express the same as the ALGOL
style statement if true then skip else fail fi. In other words, for every input

37

state A, T will produce output set {A}. The program L expresses a test which
always fails; it is meant to express the same as if irue then fail else skip fi.
In other words: for every input state A, L will produce output state §. Atomic
predicates like t; = ¢ or R(¢;---%,) are meant to express tests which may
fail; in ALGOL style notation: if R(ty--¢,) then skip else fail fi. Again in
terms of input output behaviour: If R(2; - - -2,) evaluates to true in state A, the
predicate will have output set {4}, otherwise the output set will be §.

Programs of the form (7; = ;) are intended to treat the interplay of natural
language implication and descriptions, as in the following example.

(7) If a man! admires the king?, he; cheers him,.

To get the semantics (roughly) right, one has to assume that (7) is true if and
only if every output state for the antecedent will be an appropriate input state
for the consequent (see Barwise [2] or Groenendijk & Stokhof [10]).

Negation should allow one to treat examples like the following, where the
negation has scope over an indefinite.

(8) The manager' does not use a PC2.
This example can be translated into DAL as follows:
(9) w1 : (manager v1); —(nv2 : pc va; use(vy, v2)).

To get the semantics right (again, roughly), a negated program should act as a
test: =7 should accept (without change) all variable states which cannot serve
as input for 7, and reject all others. In fact, it turns out that = is definable in
terms of = and L, as v = 1.

Definite descriptions can be used as anaphors, while at the same time acting
as antecedents. Discourse (10) provides an example.

10 A customer! entered. The woman? sat down. She; smiled.
1

The indices indicate that the woman has a customer as its antecedent, while
at the same time acting itself as antecedent for she in the next sentence (and
constraining the gender of the pronoun). A DAL translation of (10) is given in

(11).
(11) 71 : cusiomer vy, enler vq;
s : (v2 = v1; woman va); sit-down vg; smile vs.

The ¢ assignment in (11) is dependent on the 7 assignment to variable v,. With
reference to a particular assignment for v;, the description is unique. Note that
the . assignment to v; does indirectly act as a test on the previous 7 assignment
to v;: this test will weed out n assignments that are inappropriate in the light
of the subsequent discourse.

38

Definite descriptions can also be dependent on each other. Consider the
string of characters in (12).

(12) adbC.

Suppose just for an instant that (12) is a state of affairs one is talking about.
The state of affairs involves characters and hat symbols (hats for short). With
reference to (12), it does make sense to talk about the character with the hat,
although (12) neither has a unique character nor a unique hat. We can, for
instance, truthfully assert (13) about (12).

(13) The character with the hat is a capital.
The translation into DAL is straightforward:
(14) w1 : (character vy; wvg : (hat v2; with(vy, v2))); capital vy.

Intuitively, the first ¢ assignment ‘tries out’ individual characters C until it finds
the unique C with the property that a unique hat H for C can be found.

The semantic picture sketched above is still in need of one extra tonch. So
far I have said nothing about presuppositions of the use of descriptions. In fact,
I will refrain from doing so for the moment, and first work out a semantics that
treats descriptions in the Russellian (two valued) way [18].

4 Proper State Semantics

In this section I will spell out the formal details of the standard semantics for
dynamic predicate logic with : assignment. I refer to the standard semantics
as proper slale semantics to emphasise that the definition is couched in terms
of proper states only. Given a model M = (U,I), U a universe of individuals
and I an interpretation function for the individual constants C = {co,cy,... }
and the first order relation symbols of the language, a proper state for M is a
function in V — U. I will refer to the set of proper states for M as S,4.

A proper state A for M = (U, I) determines a valuation V, for the terms of
the language as follows: if ¢ € V then V4 (t) = A(t), if t € C, then V4(t) = I(c).
If A is a proper state for M, 2 a variable and d an element of the universe or
M, then A[z := d] is the proper state for M which is just like A except for the
possible difference that z is mapped to d.

I define a function [7]ar : Saq — PSaq by recursion. A, B, C are used as
metavariables over (proper) states. The function [7]a« depends on the model
M, but for convenience I will often write [r] rather than [#].(. The function
should be read as: on input state A, v may produce any of the outputs in output
state set [r](A).

1. [L](4)= 0.

39

{A} i (Va(ta),-.., Va(ta)) € I(R),
9 otherwise.

3. [= t:(4) = { (4} V() = Vage)

4. [(m1; m2)I(4) = H[==1(B) | B € [r1](4)}

5. [(m1 = m)](A4) = { {4} if for all B € [m:](4) it holds that [m3](B) # 0,

2[R tl4) = {

) otherwise.
A if [#](A) = 0!
6. [[—nr]](A)= { ; } otEcl]‘]\(Yiﬂi-

7. [re : w1(4) = Ull=)(Alz =) | d € U}
[*}(A[z := d]) for the unique d € U

8. [ez: xJ(A) = for which [r](A[z:=d])# 8 if d exists,
) otherwise.

Truth is defined in terms of input-output behaviour: = is true relative to model
M if there are proper states A, B for M such that B € [r]r(4). Two programs
71, T2 are equivalent if for every model M and every state A for M, [r1]a(4) =
[r2lm(4).

