Combining Semantics by Unification

Henk Zeevat
Computational Linguistics
University of Amsterdam

1 The Problem

This paper is an exploration of the relation between the compositionality
principle and U(nification) C(ategorial) G(rammar)!, a grammar framework
that combines ideas from categorial grammar and unification grammar. Like
other unification grammars and implementations of other frameworks in uni-
fication grammar, UCG constructs the semantic representations of complex
expressions not by applying functions to arguments —the way this is done in
Montague grammar— but by unifying semantic representations. The nor-
mal interpretation of this procedure is as an operation that constructs a new
feature structure out of two given ones: it is an operation over the syntax
of the semantic representation language. In this paper we seek an answer
to the question whether we can reinterpret this syntactic manipulation as
an operation over the meanings themselves and construct a compositional
interpretation of the syntax-semantics relationship in UCG that is faithful
to the syntactic procedure of feature structure unification.

There is a different program with roughly the same aim of using unification
whilst maintaining compositionality. This program is to use a traditional
compositional approach (e.g. PTQ or some other type theory) and prove
that unification is a correct implementation of that theory. This is a fine
program, but it appears it cannot be carried out in the desired way. Both
Moorel1989 (a discussion of this problem for the Core Language Engine,
another unification formalism) and Reyle1987 (discussing a mechanism for
the semantic interpretation of LFG) have to bring in restrictions and other
mechanisms to maintain correctness. In the case of Moore, this is a post-
processor that reduces A-terms, in the case of Reyle, this is abstraction over
complex lambda-terms and a copying mechanism for terms.

More positively, it can be claimed that unification offers possibilities that are
both useful and not obtainable within more traditiona] A-based approaches.
These allow information concerning the argument semantics to derive from
specification in the functor. An example is the combination of a VP marked
only for non-stativity (walk over the beach) and a modifier that requires it

1CKMZ]986, CKZ1988, ZKC1987, Zeevat1988 are introductions to UCG. The consid-
erations in this paper should apply to related frameworks such as CUG (Uszkoreit1987,
Bouma1988) or HPSG (Pollard1985, Pollard&Sag1988)

161

argument to be an achievement (in § minutes). The result of the combina-
tion is more than fill in a slot in the functor semantics: the filler of the slot
is also turned into an achievement. A similar effect is not directly encodable
in Montague Grammar (though there are other ways of achieving the same
effect). A similar effect is constraining the interpretation of a noun like but-
ter to countable entities by applying the determiner one to it. There are
mechanisms in the lambda-calculus (multiple reduction as in the semantics
of the quantifier every man: APYz(man(z) — P(z))) that cannot be ren-
dered directly in a unification framework. To what extent these are needed
is not clear.

The view of this paper is that there is nothing wrong with the lambda cal-
culus as a theory of semantic combination, but that at the same time it is
useful to see whether unification can be defended as a serious alternative,
If it can be, there are three reasons for preferring a unification approach.
First, unification does not commit the user to a belief in abstract entities:
no variables over the higher types get bound, as in the lambda calculys. The
theory of combination has an interpretation on the meta-language. This al-
lows the use of more restricted languages for defining the resulting meanings.
Second, unification in UCG and other unification grammars is the funda-
mental operation in the Syntax -or even in some versions the only operation.
This allows a uniform account of the semantics of the grammar formalism?.
Third, the intuitions behind unification seem to constitute a different and
interesting account of semantic combination, an account which is based on
epistemic rather than ontological principles. Thus, in UCG, one can say of
many expressions that they provide a partially known semantics of an entity
that can result from a syntactic combination. The combinations are then
supplying new information to make the original semantics better known.
The process of interpretation can be seen as the interpreter becoming more
and more aware of the semantic object.

The intuition behind the lambda calculus theory of combination is to think
of meanings as objects that are "unsaturated”, ob jects that need other ob-
jects to become saturated. The corresponding epistemic notion is that of a
concept of meaning which still varies with the circumstances of evaluation:
different circumstances will make it denote different actual meanings. In
this way, an incomplete expression is like an incompletely perceived object:
in both cases there is a number of ways in which our knowledge concerning
its nature can grow as new perceptions or further linguistic material comes
in.

