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Abstract

In the Categorial Grammar literature a number of modalities have been
proposed to deal with various linguistic phenomena. Examples are Mor-
rill’s modality for intensional domains ([10]) and structural modalities. We
want an algorithmic proof theory for categorial logics with such modalities.
A Gentzen-style sequent calculus is computationally inadequate: it suffers
from spurious ambiguity. What is needed is an unambiguous representa-
tion of proofs. For this purpose we choose Moortgat’s proof net approach
([7]) and extend it to deal with modalities, inspired by Wallen’s work ([13])
on modal logic. The extension can be seen as the basis for all categorial
modalities. It is not enough, however, to cover the properties of the struc-
tural modalities, which allow local relaxations of structural requirements.
The paper will close with some suggestions on further extensions to such
structural modalities and to multi-modal systems.

1 Linguistic motivation

In 1958 Lambek [5] introduced a calculus of syntactic types, which lies at the
heart of Categorial Grammar today. The calculus captures the basic function-
argument structure that seems present in natural language. It also captures the
fact that many functors look for their arguments in a specific place, either to the
left or to the right of the functor in question. So we have two type constructors:
\ and /, capturing the notions of left-incompleteness and right-incompleteness
respectively. An expression (a string) is of the functional type B\ A iff whenever
it is concatenated with an expression of type B to the left it returns a type A.
Likewise, an expression of type A/B is a functor that, given any argument of
type B returns an expression of type A, but this time the argument must be
concatenated to the right of the functor. Because the meaning of both type
constructors is defined using the notion of concatenation, it seems reasonable
to include one more type constructor: e. A string is of type A e B if the string
is the concatenation of two other strings, of type A and B respectively.
Categorial Grammar is an optimal grammar formalism to implement Mon-
tague’s program for compositional semantics, because the function-argument
structure he saw in natural language semantics has a direct parallel in the syn-
tactic types. For instance, the expression ‘walks’ is, syntactically, a functor
np\s that when concatenated to an argument of type np (a noun phrase) to
its left returns an expression of type s (a sentence). Semantically, it is of type
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e — t, a function from entities (type €) to truth-values (type t). When this
function is applied to the semantics of the noun phrase (stipulated to be of type
e) it gives the meaning of the sentence (of truth-value type). The correspon-
dence between the semantic type-system and the syntactic one is given by the
following definition of the function T'YP, that, given a syntactic type, returns
the semantic type it corresponds to.

1. For a an atomic type, TYP(a) is stipulated. For instance: TYP(np) = e
or (e = t) = t, TYP(s) = t.

2. TYP(A/B) = TYP(B\A) = TYP(B) — TYP(A).
3. TYP(Ae B) = TYP(A) x TYP(B), that is: the cartesian product.

Van Benthem [1] and Moortgat [6] extend Lambek’s original calculus to cal-
culate semantic recipes, using this strict parallel between syntax and semantics
(see figure 1). This calculus will be referred to as L. The lexicon now con-
sists of a finite list of assignments to words of natural language (i.e. syntactic
atoms), of the form ¢ : A, where A is a syntactic type and ¢ is a semantic recipe
of semantic type TYP(A). These are the basic objects of the calculus. The
calculus is in sequent-format: it operates on sequents of the foom T =t : A,
with T a non-empty sequence of semantics:syntax pairs, which means “from I,
¢ Ais deducible”. T we call the antecedent, t : A the succedent. For each tyﬁe
constructor there are two rules: one for occurrences in the antecedent (rules of
use, or left-rules, as indicated by the L in their names) another for occurrences
in the succedent (rules of proof, or right-rules).

The calculus can be used for parsing as follows: Given a sequence of words
Qj .. .0y, to deduce whether this is an expression of type B (for parsing purposes
this will mostly be the sentence type s) , each word «; is linked via the lexicon to
a labelled formula t; : A; and subsequently it is checked by the calculus whether
t1: Ay, . atn: An=>T: B 1 is a valid sequent of the calculus. This is done
by using the rules in a backward fashion, from conclusion to premises. If it is
valid, the semantic recipe for the whole expression, T, is also calculated.

In the figure, terms of the semantic object language are indicated by low-
ercase letters, meta-variables, which can be unified with some semantic recipe,
by uppercase. Such meta-variables indicate the unknown parts of semantic
recipes. Because the intended use of the algorithm is parsing, antecedent terms
will be given, whereas succedent ones will not. Therefore, unification of se-
mantic recipes in the axiom case is directional: the succedent one, which is a
meta-variable, will be instantiated (:=) to the semantic recipe in the antecedent.

The right-rules are slightly more complicated than presented. For instance,
in the /R-rule, what really happens is: in the conclusion sequent, the succedent
semantic recipe will be a meta-variable U. A new meta-variable, T, is chosen,
and U := Az.T. Proof search continues with the T'.