Dynamic consequence is defined as follows: r; = m if for every model M
and for all proper states A, B for M: if B € [r;]am(A) then there is a proper
state C with C € |I7"2]]M(B)

The statement 7z : 7 performs a non-deterministic action, for it sanctions
any assignment to z of an individual satisfying 7. The statement acts as a test
at the same time: in case there are no individuals satisfying # the set of output
states for any given input state will be empty. In fact, the meaning of 5z : = can
be thought of as a random assignment followed by a test, for nz : 7 is equivalent
to nz : T; =, or in more standard notation, z := ?; 7. It follows immediately
from this explanation plus the dynamic meaning of sequential composition that
Nz : (71); 72 is equivalent with 5z : (my; 72).

The interpretation conditions for « assignment make clear how the uniqueness
condition is handled dynamically. The statement iz : 7 consists of a test followed
by a deterministic action in case the test succeeds: first it is checked whether
there is a unique =; if so, this individual is assigned to = and 7 is performed;
otherwise the program fails (in other words, the set of output states is empty).
It is not difficult to see that this results in the Russell treatment for definite
descriptions. Also, we see that the two programs iz : (my); 72 and cz : (71; 73)
are not equivalent. The program tz : (m;; 72) succeeds if there is a unique
object d satisfying m;; 73, while the requirement for .z : (7y); 72 is stronger:
there has to be a unique individual d satisfying 7, and d must also satisfy .

The clause for dynamic implication should take care of the proper treatment
of the definite description his wife in example (15).

(15) If John is married, his wife will be cross with him.

40

To get this translated into DAL, under the intended reading that the possessive
pronoun his is anaphorically linked to John, we have to decide what to do
with proper names. The trouble is that proper names do not observe the same
anaphoric constraints as definite or indefinite descriptions.

It seems to me that the anaphoric behaviour of proper names can be ac-
counted for by assuming that they are assimilated to descriptions, but this will
only work if descriptions are treated as carrying uniqueness presuppositions.
Since we are now exploring a Russellian treatment of definites, this road is not
yet open to us, however. Therefore I will sidestep the issue for now, and just
treat anaphoric links to names by translating the anaphor as the constant which
also translates its name antecedent. An indexing for example (15) using con-
stants as indices for antecedent and anaphors, as in (16), paves the way for
this.

(16) If John! is married then [his; wife] will be cross with him,.
A suitable DAL translation for the example now runs as follows:
(17) (married j) = (1z : wife-of (z, j); cross-with (z, 7)).

Now either the program for Jokn is married will not complete successfully, and
then the program for the consequent his wife will be cross with him will not be
executed at all, or it will indeed give precisely one output (this is because the
antecedent program is a test). But then the fact that there is an output guar-
antees that there will be a unique referent for . assignment in the consequent,
so the program for his wife will be cross with him will only fail if the person
who is in fact John’s wife is not cross with John.

5 Hoare Statements for Proper State Seman-
tics

The proper state semantics of our representation language will now be supple-
mented with an axiom system in the style of Hoare (see Apt [1] for an overview
of this approach, and Hoare [14] for the original proposal). The axioms and
proof rules I propose form a deduction system allowing us to prove statements
about DAL programs. I will merely present and illustrate the system here. The
soundness and completeness of a calculus for a dynamic language which has
the present language as a subset, with respect to the proper state semantics, is
proved in Van Eijck & De Vries [5).

Our deductive system for dynamic logic contains statements characterizing
variable states, plus two kinds of correctness statements, which I call universal
and ezistential correctness statements. Thus, the system has three kinds of
statements:

41

1. formulae of a language of first order predicate logic with the same sets of
variables and predicate letters as the DAL language under consideration
(call this assertion language L),

2. triples of the form {p} = {¢}, where ¢, are L-formulae, and 7 is a
DAL-program,

3. triples of the form () 7 (1), where again ¢, ¢ are L-formulae, and 7 is a
DAL-program.

The statements of the form ¢ are used for making assertions about proper
variable states A for I with respect to models M for L. Because the DAL
language and the assertion language L have the same set of variables, variable
states for the DAL language are variable states for L. The relation M = ¢[4],
for state A verifies ¢ in M, is defined in the standard way. If ¢ is a formula of
the assertion language L and z,y are variables then [y/z]y is the result of the
substitution of y for all free occurrences of z in (.

The meanings of {¢} 7 {1} and (p) 7 (3) are formally specified in terms of
the dynamic interpretation function [-Jr¢ that was given above plus the satis-
faction relation M = p[A]. The notion of K-validity for correctness statements
is defined as follows.

K-validity of Correctness Statements

If F has the form ¢, where @ is a formula of the assertion language, then
K E F if M |= F[A] for all models M € K and all states A for M.

If F has the form {¢} 7 {}, then K | F if the following holds. For all
models M € K and for all states A for M, if M |= ¢[A] then for all states
B € [r]m(A) it is the case that M | ¢[B].

If F has the form (@) 7 (%), then X |= F if the following holds. For all
models M € K and for all states A for M, if M |= p[A] then there is at
least one state B € [r]aq(A4) with M = ¢[B).

Because our intuitions about static meaning seem to be much better developed
than our intuitions about dynamic meaning, we can, for a large class of natural
language sentences, check whether the intuitive meaning of a sentence S corre-
sponds to the meaning of its DAL translation 7 in the following precise sense.
Does the intuitive meaning of S precisely describe the set of states for which =
terminates successfully? In terms of Hoare’s logic, we can describe this set of
states by the weakest existential precondition of = with respect to T. What we
are looking for is the weakest ¢ for which the statement (@) = (T) is still true.