This paper focuses on UCG, but the basic notions should be applicable to
similar unification theories. Given the number of different theories that are
possible in a unification framework, it does not appear feasible to give a
single general formulation of thejr theory of combination.

*The approach in this paper would suggest that there is a series of different unification
operations involved for the different levels of linguistic description.

162

1.1 UCG

As a grammar theory UCG consists of two kinds of statements. It describes
by means of lexical entries to which other expressions a word will apply and
which expressions will apply to it (the categorial information). In addition,
it gives a partial description of the phonology, the categorial information and
the semantics of the expression that will result from a fu7nctional applica-
tion. In case the lexical element has a functor category, there may and often
will be a dependency in this description on the phonological, categorial and
semantic values of the argument expressions, a dependency that is expressed
by variable sharing, as in the following example. (Capital letters indicate
variables. expressions are written Phonology : Category : Semantics).

(1) A likes B:
(sent/ A:mnp:X/ B:np:Y:
[s]like(X,Y)

Here, the expression needs to be combined with a nominative and an ac-
cusative NP to form a finite sentence. The phonology of the sentence will
be formed by filling in the phonological values of the arguments for the vari-
ables in the phonological slot, and the semantics by filling in the semantic
values in the semantic slot. Of the second kind of statement, there is only a
single one>: the rule of functional application. This rule says that a complex
expression may be formed from a functor expression and another expression
E, in case the functor’s information about its argument is coherent with
the information associated with E. The complex expression consists of the
functor without its argument slot, together with the information that its
argument "was” the expression E.

(Def.1) Functional Application
If B and D are unifiable and 4 is their most general unifier
(mgu), then 8(P : C : S) can be derived from P : C/B : §
and D

Together with the lexical entries, functional application states what are the
well-formed expressions of the UCG-fragment. Viewed as a statement on the
semantics it says that the result expression has the meaning of the functor
expression and that all the semantic values associated with B are the same
as the corresponding semantic values in D.

Corresponding is here spelled out by the structure of B and D. Minimally,
the category of B and D is primitive, in which case their semantics should
be the same. But the shared category can be complex, in which case the
semantics of the signs involved in their categories should also be the complex.

3This is a simplification: there are actually two functional applications (bidirectional-
ity) and a number of unary rules, but both functional applications have the same semantic
effect and the unary rules just copy the semantics of their argument.

163

2 Semantic Unification

If two expressions can vary in meaning, it is possible to consider the situation
that they might have the same meaning. Thus if we have two intensions
in PTQ (e.g. propositions), we can consider the proposition that the two
intensions have the same extension. In this case the variability resides in
the possible worlds the intensions range over. Similarly we can deal with
variables, or with expressions containing variables: we can consider the class
of assignments under which the two variables or expressions have the same
meaning. If we are in a partial theory, we could form a unification operation
in the language. For the intensions, unifying a and 3 would be the partial
function from worlds into intensions that is defined precisely over those
worlds in which o and § have the same denotation and that takes exactly
the same values as o or § in those worlds. For the variables, it would be
that function defined on the assignments under which a and § have the
same meaning and that takes the meaning of a or £.

The notion we will be developing is related to the second example.

Why are these unification operations? It is customary to define term unifi-
cation by interpreting the terms as the class of their ground instances (the
terms obtained by filling in a constant or ground term for each of the vari-
ables occurring in the term) and the unification as the intersection of these
sets. Thus the unification of the two terms is that term (if the intersection is
non-empty) that has the ground instances that the terms share. Similarly,
feature structure descriptions are interpreted as the set of feature structures
that satisfy the description and the unification is again the intersection of
the sets corresponding to the description. In this case, we interpret inten-
sions as sets of world extension pairs, and open objects as sets of pairs each
consisting of an assignment and the value of the object under that assign-
ment.

If we have a strictly monotonic partial logic, any composite containing the
result of a unification, will only have a denotation or meaning if we are
considering an index or assignment with respect to which a and J are the
same. Each of these can be thought of as a ground unifier: one that turns
a and § into the same ground object: its extension at the index or the
meaning of the expression with constants for the variables.