7o and 7, are projection on the first element and the second element of
pairs, respectively.

1The convention of using uppercase for unknowns and lowercase for knowns will be adhered
to throughout this paper. One exception, however, will be the syntactic types, where a
lowercase letter indicates an atomic type and uppercase an arbitrary type.
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Axiom: (T:A)=>(U:A) {U:=T}

A= (T:4) T,(T:A4),0=(U:C) c
T,A,0= (U:C) ut

A= (X:B) T,(tX:4),0 = (U:C) T,(z:B)=(T:A)

T,(t: A/B),A,0 = (U:C) It T3 0wT 4/B) 'F

A= (X:B) TI,(tX:A),0=(U:0) L (z:B),T = (T:A) B

I,A,(t: B\A),0 = (U:0C) \ I = (Az.T : B\A) \

L, (7ot : A), (w1t : B),0 = (U : C) I'=(T:4) ©= (U:B)
T,(t:AeB),0> (U:C) ° 10> (1,U):AeB)

Figure 1: The Lambek calculus.

We can regard the calculus as defining a logic. It is a substructural logic
because the antecedent is not a set of formulae, but a list and as such it is
both order-conscious and resource-conscious, as indeed natural language itself
is. So ‘John walks’ may be grammatical, even though neither ‘walks John’
(order-sensitivity) nor 'John walks walks’ are (resource-sensitivity: np, np\s is
not the same as np,np\s, np\s, as it would be in classical logic, where stating
the same formula many times makes no difference). / and \ can now be viewed
as directional forms of implication. We find that the objects of the logic are
labelled formulae, in the sense of Gabbay [2], with the semantics as the label of
the syntactic formula. The calculus operates not just on the syntactic formulae
but also on the semantic labels. As a logic, we want the derivability-arrow = to
be both reflexive and transitive. For that purpose the Axiom and the Cut-rule,
respectively, are included in the calculus.

If distinct object variables are used as semantic labels at the start of proof
search, succedent semantic labels returned by the calculus can be seen to encode
essential parts of proofs. Therefore we will sometimes refer to the semantic
labels as ‘proof terms’. If two different proofs of a sequent give the same proof
term (or equivalent proof terms), we say they only differ in inessential ways.
Proofs that give two inequivalent proof terms differ essentially. More will be
said about this later.

Morrill [10] adds as a new type constructor the modality O to capture in-
tensional aspects of natural language semantics, which in categorial grammar
should be reflected in the syntactic type assignments, because of the parallel
architecture of syntax and semantics. To the definition of TYP we add that
TYP(OA) = s —» TYP(A), a function from type s objects (possible worlds,
states of affairs) to TYP(A) objects. That we can construct functions such as
these does not mean that type s-terms figure in the semantic language, unless
stipulated as the semantic type of some basic (atomic) syntactic type. The
possibility of constructing types OA corresponds in Montagovian semantics to
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the possibility of constructing ¥ and t terms, using the operation of intension-
alization (abstracting over possible worlds) and extensionalization (applying a
term to the present world), respectively. As a side effect the modality seems
able to capture domain-sensitivity in syntax.

The sequent rules are categorial versions of those of §4 in classical modal
logic. The classical versions allow discarding of material. Categorial versions,
because of the resource-consciousness of language (every part of the linguistic
expression plays a role in the final analysis) , should not allow this. OT denotes
a sequence t; : OA;,...,t, : OAp, a fully modalized sequence.

I‘,'t:A,@:>U:B_DL or=7T:B
It:04,0=>U:8B Oor ="7:0R8

myd

With this modality we have the means to rule out (2) as ungrammatical,
but still judge (1) to be grammatical.

(1) Mary thinks John loves himself.
(2) * John thinks Mary loves himself.

Just using the language of L, plausible type-assignments (disregarding seman-
tics) would be:

Mary — np/

John - np™

loves —  (npX\s)/np¥
thinks — (npX\s)/s

himself - ((npm\s)/npm)\(npm\s)

Here a type np? is a syntactic type with the gender feature set to g. f sig-
nifies feminine gender, m masculine and X and Y signify gender values that
are not as of yet specified. Now, both (1) and (2) become derivable. This is
because in (2), the types associated with ‘thinks Mary loves’ can be used to
prove (np™\s)/np™. Therefore, these can serve as the argument of ‘himself’.
The modality allows us to assign lexical types in such a way that ‘himself’
can only look for its argument within its own clausal domain, thus introducing
domain-sensitivity in Categorial Grammar.