It may seem that our intention to use the calculus to get from dynamic to
static meaning will allow us to get by with just existential correctness state-
ments. To see that this is not so, note that such statements do not allow us

42

to express failure of a program for a given sets of input states. The statement
() 7 (L) does not express failure of 7 on input states satisfying ¢. Rather, it
expresses the fact that for all inputs satisfying ¢ the program = is guaranteed
to produce an output satisfying |, a statement which is absurd for all non-
contradictory ¢. Failure of a DAL program 7 on the set of inputs specified by
¥, is readily expressed in terms of universal correctness, namely by {¢} = {L}.
It is clear that in order to treat negation of programs and dynamic implica-
tion between programs, both universal and existential correctness statements
are needed in the calculus.

6 A Calculus for Proper State Semantics

This section gives a proof system for dynamic interpretation with proper state
semantics.

The atomic predicates of DAL act as tests. The following test axioms account
for their behaviour.

Test Axioms

(1) L (L).

{7} L {L}

(R(t1 - ta) A p) Blts - tn) (9)-

{R(t1--1a) = ¢} R(t1-- 1) {0},

(tl =t2 /\w) tl = tz (go)

{tl =t — <p} 11 =12 {¢}°

The axioms for the program L express that L always fails. The existential ax-
ioms for atomic predicates and identities give the preconditions which guarantee
successful termination, with the postconditions guaranteed by the test. The uni-
versal axioms for atomic predicates and identities give the preconditions under
which, if the program succeeds, all output states will satisfy ¢. The reader is
invited to convince her- or himself that these axioms are sound.

For purposes of reasoning with the system one needs an oracle rule for the
class K of models that one is interested in. For natural language applications
such a class will generally be given by specifying a set of meaning postulates
that all members of X should satisfy.

43

K Oracle Rule
Every assertion valid in X is an axiom.

The well-known consequence rule holds for existential and universal correctness.

Consequence Rules
p—y (¥) 7 (x) x —§€
() 7 (£)-
p— 9 {3} = {x} x—¢
{e} = {¢3.

It is instructive to reflect on these rules in order to convince oneself that they
are indeed sound.

The remaining rules specify the meanings of complex programs in the axiomatic
framework.

Rules of Composition
(p) T (¥) () m (x)
(#) (71; 72) (x)-
{p}m {¢} {4} m {x}
{9} (m1; ma) {x}.

Again, the proof of the soundness of these rules is left to the reader.

Rules of Negation
{p} = {1}
(o A¢p) - (¥).
() 7 (T)
{p v} - {¥}.
Recall that negation is a test which gives the input states as its only output
state just in case the unnegated program would fail for the input. To see that
the first rule is sound, notice that what is says is: if a program s fails for all
inputs satisfying ¢, then the program - will succeed for all inputs satisfying
. If moreover these inputs satisfy 1) as well, then there is a guarantee that at
least one output state (in fact, the one and only output there is) will satisfy .
As for the second rule, it says that if a program x succeeds for all ¢ states, then
if you give it a state satisfying ¢ V 1, it will only accept that state if it is a —¢p
state. In other words, all output states will satisfy 4.

Rules of Implication

44

{p} m {¥} (¥) 2 (T)
(p Ax) (m1 = m2) (x).
(@) m1 (¥) {9} ma {1}
{9V} (m1 = m) {x}.

The reader is invited to check the soundness of these rules for her- or himself.

Rules of 7 Assignment

(p) ™ (4)
(Fzp) nz : 7 ().

1} 7 {¥}
{Vzp} nz : v {¢}.

Note that in the static description logic the 7 operators from the dynamic as-
signment logic are contextually eliminated.

To convince ourselves that the rules for 7 assignment are sound with respect
to the semantics, let us consider the rules one by one. For the first rule, suppose
you know that for all ¢ inputs the program w will produce at least one %
output. Now give the program nz : 7 an input satisfying 3z¢. Recall that what
the program does is: first assign a random value to z, and then perform 7 on
the resulting state. We know that the input of 5z : 7 satisfies 3z¢p, so there
must be some d in the universe of the model under consideration that satisfies
®. One of the random choices for z that will be considered is the assignment of
this very d to z. This results in a state A[z := d] which will satisfy ¢. Apply
the premiss to see that at least one output of 7 will satisfy .

Consider the second rule. Suppose you know that when the program 7 acts
on an input state satisfying ¢, then every output state will satisfy ¢. This is
what the premiss says. Now take an input state which satisfies the stronger
condition Yzy and run the program nz : 7. What nz : 7 does is: first assign an
arbitrary value to z, and then perform 7 on the resulting state. Because of the
fact that Vzp holds, any choice for the value of z will result in a state where ¢
holds. Then apply the premiss to see that any output state of nz : 7 will satisfy

.

We will study the rules for ¢ assignment a bit closer. In discussing these rules it
is convenient to use J!zy as an abbreviation for J2Vy([y/z]p — y = z), where
y is a variable which is free for z in . I will first give a version which almost
works, and then remedy it later in the light of further discussion. The rules will
contextually eliminate the . operator.

Rules of : Assignment (first attempt)

45

(P 7 (T) () 7x)
(3lzp A3z) vz (x).

() (T) {y}7{x}
{2z — Vaop} ez : 7 {x}.

The premisses of the first rule state that 7 succeeds for any input which satisfies
¢, and moreover, that if it is run on an input satisfying 3 then at least one
output state will satisfy x. For ease of discussion, assume for & moment that v
is the atomic test program king (z). Then (king (z)) king (z) (T) will certainly
be true. Suppose we are in a state with a unique king, i.e., a state in which
Alzking (z) holds. Then the rule allows us to conclude that the program .z :
king (z) will succeed in this state.

