A COMPUTATIONAL MODEL OF LANGUAGE
PERFORMANCE:
DATA ORIENTED PARSING

RENS BOD*

Departmentof Computational Linguistics
University of Amsterdam
Spuistraat 134
1012 VB Amsterdam
The Netherlands
RENS@ALF.LET.UVA.NL

Abstract

Data Oriented Parsing (DOP) is a model where no abstract rules, but
language experiences in the form of an analyzed corpus, constitute the
basis for language processing. Analyzing a new input means that the
system attempts to find the most probable way to reconstruct the input
out of fragments that already exist in the corpus. Disambiguation occurs
as a side-effect. DOP can be implemented by using conventional parsing
strategies. Monte Carlo techniques are used to parse efficiently.

Introduction

This paper formalizes the model for natural language introduced in
[Scha 1990]. Since that article is written in Dutch, we will translate
some parts of it more or less literally in this introduction. According to
Scha, the current tradition of language processing systems is based on
linguistically motivated competence models of natural languages. The
problems that these systems run into, suggest the necessity of a more
performance oriented model of language processing, that takes into
account the statistical properties of real language use. Therefore Scha
proposes a system that makes use of an annotated corpus. Analyzing a
new input means that the system attempts to find the most probable way
to reconstruct the input out of fragments that already exist in the corpus.

* The author wishes to thank his colleagues at the Department of Computational
Linguistics of the University of Amsterdam for many fruitful discussions, and, in
particular, Remko Scha, Martin van den Berg, Kwee Tjoe Liong and Frederik Somsen
for valuable comments on earlier versions of this paper.

-26-

The problems with competence grammars that are mentioned in
Scha's article, include the explosion of ambiguities, the fact that human
judgements on grammaticality are not stable, that competence grammars
do not account for language change, and that no existing rule-based
grammar gives a descriptively adequate characterization of an actual
language. According to Scha, the development of a formal grammar for
natural language gets more difficult as the grammar gets larger. When
the number of phenomena one has already taken into account gets larger,
the number of interactions that must be considered when one tries to
introduce an account of a new phenomenon grows accordingly.

As to the problem of ambiguity, it has turned out that as soon as a
formal grammar characterizes a non-trivial part of a natural language,
almost every input sentence of reasonable length gets an unmanageably
large number of different structural analyses (and semantical
interpretations).! This is problematic since most of these interpretations
are not perceived as possible by a human language user, while there are
no systematic reasons to exclude them on syntactic or semantic grounds.
Often it is just a matter of relative implausibility: the only reason why a
certain interpretation of a sentence is not perceived, is that another
interpretation is much more plausible.

Competence and Performance

The limitations of the current language processing systems are not
suprising: they are the direct consequence of the fact that these systems
implement Chomsky's notion of a competence grammar. The formal
grammars that constitute the subject-matter of theoretical linguistics, aim
at characterizing the competence of the language user. But the
preferences language users have in the case of ambiguous sentences, are
paradigm instances of performance phenomena.

In order to build effective language processing systems we must
implement performance-grammars, rather than competence grammars.
These performance grammars should not only contain information on
the structural possibilities of the general language system, but also on
details of actual language use in a language community, and of the
language experiences of an individual, which cause this individual to
have certain expectations on what kinds of utterances are going to occur,
and what structures and interpretations these utterances are going to
have.

There is an alternative linguistic tradition that has always focused
on the concrete details of actual language use: the statistical tradition. In

1 In [Martin 1979] it is reported that their parser generated 455 different parses for the
sentence "List the sales of products produced in 1973 with the products produced in
1972".

-27-

this approach, syntactic structure is usually ignored; only 'superficial’
statistical properties of a large corpus are described: the probability that
a certain word is followed by a certain other word, the probability that a
certain sequence of two words is followed by a certain word, etc.
(Markov-chains, see e.g. [Bahl 1983]). This approach has performed
succesfully in certain practical tasks, such as selecting the most probable
sentence from the outputs of a speech recognition component. It will be
clear that this approach is not suitable for many other tasks, because no
notion of syntactic structure is used. And there are statistical
dependencies within the sentences of a corpus, that can extend over an
arbitrarily long sequence of words; this is ignored by the Markov-
approach. The challenge is now to develop a theory of language
processing that does justice to the statistical as well as to the structural
aspects of language.

