Uniform Recognition for Acyclic Context-Sensitive Grammars is
NP-complete

Erik Aarts*
Research Institute for Language & Speech
Trans 10
3512 JK Utrecht
The Netherlands

Abstract

Context-sensitive grammars in which each rule is of the form aZg — avyf are acyclic if
the associated context-free grammar with the rules Z — 7 is acyclic. The problem whether
an input string is in the language generated by an acyclic context-sensitive grammar is
NP-complete.

Introduction

One of the most well-known classiﬁqations of rewrite grammars is the Chomsky hierarchy. Gram-
mars and languages are of type 3 (regular), type 2 (context-free), type 1 (context-sensitive) or
of type 0 (unrestricted). It is easy to decide whether a string is in the language generated by
a regular or context-free grammar. For context-free grammars input strings can be recognized
in a time that is polynomial in the length of the input string as well as in the length of the
grammar. Barley [1970] has shown a bound of O(|G|*n®) where G is the size of the grammar
and n the length of the input string. Recognition for context-sensitive grammars is barder: it
is PSPACE-complete [Garey and Johnson, 1979], referring to [Kuroda, 1964] and [Karp, 1972].
Recognition of type 0 languages is undecidable (see e.g. Lewis and Papadimitriou [1981]).

The area between context-free grammars and context-sensitive grammars is interesting for
two reasons. First, people have tried to describe natural languages with rewrite graminars.
Context-free grammars do not seem powerfull enough to describe natural languages. Context-
free grammars generate context-free languages. Natural languages are probably not context-free.
The counterexamples of sentences that can not be described with a context-free grammar are
always a bit artificial. Very big subparts of natural languages are context-free. A grammar for
natural languages has to be only a bit stronger than context-free. That’s why we are interested
in grammars that are between context-free and context-sensitive.

The second perspective is the one of efficient processability. In a context-free model, sentences
can be processed efficiently. In a context-sensitive one, they can not. It is very interesting to
know where the border lies: in which models sentences can be processed efficiently and in which
ones they can not?

In the 60’s and 70’s, attempts have been made to put restrictions on context-sensitive gram-
mars in order to generate context-free languages. Examples are Book [1972], Hibbard [1974]
and Ginsburg and Greibach [1966]. Baker [1974] has shown that these methods come down
to the same more or less. They all block the use of context to pass information through the

*The author was sponsored by project NF 102/62-356 (*Structural and Semantic Parallels in Natural Languages
and Programming Languages’), funded by the Netherlands Organization for the Advancement of Research (NWO).

=

string. Book [1973] gives an overview of attempts to generate context-free languages with non-
context-free grammars. How to restrict permutative grammars in order to generate context-free
languages is described in Makkinen [1985].

Peters Jr. and Ritchie [1973] proposed a linguistically motivated change in the definition of
the notion grammar. Subsequent replacements in a string are replaced by node admissibility
constraints in the parse trees of sentences in a context-free grammar. However, this formalism
leads to generation of context-free languages too. The approach of restricting grammars such
that they generate context-free languages does not seem interesting from the natural language
perspective nor from the efficiency perspective. The only advantages of this kind of restrictions
lie in the possibilty to describe a context-free language in a different way, which may be easier
for some purpose.

Another argument against blocking information [Baker, 1974] is the problem of unbounded
dependencies. Unbounded dependencies are dependencies over an unbounded distance. Wh-
movement is an example of it. The number of unbounded dependencies in natural language
is (almost) always restricted. Models that restrict the amount of information that can be sent
seem to come closer to models of human language than models restrict the distance over which
information can be sent.

In the 70’s and 80’s attention has shifted to the perspective of efficient processing. Context-
sensitive grammars have been restricted so that complexity of recognition lies somewhere be-
tween PSPACE and P. Book [1978] has shown that for linear time context-sensitive grammars
recognition is NP-complete even for (some) fixed grammars. Furthermore there is a result that
recognition for growing context-sensitive grammars is polynomial for fixed grammars [Dahlhaus
and Warmuth, 1986]. This article also tries to define a border between nearly-efficient and
just-efficient models.

We can define the notions uniform (or universal) recognition and recognition for a fixed
grammar as follows.