The unification collects all shared ground unifications, and can be seen as
the disjunctive combination of these. Under further unifications we may
exclude various of the still open possibilities. This makes the operation
considered here a greater lower bound in the lattice of partial functions
from the relevant variation dimension into the relevant type of meanings.
The empty function is here the inappropriate result, the L element of the
lattice.

Of particular interest are partial or total functions from worlds or assign-
ments that are constant in the sense that for each element in their domain
they have the same value. Objects that do not vary along the relevant di-

164

mension can be considered as constant objects (compare rigid designators).
In the approximation process, constant outcomes are what we are aiming
for.

In the case of UCG, the process of constructing a semantic representation of
a complete expression is a continuous refinement of the concept of a semantic
representation associated with the main functor and is only successful if it
leads to a constant function. The constant function determines the actual
meaning.

2.1 A General Definition

Let L be some language with a compositional semantics. Let L* be an
extension of this language that includes meta-variables over some or all of
the compositional types. Then L= may be defined to be an extension of Lt
including a unification operation in the following way.

(Def.2) aNnfis an expression of type 7 if @ and (3 are expressions of
type 7.

In order to interpret our new operation M we have to deal first of all with the
compositional interpretation of L*. The solution for that is standard. We
consider the set MA of functions that map the meta-variables into meanings
of the appropriate type, and we define || a || in terms of the L-interpretation
function [a] as follows.

(Def.3)

L || a|l= {<-h,h(a) >: h € M A} if a is a meta-variable.
2. le|l={< h,[a] >: h € MA} if & is a primitive L expression.

3. || O(a,...,an |I= {< h,[O(aa||(h),. .., |lan||(h) >: h € MA,a4]|(h)
is defined, ...|lay||(h) is defined } if O(ey,...,ay) is a composite L=-
expression and O is an L operation.

Unification can be incorporated by definition (def4).
(Def4) flan Bl = {< hllali() > llall(h)) = IBII(h), h € MA}
In combination with compositionality, we have the proposition (propl).

(Prop.1) for h € dom|lan |, [lv(2)li(R) = IV(B)II(R)
or both ||y(a)||(k) and |}¥(8)||(h) are undefined.

From this it follows that we can compare the term unification t(a,3) with
semantic unification. What we would like to have is a principle like (2).

165

(2) for < u,v >€ mgu(a, 8),h € dom||an B}, ||lull(k) = ||v]|(k)

This would allow us to apply the mgu to any environment of the unified
terms. But this is not forthcoming if we look at (3). The term unification
of

(3) ¢AX =X and
pAj=7]

would give X the value of j, even though the meaning identity of the two
expressions does not imply that the values of X and j are the same. What
we get is the weaker (prop2).

(Prop.2) 1f |ly(a N B)||(h) is defined, |ly(a)li(h) = |ly(t(e, B)lI(R) =
[v(en B)li(h)

This allows replacements: if we know that A is correct for the derivation of
some expression v and h unifies a and 3, then we can replace o or 8 with
the term unification of a and 8 in 7.

The counterexample establishes that abuse of term unification is possible?.
Term unification will always unify the corresponding subterms, but semantic
unification does not have this property. The unification of subterms is only
guaranteed, if the identity of the meaning of the subterms follows from the
identity of the semantics of the whole term. For some kinds of semantics,
this is fairly unrestricted (e.g. property theory or situation semantics), for
others, this only holds in special cases. The unification of the indices of
formulas in InL3, when formulas are unified, requires the more structured
semantics introduced below.

2.2 Examples

Take propositional logic with the following semantics:
(Def.5)

L. [p] = F(p) € 2
2. [p A 9] = [¢][4]
3. [l =1-[¢]

“This can be compared to proposing operations in Montague grammar, that can only
be defined on IL but lack a corresponding semantic interpretation.

*InL, the semantic representation language used in UCG, assigns a special variable (the
index) to each formula. Formula unification therefore entails unification of the indices of
both formulas

166

The language L= is interpreted by considering meta-variables A, mapped
by meta-assignments 4 into 2, the interpretation of the only type in propo-
sitional logic. (. and — return undefined if one of their arguments is unde-
fined.)