The Synthesis of Syntax and Statistics

The idea that a synthesis between syntactic and statistical approaches
could be useful has incidentally been proposed before, but has not been
worked out very well so far. The only technical elaboration of this idea
that exists at the moment, the notion of a probabilistic grammar, is of a
rather simplistic nature. A probabilistic grammar is simply a
juxtaposition of the most fundamental syntactic notion and the most
fundamental statistical notion: it is an "old-fashioned" context free
grammar, that describes syntactic structures by means of a set of abstract
rewrite rules that are now provided with probabilities that correspond to
the application-probabilities of the rules (see e.g. [Jelinek 1990]).

As long as a probabilistic grammar only assigns probabilities to
individual rewrite rules, the grammar cannot account for all statistical
properties of a language corpus. It is, for instance, not possible to
indicate how the probability of syntactic structures or lexical items
depends on their syntactic/lexical context. As a consequence of this, it is
not possible to recognize frequent phrases and figures of speech as such -
a disappointing property, for one would prefer that such phrases and
figures of speech would get a high priority in the ranking of the possible
syntactic analyses of a sentence. Some improvements can be made by
applying the Markov-approach to rewrite rules, as is for instance found
in the work of [Magerman 1991]. Nevertheless, any approach which ties
probabilities to rewrite rules will never be able to accommodate all
statistical dependencies. Optimal statistical estimations can only be
achieved if the statistics are applied to different kinds of units than
rewrite rules. It is interesting to note that also in the field of theoretical
linguistics the necessity to use other kinds of structural units has been put
forward. The clearest articulation of this idea is found in the work of
[Fillmore 1988].

-28-

From a linguistic point of view that emphasizes the syntactic
complexities caused by idiomatic and semi-idiomatic expressions,
Fillmore et al. arrive at the proposal to describe language not by means
of a set of rewrite rules, but by means of a set of constructions. A
construction is a tree-structure: a fragment of a constituent-structure that
can comprise more than one level. This tree is labeled with syntactic,
semantic and pragmatic categories and feature-values. Lexical items can
be specified as part of a construction. Constructions can be idiomatic in
nature: the meaning of a larger constituent can be specified without
being constructed from the meanings of its sub-constituents.

Fillmore's ideas still show the influence of the tradition of formal
grammars: the constructions are schemata, and the combinatorics of
putting the constructions together looks very much like a context free
grammar. But the way in which Fillmore generalizes the notion of
grammar resolves the problems we found in the current statistical
grammars: if a construction-grammar is combined with statistical notions
it is perhaps possible to represent all statistical information. This is one
of the central ideas behind our approach.

A New Approach: Data Oriented Parsing

The starting-point of our approach is the idea indicated above, that when
a human language user analyzes sentences, there is a strong preference
for the recognition of sentences, constituents and patterns that occurred
before in the experience of the language user. There is a statistical
component in language processing that prefers more frequent structures
and interpretations to less frequently perceived alternatives.

The information we ideally would like to use in order to model
the language performance of a natural language user, comprises
therefore an enumeration of all lexical items and syntactic/semantic
structures ever experienced by the language user, with their frequency of
occurrence. In practice this means: a very large corpus of sentences with
their syntactic analyses and semantic interpretations. Every sentence
comprises a large number of constructions: not only the whole sentence
and all its constituents, but also the patterns that can be abstracted from
the analyzed sentence by introducing 'free variables' for lexical elements
or complex constituents.

Parsing then does not happen by applying grammatical rules to the
input sentence, but by constructing an optimal analogy between the input
sentence and as many corpus sentences as possible. Sometimes the
system shall need to abstract away from most of the properties of the
trees in the corpus, and sometimes a part of the input is found literally in
the corpus, and can be treated as one unit in the parsing process. Thus
the system tries to combine constructions from the corpus so as to
reconstruct the input sentence. The preferred parse is obtained by
maximizing the probability that arbitrary combinations of constructions

-29-

generate a parse of the input sentence. Finally, the preferred parse is
added to the corpus, bringing it into a new 'state’.

To illustrate the basic idea, consider the following extremely
simple example. Assume that the whole corpus consists of only the
following two trees:

NP/S\VP /S\
P TR

he V NP

who P PP
VA
opened NP FP vV N P lilP
A
Cﬁn'|91 P NP openled CIir!'91 i|n November
in Amsterdam

Then the input sentence he opened Clin'91 in Amsterdam in November
can be analyzed as an S by combining the following constructions from
the corpus:

/S\ ' '\IIP ' /I{
NP /VP\ s NP /PF’\
/\< /PP\ Clingt P NP
v NP P NP , I
| | I in Amsterdam
opened in November
The Model

In order to come to formal definitions of parse and preferred parse we
first specify some basic notions.