UNIFORM RECOGNITION
INSTANCE: A grammar G and a string w.
QUESTION: Is w in the language generated by G ?

The grammar, as well as the input string are inputs for the problem (these two types of input
are easily confused!). The uniform recognition problem is one problem.
There are infinitely many other problems:

Suppose we have a grammar G.

RECOGNITION FOR FIXED GRAMMAR G
INSTANCE: A string w.
QUESTION: Is w in the language generated by G ?

Things are getting even more difficult when we say things like: “For every grammar G RECOG-
NITION FOR FIXED GRAMMAR G ...”. The difference between uniform recognition and
recognition for all fixed G can be illustrated with an example from Barton Jr., Berwick and
Ristad [1987]. They show that uniform recognition for unordered context-free grammar (UCFG)
can be done in time O(2/¢n3). It has not been shown that the uniform recognition problem is in
P. For every G, however, the fixed recognition problem can be solved in time O(n3) and all these
problems are in P. Barton Jr., Berwick and Ristad [1987] show the problem to be polynomial
for any fixed grammar by a compilation step. The UCFG is compiled into a big context-free
grammar. They use this grammar and the Earley algorithm in order to prove a polynomial

bound. Just forgetting about the grammar size (replacing |G| by a constant) gives a polynomial
bound too. It is not clear why Barton Jr., Berwick and Ristad [1987] always associate the fixed
grammar problem with compilation (cf. their pp. 27-30, 64-79 and 202-206).

This article is about uniform recognition for one type of restricted context-sensitive gram-
mars, the acyclic context sensitive grammars (ACSG’s). We prove it to be NP-complete. This
means they are as complex as the Agreement Grammars and the Unordered CFG’s of Barton Jr.,
Berwick and Ristad [1987]. ACSG’s are the pure rewrite grammars in this group. They fit in
the Chomsky hierarchy.

The Uniform Recognition Problem

CSG PSPACE-complete
ACSG

AG NP-complete
UCFG

CFG P

One might ask when we can use acyclic context-sensitive grammars. One can use them
everywhere where one wants to use context-sensitive grammars. But one has to be careful:
cycles are not allowed. This property of acyclicity can be checked easily!. For most purposes
one does not need cycles at all. One field where context-sensitive grammars can be used is e.g.
morphology. Characters in a word are often changed when some suffix is added. These changes
in a word are context-sensitive and can be described by a context-sensitive grammar. Once a
character is changed, we normally do not want to change it back, the grammar we use is an
acyclic one.

The complexity of recognition for ACSG is lower than in the unrestricted case (CSG, with
complexity PSPACE) because we restrict the amount of information that can be passed through
the sentence. The number of messages that can be sent is limited (and we do not block the
messages by barriers as in Baker [1974] !). In the unrestricted case we can send messages that
leave no trace. E.g. after a message that changes 0’s into 1’s we can send a message that does
the reverse. In sending a message from one position in the sentence to another, the intermediate
symbols are not changed. In fact they are changed twice: back and forth. With acyclic context-
sensitive grammars, this is not possible. Every messages leaves a trace and the amount of
information that can be sent is restricted by the grammar.

Definitions

A grammar is a 4-tuple, G = (V, X, R, S), where
V is a set of symbols, ¥ C V is the set of terminal symbols.
R C V71 x V*is a relation defined on strings. Elements of R are called rules. § € V' \ T is the

startsymbol.

A grammar is context-sensitive if each rule is of the form

1t is much easier than checking whether a CSG is a linear time CSG as defined by Book [1978]. One has to
reason about length of possible derivations. In ACSG, derivations are short as a result of their acyclicity.

aZB — ayB where Z € V\Z; a,8,y €V* ;v #e.
A grammar is context- free if each rule is of the form

Z — v where Z e V\X;yeV™

Derivability (=) between strings is defined as follows:

uav = ufv (u,v,a,8 € V*)iff (a,B) € R.

The transitive closure of = is denoted by % . The transitive reflexive closure of = is denoted
by =>. The language generated by @ is defined as L(G) = {w € &* | § & w}.

A derivation of a string 6 is a sequence of strings z1,z2,..., T, With
z;1 =8, forall i (1<i<n)z; = ;41 and z, = 4.