(Def. 6)

[u—y

- [lPll(R) = F(p)

2. [|All(r) = A(4)

3. [l A%li(R) = lleli(h).Ilwfi(h)
4 =¢li(h) = 1 - |lgll(h)

- el = il nljwil

(S

The triviality of the semantics in this case is reflected in the unification op-
eration. Looking at the new meanings as some kind of intensions, unification
is an intensional operator that restricts the interpretation of its arguments
to those meta-assignments under which they denote the same truth-value.
Unification between constants is either the identity operator (to either ar-
gument) or the one that delivers the trivial meaning (the empty function
from meta-assignments to truth-values).

As a second example, consider modal first order logic. Here we have op-
erators A, -, V and O. The latter two are operators over propositional
functions and propositions respectively. So now the meaning of the formula
meta-variables must similarly have both a propositional and a propositional
function character, as can be seen from the compositional semantics (def7),
assuming a model < U, W, R, F,w, g >, with U and W non empty, Fi(c) € U,
weW,ge VAR - U.

(Def.7)

L. [P)(g)(w) = F(P)(w)

2. [z)(g)(w) = g(z)

- [el(g)(w) = F(c)

4. [Ptr...ta](g)(w) = [PI(g)(w)(< [ta)(g)(w). .. [tn)(9)(w) >)
- [e A Bl(9)(w) = [¢)(9)(w).[#)(g)(w)

[el(9)(w) = 1 - [e)(g)(w)

- V2@l(9)(w) = Tigrgra, o3 [0)(g")(w)

- [Be)(9)(w) = Tiwrwrwn [@](9)(w)

o

167

We can add both meta-variables for objects and for formulas to this language
and define L=. We obtain the following semantics:

(Def.8)

L |[PlI(h)(g)(w) = F(P)(w)
lAll(h)(g)(w) = R(A)(g)(w)
llali(h)(g)(w) = h(a)(g)
lzll(R)(g)(w) = g(2)
lleli(R)(g)(w) = F(c)

Pty ... l(A)(g)(w) =
IPII(h)(g)(w)(< fitall(R)(g)(w) - - I2alI(R)(g)(w) >)

7. llp A Bli(R)(g)(w) = lipll(h)(g)(w)-[[bll(R)(g)(w)
8. [I=ell(h)(g)(w) = 1 - Jle]|(R)(g)(w)
9. [IVzell(R)(9)(w) = IT{gngr=cg} llll (B)(g")(w)

10. [I9¢ll(h)(9)(w) = Twrwrwy Pl (R)(g)(w")

11. flen ol = [iell N 1l
12. ||t N o] = [[tall N 22|

A e ad

If we regard all three parameters as ranging over a kind of possible worlds,
L-sentences —where all variables are bound— correspond to propositions
(functions of type st), L-formulas —that may contain free variables, but
no meta-variables— to concepts of propositions (type sst) and the mean-
ings on which the unification operation operates to concepts of concepts of
propositions (type ssst).

In Stokhof & Groenendijk’s theory of questions, questions are concepts of
propositions. Applying such a concept to the actual world gives the true,
complete and rigid answer to the question. If we regard the actual world as
the world where, among other things, the assignments to the meta-variables
are as the speaker intends with his utterance, applying the actual world to
the concept of concepts of propositions will give the propositional function
that the speaker intends with this use of the expression (strictly speaking
this is only so modulo renaming of variables). A normal unification is like
a partial answer: a partial answer eliminates a set of possible answers: here
the ones corresponding that do not unify the variables as the unifcation
indicates. Or maybe better, to finding out that two questions have the same
answer, as a special case of a partial answer.

168

(4) Question: Who talks?
Answer: Who walks.
Result: the question who talks restricted to the worlds where
the walkers are the talkers.

A last example could be the representation language assumed in UCG, a
DRT-like language called InL assumed for UCG, but I omit this here for
reasons of space.

3 Extending Unification to Functions

For UCG we need more than just unification of L-objects (InL-meanings). If
in a functional application we unify two functor signs, we do not only unify
the semantics of the functor signs, but at the same time the semantics of the
signs that they are subcategorised for. The combination of the semantics
with the semantic representations of the subcategorised signs is no longer an
L-object. So the semantic role of a complex expression is only incompletely
described by the semantics. One of the roles of the functional extension
defined below is to allow for these more complex unifications.