The first premiss of the second rule states that m succeeds on an input
satisfying ¢, while the second premiss says that if an input of 7 satisfies ¢/, then
then all outputs will satisfy x. Again assume that 7 is the program king (z),
which tests whether z is a king. Then the premisses (king (z)) king (z) (T) and
{king (z) — monarch (z)} king (z) {monarch (z)} both satisfy the test axioms.
The conclusion that can be drawn from this:

(18) {3'zking (z) — Va(king (z) — monarch (z))}
iz : king (2) {monerch (z)}.

Ifin state A it holds that if there is a unique king then every king is a monarch,
then all output states of the king-test will satisfy monarch (z). This is of course
correct for the present Russellian analysis.

Does this means that all is well with the rules? Not at all, for one should
bear in mind that in this example (king (z)) king (z) (T) gives the weakest
precondition of success. But the rules as they are stated are more general than
that. (king (z)A beggar (z)) king (z) (T) is also a true correctness statement. It
can be got from (king (z)) king (z) (T) by existential precondition weakening,
using the existential consequence rule. Using this as premiss, the first rule would
allow us to conclude that (19).

(19) (3z(king (z) A beggar (z))) iz : king (z) (T).

To see that this is wrong, imagine a situation where there are two kings, with
one of them, incongruous as it may seem, being also a beggar. Then the test
1z : king (z) will fail because there is no unique king, thus contradicting (19).

To see that the second rule is also wrong, take as first premiss again the true
correctness statement (20).

(20) (king (z) A beggar (z)) king (z) (T).
Take as second premiss the following correctness statement.

(21) {whatever (z)} king (z) {whatever (z)}.

46

Note that (21) is trivially true. To see that it is also derivable in the calculus
note that it can be got from one of the universal test axioms, plus presupposition
weakening using the universal consequence rule. The second rule of ¢ assignment
would license drawing the following conclusion from (20) and (21).

(22) {3lz(king (z) A beggar (z)) — Yz whatever (z)}
1z : king (z) {whatever (z)}.

Consider a situation where there is precisely one king, but this king is a regular
one, not a beggar. Then the program cz : king (z) will succeed in this situation.
Because the unique king is not a beggar, in the situation under consideration
there is no unique individual combining the properties of being a king and a
beggar. Therefore the statement 3lz(king (2) A beggar (z)) — Ve whatever (z)
is trivially true. Still, the conclusion drawn in (22) that the king can have any
property whatsoever is of course not warranted.

The problem with the rules as they stand is that in both cases the first premiss
does not specify the weakest precondition for a given outcome of 7. To enforce
that ¢ is the weakest precondition for success, one has to add the premiss that
- guarantees failure. This leads to the following version of the rules.

Rules of : Assignment
P 7 (1) {~e}r{l} (¥ 7
(Fzp AJzyp) sz : 7 (x).
) 7(T) {-e}x{l} {¥}={x}
{3z — Vzyp} 1z : v {x}.

It is left to the reader to check that these rules are indeed sound with respect
to the proper state semantics of . assignment.

The above axioms and rules engender a notion of K-derivation, as follows. A
K-derivation is a finite sequence of correctness formulae Fy, ..., F, such that for
every ¢, 1 < ¢ < n, F; is a test axiom or a an axiom according to the X oracle
rule, or F; is the conclusion of an instance of one of the inference rules while
the premisses of that rule occur among Fy,..., F;_;. A K-derivation Fy,..., F,
is said to be a K-derivation of Fy,. F is called K-derivable in the proof system
if there is a K-derivation of F. Notation: X I F. For proofs of the soundness
and completeness of this calculus with respect to the proper state semantics the
reader is referred to Van Ejjck & De Vries [5].

It may be enlightening to work out some examples of derivations of static mean-
ings using the calculus. I will concentrate on very simple sentences.

(23) The King of France is bald.

47

Example (23) can be translated into DAL as iz : Kz; Bz. Here is a derivation
of the weakest precondition for success of this program, i.e., a derivation of its
static truth conditions.

(Kz) Kz (T) {-Kz} K=z {l} (Kz A Bz) Kz (Bz)
('zKz A32(Kz A Bz)) 1z : Kz (Bz) (Bz) Bz (T)
(3'zKz A3z(Kz A Bz)) wz: Kz; Bz (T).

Strictly speaking one should check that the derived precondition is indeed the
weakest precondition that works. In fact this follows from a general property of
the calculus:

Fact As long as the two consequence rules are not used, all preconditions de-
rived in the calenlus are weakest preconditions.

Here is a derivation of the static falsity conditions of the Russell example.
(Kz) Kz (T) {-Kz} Kz {1} {Kz — -Bz} Kz {-~Bz}
{3!zKz — Y2(Kz — -Bz)} 1z : Kz {~Bz} {-Bz} Bz {1}
{3'zKz — VYz(Kz — -Bz)} 1z : Kz; Bz {1}.

Again, the consequence rules were not used, so we have derived the weakest
universal precondition of the program with respect to L. And in fact Az Kz —
Vz(Kz — —~Bz) is the negation of 3'2 Kz A3z(Kz A Bz), the weakest existential
precondition of the program with respect to T.

Now consider example (24).
(24) The King of France is not bald.