Labels

We distinguish between the set of lexical labels L and the set of non-
lexical labels N. Lexical labels represent words. Non-lexical labels

-30-

represent syntactic and/or semantic and/or pragmatic information,
depending on the kind of corpus being used. We write % for LUN.
String

Given a set of labels B, a string is an n-tuple of elements of %: (1y,...,I)
e Zn. An input string is an n-tuple of elements of L: (Iy,....In) € L1. A

concatenation * can be defined on strings as usual: (a,...,b)#(c,....d) =
(a,...b,c,...,d).

Tree

Given a set of labels Z, the set of trees is defined as the smallest set Tree
such that

if 1€k, then (1,())eTree

if 1€k, ty,....taeTree, then (L(t],...,tn))eTree

For a set of trees Tree over a set of labels B, we define a function root:
Tree—% and a function leaves: Tree—%0 by

for n=20, root((l(t1,...,tn))) =1

for n>0, leaves({(l(ti,...,tn))) = leaves(t})*...xleaves(ty)

for n=0, leaves((L,())) = (I)

Corpus

A corpus Cis a multiset of trees, in the sense that any tree can occur
zero, one or more times. Ideally, a corpus represents all past language
experiences of a natural language user. The leaves of every tree in a
corpus is an element of L™ it constitutes the string of words of which
that tree is the analysis that seemed most appropriate for understanding
the string in the context in which it was uttered.

Constructions

In order to define the Constructions of a tree, we need two additional
notions: Subtrees and Patterns,

-31-

Subtrees((tita)) = {(((thnta))} U (U Subtrees(ti)
i=1

Patterns((1,(t1,...,.tn))) =
(L,0)) U {(I(u],...un)) | Vielln]: ujcPatterns(t;)}

Constructions(T) = (t/ JueSubtrees(T): tePatterns(u)}

We shall use the following notation for a construction of a tree in a
corpus:

teC =gor JueC: teConstructions(u)

Example: consider tree T. The trees T; and T7 are constructions of T,
while T3 is not.

i
/S\
NP VP
| P e ™
who VP PP

v N P NP

|

opened Clin'91 in November

™o ” w X VP

hes ~E VP PP VP PP
| P /\P |
who VP PP i N P

\' NP

opened

-32-

Composition

If t and u are trees, such that the leftmost non-lexical Ieaf of t is equal to
the root of u, then tou is the tree that results from substituting this leaf in
t by tree u. The partial function o:TreexTree—Tree is called
composition. We will write (tou)ov as touov, and in general
(..((t1ot2)ot3)e.. Joty @s tiotot3e...oty.

Example:
S 0 VP = S
/\ V/\N i /\
NP VP NP VP
| N | | N
who VP pp opened who VP PP
V NP
opeLed

Parse

Tree Tis a parse of input string s with respect to C, iff leaves(T) = s and
there are constructions tj,....tn € C, such that T = tjo...otp. A tuple

(t1,...,tn) of such constructions is said to generate parse T of s. Note that

different tuples of constructions can generate the same parse, as is shown
in the next example:

-33-

NP vp NP VP

I V/\NP P/\NP l N

who I | who VP PP

opened Clin'91 in November Vv NP P

NP

opened Clin'91 in November

/S\ 0 NP o /PP\ = [
Rhe VP PP in November wr!o VP /PP\
Vv NP \Y NP iD TP
openled openled Clir|1'91 in November
Etcetera...

The set of parses of s with respect to C, Parse(s,C), is given by
Parse(s,C) = {TeTree /Ieaves(T)=s A Ftl,....tn € C: T=tjo...oty}

The set of tuples of constructions that generate a parse T, Tuples(T,C),
is given by

Tuples(T,C) = {(t1,....tu) | t1,...tn € C A tio...oty=T}

Probability

An input string can have several parses and every such parse can be
generated by several different combinations of constructions from the
corpus. What we are interested in, is, given an input string s, the
probability that arbitrary combinations of constructions from the corpus
generate a certain parse Tj of s. Thus we are interested in the conditional

-3 4=

probability of a parse Tj given s, with as probability space the set of
constructions of trees in the corpus.