A context-free grammar is acyclic if there is no Z € V' \ T such that
Z & 7. This implies that there is no string & € V* such that « % a.

We can map a context-sensitive grammar G onto its associated context-free grammar G’ as fol-
lows: If G is (V,X, R, S) then G’ is (V, 3, R',S) where for every rule aZ8 — oy € R there is
arule Z — v € R'. There are no other rules in R'. Note that the associated grammar does not
contain empty productions.

We call G acyclic iff the associated context-free grammar G’ is acyclic.
The notation we use for context-sensitive rules is as follows: the rule aZ8 — a7yf is written as
Z = [oa][eg] - [ax] v [B1][B2])--. (6] with @ = cjan...ap and B =B182... 01, a;,B3; €V

(1<i<h1<j<U).

An example of a context-sensitive grammar with the corresponding context-free rules is:

context-sensitive rules context-free part

1—1[0]2 1—2
O—)1[2] 0—-1
2110 2—-0

This context-sensitive grammar is cyclic. It is able to permute 0’s and 1’s.

Recognition is NP-complete

In this section we prove that the recognition problem for acyclic context-sensitive grammars is
NP-complete.

UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE
GRAMMAR

INSTANCE: An acyclic context-sensitive grammar G = (V, X, R, S) and a string w € &*.
QUESTION: Is w in the language generated by G 7

Before we prove that UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE
GRAMMAR is NP-complete, we first prove some theorems and lemmas.

Suppose G' = (V', ¥, R, S") is an acyclic contezt-free grammar. The function 1d(G",n) is
the length of the longest derivation from any input word with length n (n > 1) using grammar

G".
Lemma 1.1%: 1d(G',n) < 3|R|n(n+ 1) +1
Proof: With induction to n.

Basic step: n = 1. In the worst case we can apply all rules once. The length of this derivation
is |R'|+1. So ld(G',1) = |R'|+ 1.

Induction step. We have an input word with length n + 1. We will try to derive the
startsymbol by bottom-up application of rules on it. The grammar must contain a branching
rule. A branching rule is a rule whose righthand-side contains more than one element. Grammars
without branching rules only generate words with length 1. In the worst case we can apply all
(maximal {R'| — 1) non-branching rules once to all symbols of the input with length n + 1. This
means that we have ((|R|—1)(n+1)) applications of rules. Then we apply a branching rule and
get a word with length n (or smaller). The length of any derivation of this word is maximally
1d(G',n). For ld(G',n + 1) we have:

d(G',n+1) <ld(G,n)+ ((|R']—1)(n+1)+1)
= LR n(n+1)+1+ ((|R'| -1)(n+1)+1)
< YRn(n+1)+1+|R|(n+1)
= 1R |n(n+1) + 1+ L2|R'|(n + 1)
=R |(n+2)(n+1)+1
= %IR'](n+1)(n+2) +1.0

Lemma 1.2: 1d(G,n) < 3|R[n(n+1)+1. (G is the acyclic contezt-sensitive grammar earlier
mentioned).

Proof. Every derivation in an acyclic context-sensitive grammar is a derivation in the associ-
ated context-free grammar. The number of rules in the associated context-free grammar equals
the number of rules in the acyclic context-sensitive grammar3. O

Theorem 1. UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE GRAM-
MAR is in NP.

Proof. A nondeterministic algorithm can guess every (bottom-up) replacement of some sub-
string until the startsymbol has been found. This process will not take more steps than the
length of the longest derivation. The longest derivation in an acyclic context-sensitive grammar
has polynomial length. Therefore, this nondeterministic algorithm runs in polynomial time and
it recognizes exactly L(G). O

Theorem 2: There is a transformation f of 3SAT to UNIFORM RECOGNITION FOR
ACYCLIC CONTEXT-SENSITIVE GRAMMAR.

*With some more effort we can prove the linear bound 1d(@',n) < (2n — 1)|R'| + n. We are only interested in
a polynomial bound, however.

®This is not quite true. Two context-sensitive rules can be mapped on the same context-free rule. The
associated context-free grammar can have less rules than the acyclic context-sensitive grammar. In this case,
lemma 1.2 is still true, of course.