Following Russell, I will suppose that there are two readings, with different scope
for the negation operator. It is left to the reader to verify in the calculus that the
weakest existential precondition with respect to T of the program iz : Kz;~Bz
is given by: 3!z Kz A 3z(Kz A -Bz). The weakest existential precondition with
respect to T for the other reading is given by the following derivation.

(Kz) Kz (T) {Kz} Kz {l} {Kz— -Bz} Kz {-Bz}
{3'zKz — Vz(Kz — -Bz)} 1z : Kz {~Bz} {-Bz} Bz {l}
{3'zKz - Yz(Kz — -Bz)} vz : Kz; Bz {1}
(3'zKz — Vz(Kz — ~Bz)) ~(sz : Kz;Bz) (T).

This is indeed the result one would expect.

Finally, let us look at an example where the definite is part of the consequent of
an implication, with the antecedent setting up the requirements for uniqueness
of reference.

(25) If a woman is married, her husband will look after her.

48

I will derive the static truth conditions in two stages. The existential rule for
dynamic implication tells us that the formula we are looking for is the weakest
¢ such that we can find a ¢ for which the following holds:

{6} 72 : Wz; Mz {9} (%) o : Hyz; Lyz (T)
(p) (nz : Wz; Mz) = (sy : Hyz; Lyz) (T).

For the first subderivation we find:
{Wz — (Mz —)} Wz {Mz — ¥}
(V2(Wz — (Mz - p))} 1z : Wa {Mz — ¢} {Mz — 4} Mz {y}
{V2(Wz — (Mz — $))} 1z : Wa; Mz {$}).

The second subderivation computes :
(Hyz) Hyz (T) {~Hyz} Hyz {1} (Hyz A Lyz) Hyz (Lyz)
(3'yHyz A 3y(Hyz A Lyz)) w : Hyz (Lyz) (Lyz) Lyz (T)
(FyHyz A Jy(Hys A Lyz)) oy : Hyz; Lyz (T)

Combining these two results we get that formula (26) expresses the static truth
conditions of the example sentence.

(26) Vz(Wz — (Mz — (3'yHyz A Jy(Hyz A Lyz)))).

This is again what one would expect under the present regime. Deriving the
weakest universal precondition ¢ for which the program fails we find the negation
of (26). Again, the uniqueness presupposition of the definite is swallowed up
by the truth conditions, so to speak: no distinction is made between falsity
and failure of presupposition. In the next section I will propose a means of
separating out the cases of presupposition failure.

7 Error State Semantics: Informal Discussion

Nothing we have said so far makes clear how the dynamic treatment of definite
descriptions is meant to deal with their uniqueness presuppositions. Consider
situation (27) and assertion (28) about this situation.

(27) adb™bC.
(28) The character with the hat is not a capital.

On a Russellian analysis [18], example (28) is false with respect to (27) if the
description is taken to have scope over the negation operator, as in DAL trans-
lation (29).

(29) tvy : (character vy; v : (hat vg; with(vy,v;))); —capital vy.

49

This is not quite what we want if we intend to follow Frege [7, 8], Hilbert &
Bernays [13] and Strawson [19] rather than Russell: we intend to preserve the
distinction between falsity and failure of presupposition. In the Frege view,
which is shared by Hilbert & Bernays and by Strawson, (29), rather than being
false, suffers from presupposition failure.

Our way to work out this distinction will be as follows. I assume that DAL
programs can execute in either of three ways when acting on a given input state:

1. they report success by producing at least one proper output state,
2. they report failure by not producing an output state at all,
3. they report error by producing a special error state as only output.

The first case indicates truth of the information contained in the program in
the context of the current input state. The second case indicates falsity of the
information contained in the program in the context of the current input state.
The third case, finally, corresponds to failure of presupposition in the context
of the current input state. In formulating dynamic meaning, one must specify
the (mutually exclusive) conditions for the three cases.

Interestingly, in many cases uniqueness presuppositions for definite descrip-
tions are carried along in the discourse. Consider example (25) again, with its
translation (30).

(30) (nz : Wa; Mz) = (cy: Hyz; Lyz).

The presupposition of the consequent of (30), namely that .y : kusband-of (y, z)
has a unique referent relative to an assignment of a married woman to z, is
nicely taken care of by the antecedent of the implication. Strictly speaking, one
also has to assume a meaning postulate expressing that married men do have
one and only one wife. But then an account that handles presuppositions should
ensure that the presupposition of the consequent program will be cancelled in
the larger context of the dynamic implication.

Given the distinction between program failure and program error abortion,
one can also easily implement the view, found in Hilbert & Bernays [13], that
indefinites are also loaded with a presupposition. This view entails that (31) has
no truth value relative to situation (27), because the situation does not contain
a capital with a hat.

(31) A capital with a hat precedes a capital.

It is not clear to me whether this is intuitively acceptable, but possibly my
intuitions are blurred by the fact that I find it hard to forget about other situ-
ations which do contain characters with hats. I take it, however, that example
(32), makes clear that in general a presuppositional treatment of indefinites d
la Hilbert & Bernays cannot be correct for natural language analysis.

(32) There is a cepital with a hal.

50

The most reasonable assumption seems to be that (32) is simply false with
respect to (27). I will therefore not treat indefinites as presupposition-loaded.

8 Error State Semantics: Formal Definitions

Assume a model M = (U, I) as before. I use S, for the set of proper states for
M, i.e., for the set of functions U — V.