Mary — Onpf

John — UOnp™

loves — O((npX\s)/np¥)
thinks — O((np*\s)/0s)

himself — O(((np™\s)/np™)\(np™\s))

The crucial change is found in the type-assignment for ‘thinks’. This now
demands an s-type domain to its right. We find (1) to be derivable as an
s, but not (2), with the present type-assignments. Trying the same trick as
before will not help. At some stage of proof search we would encounter the
query whether Onpf, a((npX\s)/np¥),np™ = Os. This is not a valid sequent,
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precisely because of the constraint on the right-rule for O that the antecedent
must be fully modalized.

Besides this intensional modality, structural modalities have been suggested
in the Categorial Grammar literature ([11, 9]). The idea is imported from Linear
Logic. Structural rules are non-logical rules that destroy structure. Since in
Categorial Grammar only the antecedent is assumed to be structured, this
means: they destroy the structure of the antecedent. If we want to exploit the
idea that some linguistic items relax certain structural constraints, whereas in
general these constraints should not be violated, simple addition of structural
rules will not do, because these simply discard of the structural constraint in
question. The answer is to allow type-controlled structural rules, structural
rules that can be controlled lexically. For this purpose structural modalities
0, can be used. Structural modalities have the rules of S4 as their basis,
just like the intensional modality. In the case of structural modalities these
rules have no semantic effect. It should therefore not come as a surprise that
TYP(O,A) = TYP(A), for any structural modality O,. In addition, there is a
licensed structural rule for each structural modality.

Let us give an example. Order is a structural dimension that is clearly of
importance to natural language. This is why L is order-sensitive. Sometimes,
however, this order-sensitivity needs to be relaxed. Complete order-insensitivity
could be achieved by adding the structural rule of permutation P, giving us the
Lambek-van Benthem calculus LP:

I'(u:B),(t: 4),0=(T:0C)
I'(t:A),(v: B),0=>(T:0C)

Such a rule is called a structural rule because all it does is make a statement
about the structure of the antecedent. The same effect could be achieved by
switching to a calculus where antecedents are multisets, instead of lists. Of-
course, what would be more interesting is some restricted form of permutation,
because complete order-insensitivity is not very realistic, linguistically speak-
ing. For this purpose Moortgat and Morrill [9] use the structural modality of
permutation O,. This modality has the rules of S4 as before (but without the
semantic operations) and a licensed rule of permutation, which has the same
form as the unrestricted rule of permutation above, but with the restriction
that either A or B is of the form 0,D. So, the modality licenses permutation.

One linguistic phenomenon that the permutation modality is useful for is
non-peripheral extraction. The relative pronoun ‘who’ needs a sentential ar-
gument that is missing a noun phrase somewhere within it to form a noun
modifier. L cannot express this: it can at most represent expressions that are
missing something on their left, or on their right, never within it. The richer
language with O, gives us the required expressive power. The type assignment
we're looking for is: (n\n)/(s/0,np). We now find ‘the man who Mary loves -’
(right-peripheral extraction), ‘the man who — loves Mary’ (left-peripheral ex-
traction) and ‘the man who Mary loved — during the summer’ (non-peripheral
extraction) all derivable noun phrases with the single type assignment for ‘that’.
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We give part of the derivation for the final sentence, the case of non-
peripheral extraction, to close off the section. ‘During the summer’ is assumed
to be a verb phrase modifier (np\s)\(np\s). The crucial step in this derivation
is the O, P step, which makes sure ‘loved’ gets its argument in the right position.

np = np a.L :
Upnp = np P~ np,np\s, (np\s)\(np\s) = s I
np, (np\s)/np, Opnp, (np\s)\(np\s) = s a,

np, (np\s)/np, (np\s)\(np\s), Opnp = s :
np, (np\s)/np, (np\s)\(np\s) = s/0pnp np/n,n,n\n = np
np/n,n, (n\n)/(s/0pnp), np, (np\s) /np, (np\s)\(np\s) = np

/L

If we're working with binary trees as antecedents, a linguistically plausible
strategy, an interesting structural modality would be one of associativity, which
could license a local switch from binary trees to lists (see Moortgat [8]).

The remaining sections will be concerned solely with the computational
issue of proof search in the calculus extended with S4-modalities. The next
section introduces the basic problems, which will be attacked in the sections
thereafter.

2 Computational issues

The Gentzen-style sequent formulation given in the previous section raises
several questions about the usability of the calculus in parsing. Is validity
of sequents a decidable problem? If so, is the sequent calculus efficient as a
proof search algorithm? Is the inclusion of Cut crucial to the system?

This latter question is easily answered: no.