That we need the functional extension follows from a closer look at functional
application (def9).

(Def.9) Functional Application
If B and D are unifiable and 6 is their m.g.u.
6(P:C:S) — P:C/B:S,D

Here the semantics of the result expression is not the result of a unification,
but the result of applying the most general unifier of the expressions D and
B, to the semantics S and to the semantics of the expressions still contained

in C.

The semantics of the result expression S’ is thereby a function of both its
old version § and of semantics the expressions B and D, but not the result
of a unification of S with something elseS.

So functions are needed to make sense of the application operation: we will
represent the semantic contribution of functors as functions, and define the
application of a function to an argument in terms of unification. (def10)
contains the definition of a function forming operator, defined over L=-
meanings, now called L=-objects.

(Def. 10) 1. z is an LF-object if z is an L=-object

2. a.bis an LF-object if a and b are LF-objects.

®It is possible to describe the application as (the reduction of) the unification of P :
C/B : S with P: C/D : S, but again this does not make it clear in what way the new
semantics S’ depends on the semantics of D.

169

In order to arrive at the notjon of application we need the notion of a
restriction. This is given in (def11). The problem here is that the new
functions are not themselves functions from MA into other values, so that
We cannot restrict them in the way in which we restricted meanings before.
I will write the restriction of an object x to a set F as z T F.

(Def.11)) 1.z TF={<h,zh >:h € F}if z is an L=-object.

2.(ab) T F=a. (b1 F)ifb1 F#0 else 0

We write z 1 A for z 1 {h}.

We define the set of unifying meta-assignments of ¢ and b, u(a,b)in (def12).
(Def.12)) u(a,b):{h:aTh:bTh;é(Z)}
In (def13) we can now define a.b as that function f such that

(Def.13) fe = b1 ua,z)if b1 u(a,z) # 0, else fz is
undefined.

In other words, application comes oyt as (defl4).

(Def. 14) app(a.b,c) = b 1 u(a,c), defined for ¢ such that
b1 u(a,c)#0.

It is a consequence of these definitions, that

(Prop.3) app(a.b 1 Fey=b1F1 u(a,c) = b 1 u(a,e) T F =
app(a.b,c) T Fif b1 u(a,c)#Band b1 F #£¢

In the rest of this section, it will be checked that this definition gets us
what we want. The lemma establishes the correctness of our definition of
the unifying meta-assignments.

(5) Lemma
VhfTh=gThiff f=g

Proof
= (Induction over the complexity of the functions.)
First let f and ¢ be L=-objects. Then f=Ueuf1h =

Uheng Th=g.
Assume now that f = q¢.b and g = c.d are functions. Let z be
arbitrary.

app(fTh,:c):bThiffxTh:aTh.

By assumption and definition: for A € u(a,z), app(f 1 h,z) =
app(g 1 h,z) = app(f,z) 1 h = app(g,z) 1 h.

Similar for A € u(c, z).

So for h € u(a,z)U u(c,z),app(f,z) T h = app(g,z) T h.

For h & u(a,z) U u(c,z), app(f 1 h,z) is undefined and app(g 1
h,z) is undefined.

So for all b € H, app(f,z) T h = app(g,z) 1 h, and by the
induction hypothesis, app(f, z) = app(g, z).

But z was arbitrary, so Vz app(f,z) = app(g,z) and f = g.
<= Trivial.

(prop4) makes the link with term unification. We write our functions as a
term O(a, b), with O always the operation z.y, so the term unification of two
functions is just the combination of the unification of first arguments with
that of the second arguments. (prop4) establishes the coincidence of term
unification for our function with the semantic unification proposed here.

(Prop4) Proposition
u(a.b, c.d) = u(a, c) N u(b.d)

Proof

=

Let & € u(a.b, c.d). By definition (def 13) and (def 11) a.b 1
.-‘1={<:c,bTh>:aTh=zTh}={<z,dTh>:cTh=zT
h} =c.d1h.

It follows immediately that b Th=d1Thsohe€u(b,d).
Moreover, app((a.b) T h,a) = b Th(@ath=athandby
the definition (def 12) of u(z,y), b T h must be defined) so
app((c.d)Th,a):bThsocTh:aTh.