As before, a proper state 4 for M = (U, I) determines a valuation V, for
the terms of the language as follows:

1. If t € C then V4(t) = I(t).
2. Ift € V then V4 (t) = A(2).

The symbol € will be used to designate a special error state. If Spq is the set
of proper states for M = (U, I), then Sxq U {e} is the set of states for M.
There is no connection between the error state € and the epsilon terms from the
introduction.

We define a function [r]aq : Sapq — P(Saq U {€}) by recursion. A is used
as a metavariable over proper states, and B as a metavariable over states. The
function [7]A« depends on the model M, but for convenience I will again write
[] rather than [r]a..

The meaning conditions are rather involved because of the need to specify
error abortion behaviour. The reader should keep in mind that the only case
where error arises is the case where a ¢ assignment aborts because no unique
referent can be found in the context of the current input state. The mention of
error states in the conditions of the other program constructs is meant to take
care of error propagation.

1. [L}(4)=0.

2. [B(t: ---ta))(A) = { ;A} ilﬁiﬁe)’ D A
_ [{4} if Va(t) = Va(ta),
3. [t1 = ta](4) = { ') otherwise.
_ {19 if [ral(4) = {<},
4, |[(1r1, 'n’z)]](A) = { U{[["r’]](B) |B e [[n](A),B # e} otherwise.
{G} if e € IIW!]I(A):

or for some proper state B € [r1](A4)

it holds that [xa](B) = {¢},
5. [(m = m)}(4) = {A} ifforall B € [m](4)

it holds that B # ¢ and [r2](B) € {¢},
9 otherwise.

51

{e} i [«](A) = {e},
6. [-r)(4) = {A} if[=](A)=0,

] otherwise.

7. [nz: 7](A) = U{[*](Alz :=d]) | d € U}.
[r](A[z := d)) for the unique d € U

8. [ez: x](A) = with [7](Alz := d]) € {¢} if d exists,
{€} otherwise.

Truth is defined in terms of input-output behaviour: 7 is true relative to
model M if there are proper states A, B for M such that B € [r](A4). As
there is more to meaning than just truth I must say a bit more. Because of the
possibility of presupposition failure it makes sense to define the following three
sets for any program 7 and model M.

o Lo E{A€Spm|[rIm(A) NS # 0}

o Oy m «f {A €Sm|[rlm(4) =10}

o xrpn {4 €Spm | [rIm(A) = {e}}.

Note that it follows immediately from these definitions that we have the follow-
ing:

e 1pam = Sm—(0r m Ukn).
® Orpmt =Sm—(1rmUxem)
® *, M =Spm— (1x,m UO-,,M).

Two programs 7, 7’ will be called truth equivalent in case for all models M it
holds that 1, a4 = 1a m, falsity equivalent in case for all models M it holds
that 0x a4 = Ox/ a1, and error equivalent in case for all models M it holds that
*r M = *x/ m. Because of the possibility of error, truth equivalent programs
need not be falsity equivalent, for there may be a proper state for which one
of the programs gives error and the other falsity. Likewise, falsity equivalent
programs need not be truth equivalent, for there may be a proper state for which
one of the programs gives error and the other truth.

Just for the record, the dynamic consequence notion does not change. Dy-
namic consequence is still defined as follows: 7y |= 3 if for every model M and
for all proper states A, B for M: if B € [m]am(A) then there is a proper state C
with C € [ma] m(B). Note that the fact that ¢ may be among the outputs for m,
does not matter; the only thing that matters is that program =, succeeds for all
proper outputs of m;. This reflects the fact that dynamic consequence preserves
presupposition, so to speak, in the sense that the program m; is processed on
the assumption that the presuppositions of 7, are fulfilled. Note however that,

52

although the definition of the dynamic consequence has not changed, the rela-
tion itself has, for the relation depends on the semantic interpretation function
of error state semantics.

The interpretation conditions for + assignment make clear how the uniqueness
presupposition are now handled dynamically. The statement ¢z : 7 consists of a
test followed by a deterministic action in case the test succeeds, followed again
by the program 7. First it is checked whether there is a unique 7; if so, this
individual is assigned to z and 7 is executed in the result state; otherwise, the
only possible output state is the error state. In other words, if the uniqueness
presupposition is not met, the program will not fail, as it did under the regime
of proper state semantics, but instead it will abort with error. It is not difficult
to see that this implements the Frege, Hilbert & Bernays, Strawson view of the
behaviour of definite descriptions.

Also, we see that the two programs iz : (71); 72 and iz : (my; 72) again
are not equivalent. More precisely, they are neither truth equivalent nor falsity
equivalent. The program iz : (m;; 72) succeeds if there is a unique object d
satisfying m1; 72, while the requirement for 4z : (71); 73 is stronger: there has to
be a unique individual d satisfying 7, and d must also satisfy 7,. The programs
are not truth equivalent because ¢z : (71; 72) may succeed while iz : (m); 2
aborts with error. This happens in case there is a unique object satisfying
71; M2, but more than one d satisfies 7;. They are not falsity equivalent because
1z : (m1; m3) may abort while iz : (71); 72 fails. This happens in case there is
no unique object satisfying 1; 72, but there is a unique object satisfying =,
and this object does not satisfy 7.

9 A Calculus for Error State Semantics

Because of the presence of the error state ¢, the semantics for DAL that was
presented in the previous section is even more awkward to deal with directly
than the proper state semantics presented earlier. An obvious next move is the
development of an extended Hoare calculus that is sound and complete for this
interpretation.

Such a Hoare style deduction system has been developed and is presented in
Van Eijck [4], but here I will limit myself to a brief discussion of the new rules
for . assignment, to get the flavour of the approach across.