Theorem: Cut is eliminable in L+{0, O, }.
Proof: We will merely describe the proof, as the proof itself is not unlike other
Cut-elimination proofs and therefore straightforward. Each Cut-rule occurrence

1 2
A= (t:A) T,(t:A),A=> (u:0)
T T,A,0= (u:0)

ut

is given a certain metric degree, namely: degree(Cut) = d(I',A,0,4,C ) where
d counts the number of connectives in a sequence of formulae or types. We
then construct a proof-reduction algorithm that takes any subproof that is an
instance of Cut, but where its premisses 1 and 2 are Cut-free proofs, and return
an equivalent subproof where

1. the Cut is replaced by Cut(s) of lower degree,

2. the Cut is of the same degree but is moved up, closer to the leaves of the
proof tree, or

3. the Cut is removed.
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This second case is mentioned because of reductions involving 0, P rules, such
as the following:

1 2
_I:I_E:ﬁ:b(t:A) O.R I',(w:B),(t:0,4),0= (u:C)

0,A = (t:0,4) * T,(t:0,4),(w:B),0 = (u:C)
I,0,A,(w: B),0 = (u:C)

0, P

Cut

4

—l
ElpA:?(i:A_._)_ 2
OpA = (t:0,4) 7 T,(w:B),(t:0,4),0= (u:C)
T, (w: B),0,A,0 = (u:C)

I'0,A,(w: B),® = (u:C)

Cut

n X O, P

Here the step annotated with n x O, P indicates n applications of O,P, n
being the number of formulae in 0O,A. Every proof reduction step with this
degree preserving behaviour has the property that the Cut is carried over a
O, P rule and therefore moved closer to the leafs. As proof trees are finite, no
infinite chains of degree preserving steps exist. Therefore, the algorithm will at
some stage replace the Cut by Cut(s) of lower degree, or it will eliminate the
Cut completely. The latter will occur when one of the premises of the Cut is
an instance of the axiom:

2
(t:A)=>(t:4) T,(t:A),0=(u:C)
T (t:A),05 (u: 0) G
\
2

I, (t:A4),0=(u:0)

As the algorithm covers all Cut instances and as it terminates, we know it will
return a Cut-free proof for every proof. The existence of this algorithm proves
that Cut is eliminable. The proof terms that are lost by this procedure are
equivalent to proof terms that are not lost, under the equational theory includ-
ing the 8- and ~ ~elimination axioms and the projection axioms mg(z,y) = 2
and 71(z,y) = y. ]

The Cut rule is the only rule in our calculus that has material in its premises
that does not occur in its conclusion sequent. As Cut is eliminable, the calculus
has the subformula property: in the proof of a sequent, nothing is needed besides
the material in the sequent we'’re trying to prove.

Another result connected to the eliminativity of Cut is the decidability of the
problem of validity. Every sequent rule, except O,P, has less connectives in its
premises than in its conclusion. O,P permutes a type to another location in the
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sequent. For each finite sequence there are only finitely many permutations, so
no new sequents can be proved by allowing infinite chains of O,P-applications.
The sequent calculus may be used directly as a proof search algorithm, provided
we add a control mechanism that makes sure the particular permutation proof
search is dealing with at each moment has not occurred already, earlier in the
proof.

That we can use the calculus given for proof search does not mean that we
should. It is very inefficient and allows massive redundancies. First of all there
is the copying of material after rule application. Consider /R. The antecedent
of the conclusion sequent is completely copied to the premise, even though
it is unchanged. Another, more serious redundancy is what has been termed
spurious ambiguity: the irrelevant ordering of rule applications, an ordering
being relevant only if this yields a different proof term than another ordering. A
simple example is the sequent f : a/b,g:b/c = T : a/c, which has two sequent
proofs, but only one proof term. Each proof contains two /L applications, once
to a/b, once to b/c. The only difference between the proofs is the ordering
of these applications. This is an irrelevant difference, however, since the same
proof term is yielded, T = Az.f(ge).

Modalities give rise to spurious ambiguity of their own. Let us consider
some examples:

e Onp,0(np\s) = Os. Three proofs, one proof term. Irrelevance in the
ordering of the OL, \L rules can be seen here.

np=>np s$=8§ np=mnp S$=38

np,np\s = s iyl np,np\s = s \L
Onp, np\s = s np, O(np\s) = s
Onp, O(np\s) = s Gnp, DO(np\s) > s
Onp, O(np\s) = Os Sl Onp, O(np\s) = Os S
np = np
tnp=np L s=s \z
Onp,np\s = s
Onp, O(np\s) = s 0L
OR