So h € u(a,c).

<

Let h € u(a,c) N u(b,d).

Let z be arbitrary.

app((a.b)Th,:c):bThiszh:aTh@
app((a.b)Th,:z:):dThif:z:Th:cTh=>

app((a.b) T h,z) = app((c.d) | h,z)ifztTh=a1h.

So for all z either app((a.b) 1 h,z) is undefined and app((c.d) 1
h,z) is undefined or app((a.b) 1 h,z) = app((c.d) T h,z) and so
(a.b) Th=(cd)Th.

So h € u(a.b, c.d), by definition (def 12) .

171

(prop5) establishes our definition of application to lead to a a proper notion
of unification between functions: the unification unifies the two functions.

(Prop.5) Proposition
fru(f,g)=g1u(f,g)

Proof

Let f = ab, g = c.d. Let app(f 1 u(f,9),z) be defined then
3heu(fig)zTh=alh=clhsoapp(g?l u(f,9),z) is
defined. So the domains of the two functions coincide.

Moreover assume app(f T u(f, g),2) 1 his defined. Then:

app(f Tu(f,9),2)Th=b1h=d1h=app(g1u(f,g),z)T h
If app(f T u(f,9),2) 1 h is undefined, then h ¢ u(f,g)Nu(z,a)
or b1 u(f,g)1his undefined. But a 1 u(f,g) =c 1 u(f,g)and
bTu(f,g)=d1u(f,g)soapp(g1 u(f,9),z) 1 h is undefined.

But then by lemma (5) app(f 1 u(f,9),z) = app(g 1 u(f, 9),).
So the two functions coincide.

So what we end up with is a notion of unification for the functions that is the
same as the one for the L=-objects: a set of meta-assignments. Moreover,
using term unification as the implementation of function unification does
not add any extra distortion.

4 Polymorphicity

With the material in the last section we can describe the semantic con-
tribution of most UCG expressions. The expressions with basic categories
could be handled already by L-objects, the last section has added the func-
tor categories. Unfortunately UCG also has a third class of categories: the
polymorphic ones. These occur for example in NPs.

(6) W:
C/(W:C/every boy:np:x):B
[E][boy(z) = B]

Superficially it would seem that we could use (7)as a characterization of its
semantic contribution.

(7) B.[E][boy(z) = B]

But this goes wrong in case C gets matched to a functor category like the
one in (8)

172

(8) X loves Y:
sent/X:np:z/Y:np:y:
[sllove(z,y)

or (9).

9) Xgives ZY:
sent/X:np:z/Ymp:y:/Z:p:z:
(e]lgive(z, z,y)

In these cases, B would be instantiated to only [s)love(z, y) or [e]give(z, z,y)
and would fail to take in the arguments of these expressions, giving (10) as
the results.

(10) [E]lboy(y) = [s]love(z, y)]
[E][boy(2) = [e]give(z, z, y)]

The correct outcomes must be

(11) z.[E][boy(y) = [s)love(z, y)]
y-z.[E][boy(z) = [e]give(z, z,y)]

So UCG needs more complex functions than the ones we have sketched so
far, because of categorial polymorphism. Fortunately, this is not very hard
to integrate with the picture sofar. Categorial polymorphism allows us to
refer to functor categories. In semantic terms this is abstraction over a list of
objects: the semantics associated with the list of arguments. Since we want
to allow the list to contain objects which are themselves lists, we have to
give a full recursive function of LL, the language L with lists and functions,
in (def15).

(Def. 15)

1. If z is a function and y is a sequence z.y is a sequence.
. If z and y are functions, z.y is a function.

. If z and y are lists, z * y is a sequence.

2
3
4. If z is a list and y is a function, z * ¥ is a function.
5. nil is a list.

A reconstruction of e.g. the semantic contribution of the sign (12),
(12) W:

C/(W:C/(a boy:np:x):[a]A):
[a][boy(z), [a]A]

173

can now be given in (13), where A is a meta-variable of the new list type.
(13) (z.A * [a]A).A * [a][boy(z), [a] A]
a function that would be defined for each of the elements of (14),

(14) a.b.[s]love(d, a),
a.b.c.[e]give(c, b, a),
v.(p.A + [a] A).A x [a][[p]in(v), [a] A]

the semantic contribution of the signs in (15).