The set of Hoare correctness statements is extended with two new kinds
of assertions, namely triples of the forms {¢} 7 ¢! and {¢} = €?. The Hoare
correctness statements are now to be interpreted as follows.

K-validity of Correctness Statements

If F has the form ¢, where ¢ is a formula of the assertion language, then
K E F if M = F[A] for all models M € X and all proper states A for
M.

53

If F has the form {p} = {¢}, then X | F if the following holds. For
all models M € K and all proper states A for M, if M | ©[A] then
€ ¢ [r]m(A) and for all (proper) states B € [7]aq(A) it is the case that
M = ¢[B].

If F has the form (p) 7 (¥), then X |= F if the following holds. For all
models M € K and for all proper states A for M, if M ¢[4] then there
is at least one proper state B € [r]i(4) with M = ¢[B].

If F has the form {p} = ¢!, then X |= F if the following holds. For all
models M € K and for all proper states A for M, if M | p[A] then

[r]m(4) = {e}.
If F has the form {¢} 7 €7, then KX = F if the following holds. For all

models M € X and for all proper states A for M, if M k= ¢[A] then
[rlm(4) C {e}.

In the new calculus we have three rules for ¢ assignment instead of two. The first
rule allows us to calculate truth conditions, the second rule is for calculating
falsity conditions, and the third rule describes the conditions of presupposition
failure. The new rules for : assignment look as follows.

Rules of : Assignment for Error State Semantics

{p) = (T) {-p} 7 €7 () (0
(Fzp Adzy) wz: 7 ().

(o) = (T) {-p} 7 €? {¥} = {x}
{Jlzp AVz9p} wz: 7 {x}.

{p) 7 (T) {mp} 7 e?
{-3lzp} 1z : 7 el

To see what these rules do, first note that the combination of the premisses
(p) = (T) and {—¢} 7 €? ensures that ¢ is the weakest precondition for success
of 7. The first premiss gives that the program will succeed in all ¢ states, while
the second yields that in all ~y states it will either abort with error or fail.

To see that the first rule is sound, assume the premisses are true, and consider
a state A where 3!z A x4 is true. In other words, there is an object d which
is the unique ¢ and moreover, there is an object d’ which satisfies 1. We know
that o is the weakest precondition for success of v, and that ¢ is a precondition
for success of 7, so 9 — ¢, and therefore Vz(yy — ¢), will hold in state A.
It follows that d’ = d. By the rule for . assignment, this object d is assigned
to z, and the program = is then made to act on input Az := d]. Because d
satisfies 1) we know that Az := d] is a ¢ state, so the third premiss applies.
This guarantees that there is an output state which satisfies x. For the second

54

rule the reasoning is similar: the third universal premiss now guarantees that
all output states of [7](A[z := d]) will satisfy x. The third rule states that the
program :z : 7 will abort in precisely the cases where the uniqueness condition
for (z) is violated. This is of course correct.

One last thing to call attention to is the switch from {~p} 7 {1} to {-p} 7 €?
in the premisses. The reason for this is that we want to be able to treat definites
which have other definites inside them, such as the maen who mistook his wife
for @ hat. The program which translates man who mistook his wife for a hat
may abort with error because no unique referent for Ais wife can be found. The
premiss {—p} 7 €? covers this case, while under the error state semantics the
premiss {~p} 7 {1} does not.

This discussion shows, by the way, that there should be a rule in the calculus
which relates the notions €? and ¢!. Such a rule can be formulated as follows.

Failure or Error Rule
{p} = {1} {¢} = ¢
{pvy}7e

It is clear that this describes the relation between ¢! and €? correctly, so the
rule is obviously sound. It is also clear that statement (33) should be derivable
in a complete calculus, as it is obviously true:

(33) {l}xe

From the failure or error rule and (33) we get the following derived rule:

Derived Failure or Error Rule

{p} 7 {L}

w} we?

Although we have not given a full calculus, we can already demonstrate the
rules we have introduced so far on a very simple case such as Russell’s King of
France example, repeated here for convenience.

(34) The king of France is bald.
Here is the derivation of its static truth conditions:
{-Kz} Kz {1}
(Kz) Kz (T) {-Kz} Kz €? (Kz A Bz) K=z (Bz)
(3zKz AJz(Kz A Bz)) iz : Kz (Bz) (Bz) Bz (T)
('zKz A Jz(Kz A Bz)) 1z : Kz; Bz (T)

The rules that have been used are the derived failure or error rule, the existential
¢ rule, and the existential composition rule.

55

Here is a derivation of the static falsity conditions of the Russell example. This
derivation uses the derived failure or error rule, the universal : rule, and the
universal composition rule.

{-Kz} Kz {1}

(Kz) Kz (T) {-Kz} Kz €? {Kz — -Bz} Kz {-Bz}
{3'zKz AVz(Kz — ~Bz)} iz : Kz {-Bz} {-Bz} Bz {1}

{3zKz AVz(Kz — —Bz)} vz : Kz; Bz {1}

The derivation of the error conditions for this example also uses the following
error rule for sequential composition (in the full calculus, this is a derived rule):

Derived Error Rule for Sequential Composition
{p} ™ €

{p} 71573 €

Here is the derivation of the error conditions for (34).
{-Kz} Kz {1}
(Kz) Kz (T) {~Kz} Kze?
{-3'zKz} iz : Kz ¢!
{-3'zKz} i1z : Kz;Bz ¢!