Onp, O(np\s) = Os

e (np\s)/ap,Opnp, Opap = s. Without any control-mechanism there are
infinitely many proofs: application of 0O,P gives us a sequent containing,
once again a Op-type, making another application of the rule possible,
ad infinitum. A control-mechanism that does not try the same sequent
twice makes the number of proofs finite, but still quite large, considering
there is only one proof term to be found. We will give just two proofs,
one quite short, the other stretched out some more. The reader can finish
this second proof and verify that the control-mechanism mentioned will
not rule it out as a proof: each sequent is considered at most once.
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np=>np s$=s5

ap=>ap np,np\s=>s
_ np,(nP\s)/ap, ap=>s
np, (np\s)/ap, Opap = s

Opnp, (np\s)/ap, Opap = s

(np\s)/ap, Opnp, Opap = s

\L
/L
OpL
O, L
O, P

Opnp, (np\s)/ap,ap = s
Upnp, (np\s)/ap, Dp‘_"p_:>_f
Opnp, Oyap, (np\s)/ap = s
Opap, Opnp, (np\s)/ap = s
Opap, (np\s)/ap, Opnp = s
(np\s)/ap, Opap, Oynp = s
(np\s)/ap, Opnp, Opap = s

OpL
O, P
O, P
O, P
O, P
O, P

One approach to spurious ambiguity has been the proof normalization ap-
proach, as undertaken by Hepple [4] and Hendriks and Roorda [3]. We can
define equivalence classes of proofs, such that proofs are in the same equiv-
alence class only if they have the same antecedent and the same succedent
type at their roots and if they produce equivalent proof terms (for instance:
equivalence as defined by a-, 8-, #- and " “reduction, the projection axioms
and by SP (surjectivity of pairing): (m1t,m2t) = t). The proof normalization
approach defines a normalform over proofs such that only one proof in each
equivalence class is in this normalform. Ultimately it wants to devise restricted
proof search methods that only return such normalform proofs. For L-{e} this
has been done. For instance, Hepple [4] introduces a proof search algorithm for
L-{e} that deterministically applies all /R,\ R rules until it has an atomic type
in the succedent. This has as a side effect that no axiom sequents with non-
atomic (complex) types will occur in any proof. Then, a type is sought in the
antecedent that is to be unfolded completely by means of the left rules. There
is no loss of valid sequents, nor of proof terms, as is proved in his dissertation.
The copying redundancy is not dealt with of course: this is an inherent feature
of any sequent approach.

For L+{0} no such approach has been worked out, to my knowledge. Let
us examine a naive extension of Hepple’s approach.

Such an extension would predict that the sequent ¢ : Oa = T’ : Oa (a atomic)
now gets only one proof term, namely T ="t. T =t is not returned. This is
because Hepple's approach restricts the axiom to the atomic case, which the
given sequent is not an instance of. This result is only wanted if we can somehow
restrict semantic labels ¢ occurring in the antecedent to be intensionally closed
expressions, because then ¢t ="% is valid and no real loss of proof terms occurs.
Let us assume this to be the case, for convenience.

Consider the sequent O(a/b),(0b)/c,c = Oa. The approach under consid-
eration would first of all, force us to apply OR, to get an atomic antecedent.
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This is not possible, because the type ¢ bears no modality. Fair enough, let us
then find an antecedent type to unfold completely. No choice would result in a
valid sequent, however.

Since the proof normalization approach is not straightforwardly extendable,
let us try our hand at another approach to spurious ambiguity: the proof net
approach. The next section will introduce the notion of a proof net as it has
been proposed for L, the one following that will consider what can be done to
extend it to a syntactic language with modalities.

3 Proof nets

Another approach to the problem of spurious ambiguity is to leave the sequent
format altogether and look for a more efficient proof representation, inherently
redundancy-free. Such a representation is the proof net, as adapted by Roorda
[12] from Linear Logic, and recast by Moortgat [7] in a Labelled Deductive
Systems format. We give here, and extend, Moortgat’s approach.

The proof net approach decomposes types into their atomic subtypes by
means of logical links and then establishes aziom links between these. The
type-decomposition corresponds to the use of left- or right- rules in the sequent
proof search. Each axiom linking must correspond to axiom sequents in a proof
of the corresponding sequent. To ensure this, we must label each type in the
proof object with information about its location: whether it is an antecedent-
type or a succedent-type. Antecedent-types are labelled with polarity 1 (types
to be used), succedent types with polarity 0 (types to be proved). Logical
links propagate these polarities as should be expected from the sequent rules.
Consider the following logical link:

(A,1) (B,0) A=B T,A4,0=C
(A/B,1) / I'A/B,A,0=C

/L

(A/B,1) denotes an antecedent occurence of a type A/B. Decomposition of
such a type corresponds to the /L-rule in the sequent calculus. This tells us
that decomposition gives us a succedent-type B ({B,0)) and an antecedent-type
A ({A,1)). Axiom links connect an atomic antecedent-type with a succedent
occurence of the same type:

(a,1) (a,0) a=a

Proof search using this proof representation comes down to labelling the types
in the sequent appropriately (up to now this means labelling each type with
its correct polarity) unfolding the types into their atomic subtypes and finally
finding an axiom linking such that every atomic subtype is linked to exactly one
other. Every such decomposition and axiom linking results in a proof structure.
Not every proof structure corresponds to a valid sequent however. We want
to find a subset of the set of proof structures, the set of proof nets such that
these correspond exactly to the valid sequents. To give an example of a proof
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structure that is not a proof net, consider the following for the L-invalid sequent

ba/b= a
r ] |
(4,0) (1)
(b,1) i)k

(a,0)

For reasons such as this, Moortgat uses structure labelling in his proof nets.
These labels are meant to reflect the structure of antecedents. In the present
case, we can model the structure using strings, as antecedents are presumed
to be lists in L, which have the same properties as strings. Strings can be
constructed from PAR and VAR (sets of string parameters and string variables
respectively), by means of the associative concatenation operator -, reflecting
the associative e-type constructor. One can now add structure labels to types
in such a way that the concatenation of the structure labels in the antecedent
is the same as the structure label of the succedent type, in a valid sequent.
Figure 2 gives the links for L, together with the corresponding rules in the
sequent calculus. The sequent rules are augmented with structure labels, to
explain the structure labels in the proof net links. The proof links link formulae
of the form: (Type,Polarity,Semantics,Structure). The semantics label is dealt
with in an entirely analogous way to the sequent calculus. Structure variables
cannot unify with the empty string ¢, which corresponds to the choice in L to
disallow empty antecedents. P,Q,R,S will be used as string variables, o,7,w as
string parameters, and ¢,1,x as arbitrary strings.

To decide on the validity of a sequent z; : A;,...,2, : 4, = T : B we must
build a proof net out of {(41,1, z1,01),...,(Apn,1,2n,0,), (B,0,T, 04 .. S On)}
with o; distinct string parameters. The multiset before decomposition we call
the root path, the one after decomposition the atomic path.

Let us give an example. a/b,b/c = a/c has two sequent proofs and one
proof term. There is just one proof net:

Vi=fTo-P=0-17-w

T:=gU,P=1.Q Ui=2,Q=w

<a'i1ifT’a'P) (b,O,T,f_)‘ {b‘lng|:Q) (C,O,U_.Q) (a,O,V,cr-‘r-w) (c,l,z,w}

(a/b1, f, o) {b/c,1,g,7) {a/c,0,Xz.V,0 - 1)

Unifier: {P « 7-w,Q « w,V « f(g2),T « gz, U — z}.
Proof term: Az.f(gz).

The proof structure we saw before now fails to be a proof net, because of a
unification error (we can disregard semantics here, because adding this will not
make the proof structure into a proof net):

2Just for this example, we let the ordering of the types in the sequent correspond to the
ordering of the ordering of the formulae at the bottom of the proof structure. At no time will
the ordering of premises be relevant. This is in sharp contrast to Roorda’s apprach, which
makes crucial use of just this ordering.
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Axiom link:
U:i=T,p=9

| |

<a’17T1‘P> <a,0, U’¢>

Logical links:

(A,1,tT, - P) (B,0,T,P)
(A/B,1,t,¢)

/L

(A,1,tT,P-¢) (B,0,T,P)
(B\4,1,t,¢)

\L

(A,0,T,¢-0) (B,l,z,0)
(A/B,0,Az.T, )

/R

(A,0,T,0-¢) (B,1,z,0)
(B\A,0,22.T, ¢)

\R

(A, 1, mot, ) (B,1l,mt,¢)
(A'Bvl,t,‘P‘w) ok
(4,0,T,¢)

) (B,0,0,%)
(Ae B,0,(T,U),0-%) °

Axiom sequent:
a® = a¥
Logical sequent rules:

AP = BP TV, 4¢P 0x o CvePx
T¥,A/B% AP, @x = C¥ePx

/L

AP = BY TV, AP, 0x o C¥-Pex
I'¥, AP, B\A%, 0% = C¥Pex

I¥, B% = AP

ol il B
I% = A/B® /

B°,T% = A%

I'v = B\ A* \B

IX, A%, BY, @@ = Cxe¥w
TX Ae Bw-\b,@u = Oxwedw e

L

'Y = A¥ AY = BY
T2 AY = Ae RBe

ok

P a fresh string-variable, ¢ a fresh string-parameter.

Figure 2: Left: proof links for L. Right: corresponding sequent rules with

structure (string) labels
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FAIL!
7T -P=0o-71

[
Il
~

{(a,1,7-P) (b,0,P)
(b,1,0) (a/b,1,7)

/R (a,0, o- T)

No semantic readings are lost using the proof net approach. Different proof
terms are gotten via different axiom linking. However, like Hepple’s proof
normalization, the proof net approach gives just one proof term for a complex
axiom sequent such as ¢ : a/b => T : a/b, namely T = Ay.zy. T = z is not
found. This is because types are decomposed into their atomic subtypes: axiom
links between complex types are ruled out. It is no real loss, however, since the
two terms are 7-equivalent.