Let T; be a parse of input string s, and suppose that T; can
exhaustively be generated by k tuples of constructions: Tuples(T;C) =
{(ti1,...t1n,), (t21,..,t2m2), ..., (tkl,...tkni)}. Then T; occurs iff

(tj],...,t{nl) or (121,...,t2n,) OF OF (tx1,...,tkn,) occur, and (tpy,....thn,)
occurs iff tp7and tp2 and and tpy, occur (he[l,k]). Thus the

probability of Tjis given by
P(T;) = P((tjiNn...Nt1g) U ... U (tk1N...Ntkny))

In shortened form:

k n

P(T) = P(U (M tyy)
p=1g=1

The events tpq are not mutually exclusive, since constructions can
overlap, and can include other constructions. The general formula for
the joint probability of events Ejis given by:

P(n E;) = Il P(E;lE;.;...E1)
i=1 i=1

The formula for the probability of combination of events Ej (that are not
independent) is given by (see e.g. [Harris 1966]):

k
P(U Ej) ==‘Z:ID(EH) jiz;lﬁlinfﬂlib) f'AZ:IDCE}ﬂ"JEEfWIZE) " e
i=1 i 1<iz li<iz<ia

+/- P(EinE2N ... NEg)

We will use Bayes' decomposition formula to derive the
conditional probability of T; given s. Let T; and Tj be parses of s; the
conditional probability of T; given s, is then given by:

P(TYPGSIT) P(TYPGIT)
P(Tils) = = e
P(s) 3 P(TYP(ITy)

-35-

Since P(s/Tj) is 1 for all j, we may write

A parse T; of s with maximal conditional probability P(Tjls) is called a
preferred parse of s.

Implementation

Several different implementations of DOP are possible. In [Scholtes
1992] a neural net implementation of DOP is proposed. Here we will
show that conventional rule-based parsing strategies can be applied to
DOP, by converting constructions into rules. A construction can be seen
as a production rule, where the lefthand-side of the rule is constituted by
the root of the construction and the righthand-side is constituted by the
leaves of the construction. The only extra condition is that of every such
rule its corresponding construction should be remembered in order to
generate a parse-tree for the input string (by composing the constructions
that correspond to the rules that are applied). For a construction ¢, the
corresponding production rule is given by

root(t) — leaves(t)

In order to calculate the preferred parse of an input string
by maximizing the conditional probability, all parses with all possible
tuples of constructions must be generated, which becomes highly
inefficient. Often we are not interested in all parses of an ambiguous
input string, neither in their exact probabilities, but only in which parse
is the preferred parse. Thus we would like to have a strategy that
estimates the top of the probability hierarchy of parses. This can be
achieved by using Monte Carlo techniques (see e.g. [Hammersley
19641]): we estimate the preferred parse by taking random samples from
the space of possibilities. This will give us a more effective approach
than exhaustively calculating the probabilities.

-36-

Abstractions

It might happen that for some input string no parse can be generated.
For instance when a word of the input does not exist in the corpus; or
when the structures in the corpus cannot account for all structural
properties of the input. Even if we include all analyses of sentences ever
heard or spoken in our corpus, there will be well-formed utterances that
cannot be parsed adequately in the way we described so far. This is
simply because actual natural languages change in time and no rigid
model can ever account for this. A natural language user hearing a new
word in an utterance can immediately analyze the whole utterance, even
if he does not understand the meaning of the word. He can assign a
syntactic category to the word by matching its context with similar
contexts in his (passive) memory, abstracting for a moment from the
unknown word.

A performance model that wants to account for this
phenomenon, should therefore leave open the possibility to make
abstractions from words, as well as from features, categories, semantic
formulas. Abstracting from a word, or more generally a label, means
that this label is treated as a wildcard, in the sense that it can match with
any other label. A reasonable constraint on abstractions is that they are as
minimal as possible, otherwise we would abstract from all labels all the
time, finding the same, most probable structure for all input strings.

The parsing process does now not change significantly: the
system attempts to find the most probable way to parse an input by
composing constructions from the corpus, with a minimal number of
possible mismatches between the labels in the composition operation.
Once a preferred parse is derived, the corpus is updated with that parse.
A new word or structure is thus 'learned’ by the corpus and a new use of
it in the input does not involve any new abstractions. DOP shows how
language change follows from language use, by updating the corpus with
the structures attributed to the utterances.