(15) X loves Y:
sent/X:np:b/Y:np:a:
[s]love(b, a),

X gives Y Z:
sent/X:np:c/Z:np:b/Y:np:a:
[elgive(c, b, a),

W:
C/W:(C/in X:pp:p):[a]A/X:np:v:
[a]([plin(v), [a]4]

We need list denotations to make sense of the list variables, but it is not
necessary to interpret the concatenation operation. Instead we will eliminate
the x operator in the definition of denotation by the rules in (def16), a
definition of possible list denotations.

(Def. 16)

1. <> is a list denotation

2. a.c is a list denotation if a is a function denotation and ¢ is a list
denotation.

3. a is a function denotation if a is an L-meaning
4. a.b is a function denotation if @ is a function denotation and b is a

function denotation

We now define the new meta-assignments to assign the list meta-variables
a value among the list denotations. We can then extend our notion of
denotation to LL in (def17).

(Def.17))

174

1. [L]* = k(L)

2. nil}f =<>
3. [a.b)* = {< [a]", [b])" >}
4. [app(a.b,c)h = [B]* if [a]* = [c]" else undefined
5. [nilkb]* = [b]*
6. [(a.z) bt = [a.(z * b)]P.
Conclusions

The reconstruction of the semantic combination theory has provided a space
of functions over partial meanings for the meta-theory of the semantic repre-
sentation language. This space is rich enough to reconstruct other methods
of assigning meaning in unification grammars, notably the meanings of rules
in a system with many phrase structure rules. It seems as respectable from
the point of view of determining a compositional semantics as the standard
method.

Unlike the lambda calculus, there is no dependency on the actual represen-
tation language and this is an advantage. The language itself can be kept
as limited as one requires for natural language. What we have to charac-
terize in assigning meaning to complex expressions is where the parts of an
underdetermined semantic representation are going to come from. This is
pure linguistics and does not involve complex reduction strategies.

Like in the case of Montague grammar, looking for a precise answer to the
question what constitutes the semantics of the combination of meanings,
gives useful methodological restrictions on possible definitions of meanings
and syntactic rules.

References

Bouma, G. Modifiers and Specifiers in Categorial Unification Grammar.
Linguistics 26, 1988, p.21-46.

Calder, J., E. Klein, M. Moens and H. Zeevat. Problems of Dialogue Parsing.
Edinburgh Research Papers in Cognitive Science 1, 1987.

Jonathan Calder, Ewan Klein and Henk Zeevat. 1988. Unification Cate-
gorial Grammar: A Concise, Extendable Grammar for Natural Language
Processing. In: COLING 88, Budapest. p. 83-86.

Janssen, T.M.V. Foundations and Applications of Montague Grammar. PhDThe-
sis. Mathematisch Centrum. Amsterdam 1983.

Moore, R. Unification-Based Semantic Interpretation. In: ACL1989, p.33-
41.(Moore89).

175

Pollard, C.J. Lectures on HPSG. 1985 Unpublished lecture notes, CSLI,
Stanford University.

Pollard, C.J. and I.A. Sag. An Information-Based Approach to Syntar and
Semantics: Volumel Fundamentals CSLI Lecture Notes no. 13, Chicago
University Press, Chicago 1988.

Reyle U. Compositional Semantics for LFG. In U. Reyle &C. Rohrer (eds.).
Natural Language Parsing and Linguistic Theories. Reidel, Dordrecht 1987.
(Reyle87)

Uszkoreit, H. Categorial Unification Grammars. In: COLING 11. Bonn
1986. p. 187-194.

Zeevat, H. Combining Categorial Grammar and Unification. In: Reyle, U.
and C. Rohrer (eds.) Natural Language Parsing and Linguistic Theories.
Dordrecht 1988.

Zeevat, H., J.Calder and E.Klein. Unification Categorial Grammar. In:
Haddock, N, E.Klein and G.Morrill (eds.). Categorial Grammar, Unification
Grammar and Parsing. Centre for Cognitive Science, Edinburgh 1987.

176