Hopefully the above hints have made clear how one should go about developing
a Hoare style calculus for error state semantics. The full development of the
system, with a proof that it is sound and complete for the envisaged semantics,
and a demonstration of how it can be used as a calculus of presupposition failure
is the topic of another paper [4].

10 Conclusion

In this paper I have explored two varieties of dynamic semantics, proper state
semantics and error state semantics, while focussing on the constructs of 7
and : assignment for the treatment of indefinite and definite descriptions. It
turned out that an error state semantics is well suited to take the uniqueness
presuppositions of the use of definite descriptions into account.

If we adopt a proper state semantics, then both 7 assignment and : as-
signment ccan in principle be decomposed. The process of # assignment is
decomposable in random assignment with subsequent testing, while that for ¢
assignment is only slightly more complicated. In fact, we can read tz : 7 as an
abbreviation of nz : m; - (ny : [y/z]m;y # z). Under an error state semantics
7 assignment is still decomposable, but a decomposition of : assignment has
become impossible, because of the way in which the uniqueness presuppositions

56

are handled. It is interesting to speculate about the addition of special error
handling constructions to the representation language. In this connection, an
obvious question one might ask is: what is the minimal enhancement of the
representation langnage that would make ¢z : 7 decomposable again? But irre-
spective of the answer to this question, the nice thing about the constructs for
7n and ¢ assignment is that they allow us to remain faithful to linguistic form.
For proper state semantics I have spelled out a Hoare calculus, while for
error state semantics I have hinted at one. In fact, the second calculus, which
I have not given in full detail, is much more versatile than the first. A full
calculus for error state semantics is given in Van Eijck [4]. This paper also
demonstrates how the new calculus is used for calculating static truth conditions,
static falsity conditions and static error conditions. The latter describe the class
of model/state pairs where the presuppositions of a program are not fulfilled.

Acknowledgement

This paper has benefitted from helpful comments by Krzysztof Apt, Reinhard
Muskens, Martin Stokhof and Fer-Jan de Vries.

References

[1] K.R. Apt, ‘Ten Years of Hoare’s Logic: A Survey—Part I, ACM Transac-
tions on Programming Languages and Systems, Vol. 3, No. 4, October 1981,
431-483.

[2] J. Barwise, ‘Noun Phrases, Generalized Quantifiers and Anaphora’, in
P. Gardenfors (ed.), Generalized Quantifiers / Linguistic and Logical Ap-
proaches, 1-29, Reidel, Dordrecht, 1987.

[3] J. van Benthem, ‘General Dynamics’, ITLI report, Amsterdam, 1990.

[4] J. van Eijck, ‘Presupposition Failure — A Comedy of Errors’, manuscript,
CWI, Amsterdam, 1991.

[5] J. van Eijck & F.J. de Vries, ‘Dynamic Interpretation and Hoare Deduction’,
CWI Technical Report CS-R9115, Amsterdam 1991 (to appear in the Journal
of Logic, Language and Information).

[6] G. Evans, ‘Pronouns’, in: Linguistic Inquiry, 11, 1980 337-362.

[7] G. Frege, ‘Funktion und Begriff’, 1891, translated as ‘Function and Concept’
in P. Geach & M. Black (eds.), Translations from the Philosophical Writings
of Gottlob Frege, Basil Blackwell, Oxford 1952.

57

[8] G. Frege, ‘Ueber Sinn und Bedeutung’, 1892, transiated as ‘On Sense and
Reference’ in P. Geach & M. Black (eds.), Translations from the Philosophical
Wrilings of Gotilob Frege, Basil Blackwell, Oxford 1952.

[9] P.T. Geach, Reference and Generality / An Ezamination of Some Medieval
and Modern Theories , Cornell University Press, Ithaca & London, 1962
(Third revised edition: 1980)

[10] J. Groenendijk & M. Stokhof, ‘Dynamic Predicate Logic’, Linguistics and
Philosophy, 14, 1991, 39-100.

(11] D. Harel, ‘Dynamic Logic’, in D. Gabbay & F. Guenthner, Handbook of
Philosophical Logic, Vol. II, Reidel, Dordrecht, 1984, 497-604.

[12] 1. Heim, ‘E-Type Pronouns and Donkey Anaphora’, Linguistics and Phi-
losophy, 13, 1990, 137-177.

[13] D. Hilbert & P. Bernays, Grundlagen der Mathematik, Gottingen 1939
(Second edition: Berlin etc. 1970).

[14] C.A.R. Hoare, ‘An Axiomatic Basis for Computer Programming’, Commu-
nications of the ACM, Vol. 12, no. 10, 1969, 567-580, 583.

[15] H. Kamp, ‘A Theory of Truth and Semantic Representation’, in Groe-
nendijk e.a. (eds.), Formal Methods in the Study of Language, Mathematisch
Centrum, Amsterdam 1981.

[16] A.C. Leisenring, Mathematical Logic and Hilbert’s e-symbol, Gordon and
Breach Science Publishers, New York, 1969.

[17] H. Reichenbach, Elements of Symbolic Logic, The Macmillan Company,
New York, 1947.

[18] B. Russell, ‘On Denoting’, Mind, 14, 1905, 479-493.
[19] P.F. Strawson, ‘On Referring’, Mind, 59, 1950, 320-344.

[20] J.V. Tucker & J.I. Zucker, Program Correciness over Abstract Data Types,
with Error State Semantics, North Holland, Amsterdam 1988.

58