The given proof links are essentially right, as can be seen from the cor-
responding annotated sequent rules. But from a proof search point of view,
something is missing. The problem lies with the e L-,e R-links. These require
the splitting in halves of the conclusion string label. Up to now, nothing has
enforced this to be always possible. We will change some of the links to enforce
precisely this. The altered links make use of a function f : TY PE — Ny
(TY PE is the set of syntactic types constructed from /, \ and ). This func-
tion is defined as follows (for a atomic):

fla)=1
f(A/B) = f(B\A) = f(A)
f(A e B) = f(A) + f(B)

To determine the validity of a sequent ; : A;,...,2, : A, = T : B we must
build a proof net out of:

{ (Aul,21,001...01 a,)),
(Am ]-a Zn;Ond - - 'o'n.f(An)>’
<Bv0’T10'1,1---0'1,)‘(.41)'-'011,1"-a'n,f(A..)> }

with o; ; distinct string parameters. The links will make sure that for every
tuple (A,1,t, o) in the proof object ¢ = uo; .. .O¢(A)v, With u,v € VAR* and
og; € PAR.

Altered links

<A’0aTv¢61---0’f(B)> <B,1,2!,0’1...0‘f(3))
(4/B,0, T, ¢)

/R

(A,O,T,O’]_...Uf(B)(p) (B,].,(l:,O']_...O'f(B))
(B\A,0,X2.T, ¢)

\R
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(A,_I,W1t,utf1---0f(A)> <Ba1’7"2ta0'f(A)+1---Uf(A)+f(B)> ol
<AlB,l,t,uUl...Uf(A)+f(B)U>

The fact that we can choose a unique splitting in the o L-link reflects the
fact that, given an antecedent-type Ae B, a backward e L-rule application gives
us a unique choice of premiss. A backward e R-application does not, in gen-
eral, determine its premises. Therefore, it should not be expected that there
is a unique splitting in the eR-link. So we make no such choice at the time
the A » B-type is unfolded: we delay it, but make sure it is made at the time
of the establishing of the axiom linking, by adding a constraint to unification:
P.Q =

(A4,0,T,P) (B,0,U,Q) )
(Ae B,0,(T,U),¢) eR {P-Q = ¢}

The proof net approach enables us to make the lexicon more efficient for
parsing purposes, by means of partial execution. Given a lexical entry (o, 4, ),
where « is the word in question, A its syntactic type, and ¢ its semantic recipe,
we can construct a partially executed lexical entry (o, 0y .. .o¢ay L C). Here,
T is the atomic path we get after unfolding (A4,1,¢,04.. .a'f(A)> by means of
the logical links. o1, ...,0(4) are fresh parameters (i.e. not occuring anywhere
else in the lexicon). Their concatenation must be stored in the lexical entry,
to know, when parsing some linguistic utterance containing the word «a, what
string label to assign to the succedent type. Finally, C is a set of constraints,
one for every eR-link used in the unfolding. These are added to the set of
equations to be solved by unification at the time of axiom linking,.

We can get from the original entry to the partially executed one determin-
istically, and since the latter contains all the information we need for parsing
purposes, we can discard of the original one. So,the logical decomposition of
the lexicon may be done at compile time. All that remains to be done at run
time is:

1. The unfolding of the formula corresponding to the succedent-type of the
sequent the validity of which we're interested in. This may be a trivial
matter: practical applications will mostly parse sentences (type s) on
which no decomposition is possible.

2. The construction of axiom links.

Notice that nothing has been said in this section about the modal part of
the logical language under consideration. This will be the topic of the next
sectiom.

4 Proof nets and modalities

In this section, we extend the notion of a proof net to cover O-types. The prob-
lem we encounter when we try this does not lie with the logical links. Logical
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links just unfold types into their subtypes. In the modal case this comes down
to unfolding a type OA into its single subtype A. Rather, the problem lies with
the axiom links. Remember that any axiom link should correspond to an axiom
sequent in a corresponding sequent proof, in a one-to-one fashion. Nothing said
so far, however, forbids the following proof structure to be a proof net, even
though the corresponding sequent is invalid:

‘ {a,0,0) FAIL!

(a,1,0) (Oa,0,0) Lt a= Ua

Wallen ([13]) adresses this problem for the case of classical modal logic. He
makes use of the semantics of modal logic: formulae are not just true or false,
they are true or false with respect to some point in a Kripke structure. He
labels his formulae accordingly, very much in the spirit of Gabbay’s Labelled
Deductive Systems, again. Let us investigate a proposal of this kind.