Proof. First we transform the instances of 3SAT to those of UNIFORM RECOGNITION
FOR ACYCLIC CONTEXT-SENSITIVE GRAMMAR. An example of this transformation is:

(wuz VugV-u) A(ug V- ug Vuy), a 3-SAT instance, is transformed into “ini — uz uz -
uj uz —~ug uy’.

The transformation should be done as follows.

The symbols “V”, “A” and the brackets “(” and “)” are left out of the new formula in order
to keep the grammar smaller. An extra symbol is added in front of the formula. This symbol
has to initialize all variables. We use the symbol “ini” for it and we call it the ini-symbol.

In Appendix A the grammars for all different m (the number of variables in the formula)
can be found. The terminal symbols are: ¥ = {ini, -,u;} (1 < 7 < m). The startsymbol S is “s”.
The number of rules of the grammar is cubic in m. We can show how this grammar recognizes
a satisfiable formula of 3-SAT by applying the grammar rules bottom-up.

All u; are initialized as true or false and their values are sent through the formula from left
to right.

Most nonterminal symbols have three subparts: the original terminal symbol, some variable
and the value of that variable (true or false). E.g. the symbol “ugust” has been derived (bottom-
up) from the terminal symbol us and passes the information that up has been made true.

When the value of u; crosses u;, u; is turned into true or false (t or f). When e.g. usz “hears”
from its left neighbour that us has been initialized as false, “uzust” will be replaced by “fusf”*.

We end up with the ini-symbol followed by a sequence of t’s and f’s. These sequences to-
gether form an “s” when none of the clusters of truthvalues contains three f’s. The values of
the u; can only be sent in a fixed order: first uj, then us etc. When not all values are sent,
the u's are not changed into t or f. For every variable we can send only one value. Hence only
satisfiable formula’s can form an “s”. The grammars recognize exactly all satisfiable formulas.OI
Appendix B contains an example of a derivation of the formula “ini u2 — u3 ul” (where m = 3).

Theorem 3: fis polynomially computable.

Proof. The transformation of instances is polynomial. The number of grammar rules is cubic
in m, the number of variables. O

Theorem 4: UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE GRAM-
MAR is NP-complete.

Proof. Follows from Theorems 1, 2 and 3. O

Recognizing Power

Any context-free grammar can be transformed into an acyclic context-free grammar without
loss of recognizing power. A cycle can be removed by introduction of a new symbol. This
symbol rewrites to any member of the cycle. Any context-free grammar with empty productions
can be changed into a context-free grammar without empty productions that recognizes the
same language. There’s one exception here: languages containing the empty string can not be
generated. Any acyclic context-free grammar without empty productions is an acyclic context-
sensitive grammar. Therefore, ACSG’s recognize all context-free languages that do not contain
the empty word.

44 usf ugupt” will be replaced by “tusf”: - us must get the value true when us is initialized as false.

Furthermore, acyclic context-sensitive grammars recognize languages that are not context-
free. One example is the language

{a™b*" c™ | n > 1}
This language is recognized by the grammar ("X” is a nonterminal):

X - [A]ABB[B] B—[A]X[X] A—»a S—ABBC
X > [X]BB[B B—[B/X[X] Bob
X—-[X]BBC[C] B—-[B]X[C] C—c

A derivationof “AABBBBCC(C”:

S=ABBC=ABXC=AXXC=AXBBCC=AABBBBCC
=aabbbbecec.

With the pumping lemma one can prove that the language is not context-free.

Discussion

We have proved that UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE
GRAMMAR is NP-complete. It turns out to be important for complexity of recognition with
context-sensitive grammars whether sending information leaves a trace.

We have reduced 3-SAT to the uniform recognition problem for acyclic context-sensitive
grammars. Every 3-SAT formula results in a different grammar. Probably it is not possible
to construct an acyclic context-sensitive grammar that recognizes all 3-SAT formulas. My
conjecture is that ACSG-recognition is not NP-hard for any fixed grammar. If this is not
true, there would exist a grammar that recognizes all 3-SAT formulas. For this grammar the
recognition problem would be NP-hard. In such a grammar, not every 3-SAT variable is encoded
in a different symbol in the grammar. The variables are numbered and their numbers are encoded
in sequences of 0’s and 1’s e.g. . A grammar that recognizes all 3-SAT formula’s must be able
to compare such sequences. It must e.g. be able to recognize the language {ww | w € V*}. If w
is a number, two numbers are compared. Context-sensitive grammars can recognize ww. Some
can even recognize all 3-SAT formula’s.