Discussion

Although DOP has not yet been tested thoroughly?, we can already
predict some of its capabilities. In DOP, the probability of a parse
depends on all tuples of constructions that generate that parse. The more
different ways in which a parse can be generated, the higher tends to be
its probability. This implies that a parse which can (also) be generated
by relatively large constructions is favoured over a parse which can only
be generated by relatively small constructions. This means that

2 Corpora that will be used to test DOP, incude the Tosca Corpus, built at the
University of Nijmegen, and possibly the Penn Treebank, built at the University of
Pennsylvania.

-37-

prepositional phrase attachments and figures of speech can be processed
adequately by DOP.

As to the problem of language acquisition, this might seem
problematic for DOP: with an already analyzed corpus, only adult
language behaviour can be simulated. The problem of language
acquisition is in our perspective the problem of the acquisition of an
initial corpus, in which non-linguistic input and pragmatics should play
an important role.

An additional remark should be devoted here to formal
grammars and disambiguation. Much work has been done to extend rule-
based grammars with selectional restrictions such that the explosion of
ambiguities is constrained considerably. However, to represent semantic
and pragmatic constraints is a very expensive task. No one has ever
succeeded in doing so except in relatively small grammars. Furthermore,
a basic question remains as to whether it is possible to formally encode
all of the syntactic, semantic and pragmatic information needed for
disambiguation. In DOP, the additional information that one can draw
from a corpus of hand-marked structural annotations is that one can by-
pass the necessity for modelling world knowledge, since this will
automatically enter into the disambiguation of structures by hand.
Extracting constructions from these structures, and combining them in
the most probable way, taking into account all possible statistical
dependencies between them, preserves this world knowledge in the best
possible way.

In conclusion, it may be interesting to note that our idea of
using past language experiences instead of rules, has much in common
with Stich's ideas about language ([Stich 1971]). In Stich's view,
judgements of grammaticality are not determined by applying a
precompiled set of grammar rules, but rather have the character of a
perceptual judgement on the question to what extent the judged sentence
'looks like' the sentences the language user has in his head as examples of
grammaticality. The concrete language experiences of the past of a
language user determine how a new utterance is processed; there is no
evidence for the assumption that past language experiences are
generalized into a consistent theory that defines the grammaticality and
the structure of new utterances univocally.

References
[Bahl 1983): Bahl, L., Jelinek, F. and Mercer, R., 'A Maximum Likelihood Approach
to Continuous Speech Recognition', in: IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-5, No.2.

[Fillmore 1988]: Fillmore, C., Kay, P. and O'Connor, M., 'Regularity and idiomaticity
in grammatical constructions: the case of let alone’, Language 64, p. 501-538.

-38-

[Hammersley 1964]: Hammersley, J.M. and Handscomb, D.C., Monte Carlo Methods,
Chapman and Hall, London.

[Harris 1966): Harris, B., Theory of Probability, Addison-Wesley, Reading (Mass).

[Jelinek 1990]: Jelinek, F., Lafferty, J.D. and Mercer, R.L., Basic Methods of
Probabilistic Context Free Grammars, Yorktown Hei ghts: IBM RC 16374 (#72684).

[Magerman 1991]: Magerman, D. and Marcus, M., 'Pearl: A Probabilistic Chart
Parser',in: Proceedings of the European Chapter of the ACL'91, Berlin.

[Martin 1979]: Martin, W.A., Preliminary analysis of a breadth-first parsing algorithm:
Theoretical and experimental results (Technical Report No. TR-261). MIT LCS.

[Scha 1990]: Scha, R., '"Language Theory and Language Technology; Competence and
Performance’ (in Dutch), in: Q.AM. de Kort & G.L.J. Leerdam (eds.),
Computertoepassingen in de Neerlandistiek, Almere: Landelijke Vereniging van
Neerlandici.(LVVN-jaarboek)

[Scholtes 1992]: Scholtes, J. C. and Bloembergen, S., 'The Design of a Neural Data-
Oriented Parsing (DOP) System', Proceedings of the International Joint Conference on
Neural Networks 1992, Baltimore.

[Stich 1971]: Stich, S.P., 'What every speaker knows', in: Philosophical Review 80,
p.476-496.

-39~