ACSG’s are not that strong. They can not even recognize ww. Any ACSG can compare only
a fixed number of characters (only fixed amounts of information can be sent). Therefore my
conjecture is that the recognition problem for any fized grammar is not so hard: it’s polynomial.
Chart parsers for ACSG have been designed and implemented [Aarts, 1991]. They recognize
inputs for many hard grammars in polynomial time. It is hard to prove, however, that they run
in polynomial time for every grammar. If it could be proved, complexity of ACSG-recognition
is similar to complexity of UCFG-recognition: NP-complete for the uniform case and a known
algorithm that runs in time something like @(2/4n%)) (polynomial in n but not in G).

The polynomial bound (which has not been proved yet) would be an explanation of the fact
that humans can process language efficiently. Humans have a fixed grammar in mind which
does not change. The complexity of recognition with a fixed grammar should be compared with
the speed of human language processing. The arguments of Barton Jr., Berwick and Ristad
[1987] against this are based on two kinds of arguments. The first has to do with compilation or
preprocessing. We have polynomial bounds without compilation or preprocessing (just fix |G)).
These arguments do not seem to hold. The other ones have to do with language acquisition.
When a child is learning a language, the grammar she uses is changing. At every sentence

utterance or understanding the grammar seems to be fixed. The difference between uniform
recognition and recognition for any fixed grammar is that small that we can not draw conclusions
about what kind of processing children perform when learning a language.

Acknowledgements

I want to thank Peter van Emde Boas, Reinhard Muskens, Mart Trautwein and Theo Jansen for
their comments on earlier versions of this paper. Peter van Emde Boas showed me a simplification
in the construction of the grammar.

References

Aarts, E., Recognition for Acyclic Context-Sensitive Grammars is probably Polynomial for Fixed
Grammars, Tilburg University, ITK Research Memo no. 8, 1991.

Baker, B. S., Non-context-Free Grammars Generating Context-Free Languages, Inform. and
Control, 24, 231-246, 1974.

Barton Jr., G. E., R. C. Berwick and E. S. Ristad, Computational complexity and natural
language, MIT Press, Cambridge, MA, 1987.

Book, R. V., Terminal context in context-sensitive grammars, SIAM J. Comput., 1, 20-30, 1972.

Book, R. V., On the Structure of Context-Sensitive Grammars, Internat. J. Comput. Inform.
Sci., 2,129-139, 1973.

Book, R. V., On the Complexity of Formal Grammars, Acta Inform., 9, 171-181, 1978.

Dahlhaus, E. and M. K. Warmuth, Membership for Growing Context-Sensitive Grammars Is
Polynomial, Internat. J. Comput. Inform. Sci., 33, 456-472, 1986.

Earley, J., An Efficient Context-Free Parsing Algorithm, Comm. ACM, 13 (2), 94-102, Feb.
1970.

Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, San Francisco, CA, 1979.

Ginsburg, S. and S. A. Greibach, Mappings which Preserve Context Sensitive Languages, Inform.
and Control, 9, 563-582, 1966.

Hibbard, T. N., Context-Limited Grammars, J. Assoc. Comput. Mach., 21(3), 446-453, July
1974.

Karp, R. M., Reducibility among combinatorial problems, in Complexity of Computer Com-
putations, edited by R. E. Miller and J. W. Thatcher, pp. 85-103, Plenum Press, New
York, 1972,

Kuroda, S. -Y., Classes of Languages and Linear-Bounded Automata, Inform. and Control, 7,
207-223, 1964.

Lewis, H. R. and C. H. Papadimitriou, Elements of the theory of computation, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

Mékkinen, E., On Permutative Grammars Generating Context-Free Languages, BIT, 25, 604—
610, 1985.

Peters Jr., P. S. and R. W. Ritchie, Context-Sensitive Immediate Constituent Analysis: Context-
Free Languages Revisited, Math. Systems Theory, 6(4), 324-333, 1973.

-8

Appendix A

m is the number of variables in the 3-SAT for-
mula. The variables i, j, k,l are necessary to
define the grammar. wu;,u;,u,u; range over
the variables in the 3-SAT formula.
i,j€{L,...,m—1}

k,le{1,...,m}

In order to save space boolean variables are in-
troduced. They can reduce 16 rules to one rule:
tv, o', 0" 0" € {t, f}

tv is the negated value of tv

and is € {¢t, f}

A. First initialize uj:

ini-u;tv — ini

B. Pass the value of u; through
the whole string:

—uyty — [ini-uytv] =
-ujty — [ui+1u1tv] ~
—ugtv — [tv'uitv] -

w;p1urty — [ini—uptv] wip
u;p1uitv — [uj+1u1tv] ;41
Wipiugte — [to'uitv] wi
Wipiurty — [ugtv] uig

C. uy’s are turned into true or false
when its value is passed:

tvugtv — [ini—utv] wg
toustv — [ujp1urtv] uy
tvugtv — [tv'ugtv] ug

D. —’s disappear when the variables behind
them are made true or false:

t'i;ultv — uitv up

E. Initialise the next variable u;4q:

ini—u;11tv — ini—u;tv’

. Pass the value through the formula across

—’s:

~ujy1tv — [ini-ujqtv] ute’
—ujp1tv — [upujgite] ~ujte’

J<k-1

—ujyitv — [tv"ujate] uty’

. Pass the value through the formula across

t’s and f’s:

tv"uj 1ty — [ini~ujitv] to''ujty’
tv'"uj 1ty — [upujpito] to'ujte’
j<k-1

to"ujp1tv — [tv"uj41t0] to'uyte’

. Across u’s which should not be

made true or false:

w1ty — [ini-ujqitv] wujte’
j<i—1

w1ty — [upujyite] wuyte’
j<l—-1,j<k-1

w1ty — [tv"uj1tv] uugte’

j<l—1
wuj 1ty — [ujp1tv] wuyte’
i<l—1

. These u's must be made true or false be-

cause the information about their initial-
ization has arrived:

tvugy 1ty — [ini—u;qtv] wipiugy’
tou; 1ty — [upuiritv] wipquste’

i<k-—-1

tou; 1ty — [tv"ugp1tv] wipguite’

J. —’s disappear again:

tow; 1ty — —uip1ty wipqugty’

. All values of u’s have been passed now,

start building an S:

tv — toa,ty’

s — ini—u,,tv

v nn v o w n wm wm

— sttt
—sttf
—stft
—sftt
—sfft
—sftf
—stff

-10=

Appendix B

A possible derivation for the 3-SAT formula (uz V = ug V uj). uy and ug are initialized as true.
ug is initialized as false. The formula is changed into a cluster of three t’s.

In front we see the string that is changing. Behind is indicated which rule is applied. The
characters A, B, ...show from which groups of rules the rule is taken.

ini g = u3 u A ini—uyt — ini
ini—ujt uy = us ug B uuit — [ini-ujt] ug
ini—u;t uguyt - ug u; E ini—ust — ini—ujt
ini—ust uguzt = us u; B -ut— [uzult] -
ini—ugt uguyt -yt us3 u I tugt — [ini—uat] ugust
ini—ugt tugt —u;t us u3 E ini—usf — ini—upt
ini—usf tust -u;t ug uy B uzut — [ﬂult] us
ini—ugf tugt -yt usust u; F —ugt — [tugt] -ugt
ini—u3f tust —uyt uzu;t 1 G tII3f - [in.i—u3f] tuat
ini—usf tusf —ugt uguzt u C tuit — [uzust] wg
ini—ugf tusf —ugt uguyt tugt H ugust — [-ust] ugugt
ini~usf tuaf —ust usust tugt F —usf — [tusf] -uat
ini-uzf tusgf —usf ugugt tugt G tugt — [usugt] tugt
ini—ugf tusf —uzf ugust tuot J tugf — —usf ugugt
in.i—ugf tu3f tu3f tuzt G tu3f — [tU3f] tuzt
ini—ugf tugf tusf tusf K t— tusf
ini—usf t tugf tusf K t — tusf
ini—ugf t t tugf K t — tusf
ini—usf t t t K s — ini—usf
s t t t K s—osttt

s

-11-