Suppose we want to prove A = OOA in S4. One way to do this is to
suppose A is true at some point wy in some S$4 Kripke model (W, R, I) (W a
set of points, R C W x W, R reflexive and transitive, and I an interpretation
function as usual ) and that O0A is false at that same point. We should now
be able to reach a contradiction, as 04 => OO0A is valid in S4. As wq £ OOA
(= is the valuation function over I), there must be points wy, wy € W such that
woRw; Rwy and wy £ OA, wy £ A. By transitivity of R: wgRw,, and because
wo |= OA : wy = A must be the case. So we have reached a contradiction.
This proof could be represented as:

wy: A= wy: A oL
wo: OA = wy: A OR o W2
wo : OA = wy : OA \

proof:  wp:0A = wy:00A Ok configuration: wy

An antecedent formula w : A can be read here as A is true at w, while
such a succedent formula can be read as A is false at w. So the proof is an
SLD-resolution proof. Sequent rules for proofsearch could manipulate both a
sequent and a configuration:

w:A=>w: A

Fw;j:A,0 > w,: B F'sw;:A
II",wi:DA,G):>wk:B = i'_:>w,-:lIIA

OR

Condition on OL: w; Rw; in the present configuration.

Operation at OR: extend the present configuration with a new point wj, such
that w; Rw;. Take the reflexive, transitive closure of the result as the new con-
figuration.



Proving the sequent A;,...,A, = B would now be done by proving
the labelled sequent wq : Ay,...,wo : Ay = we : B, where the starting configu-
ration is {{wq}, {{wo, wo)}).

The configurations built during proof search turn out to be posets, that is: R
is reflexive, transitive and antisymmetric® . Wallen exploits this by representing
points as strings and letting R be the prefix relation <. The reference to ‘the
present configuration’ in the OL-rule can be dealt with by using variables. The
sequent-rules have now become:

{p=q}

p:Azﬁ»q:AAz
I'pv:A4,0=>¢q:B F'=>pw:A
[,p:0A4,0=>q:B = = p:04 DR

w a fresh point parameter, v a fresh point variable.

The equation p = ¢ in the axiom can be checked using some specialized
string unification algorithm that allows variables to be unified with any string,
empty or otherwise. The proof for 0A = OOA now becomes:

{’LUO~’U:’LU0-’LU1"LU2}

wo-v:A:>wo-w1-w2:AAw

wo:0A = wg-w;y wy: A 0L Wo— - Wo * W1 - W2
wp: DA = wo-wy : OA Ok

“wo:0A = wy:004 OF wo - s

Unifier: {v « wy - wy}.
Notice that A = OA remains invalid in this system, as required:

FAIL!
_{'wo = Wp *wy

wO:Abwo-wleé;
wo: A= we:0A

Notice also that if such point information is added to the proof structure at
the beginning of this section, the desired unwellformedness is achieved. So we
see already why this is a fruitful road to take.

The strings need not be looked at as points in Kripke frames. Point param-
eters can be associated with modalized succedent types. Point variables can
be associated with modalized antecedent types. When a unifier tells us that a
point variable must unify with a sequence of point parameters, this means, in
the sequent calculus, that all the boxes associated with the point parameters

3Since the configurations constructed during proof search are posets, it seems we’ve de-
scended into the logic of posets, which is known to be weaker than the logic of 84 (as was
pointed out to me by Marcus Kracht). However, Wallen proves that his matrix system which
is very similar to the above, is equivalent to the logic of 54, so the worry seems unfounded.
See the remark above, on the notion of a reduction order.
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in the sequence must be removed before the box associated with the variable is
removed. So, unification of point values helps define a reduction order: it tells
us which types must be unfolded before which others. This reduction order can-
not be cyclic, as this would require us to apply a rule before we apply it! The
acyclicity is related to the antisymmetric nature of the above configurations.

In the following sections we will explore how these insights can be applied
to Categorial Grammar. Section 4.1 will show how easy it is to apply Wallen’s
approach to Morrill’s pure S4-modality. Section 4.2 will discuss the implications
for the structural modalities, while section 4.3 discusses applications to multi-
modal systems.

4.1 Morrill’s modality

Morrill’s modality, as we saw in section 1, is nothing but a categorial version of
an S4-modality. Wallen’s ideas should therefore be straightforwardly applicable
to L+{0}. Modal links should not alter the values of the structure component
of formulae, as can be argued from the following presentation of the modal
sequent rules:

rv‘Au’J’@x N B‘P'ﬁb'x_ 5 OT% = A®
I'?, 0A4Y, @% = BY¥X Or? = OA°

OR

The concatenation of the string values in the antecedent should be the same as
the string values of the succedent. The OL-rule does not alter its succedent,
nor its context. Therefore, both OA and A should cover the same string. The
OR-rule maintains the antecedent as it is, so here the same story goes through.

Figure 3 gives the full presentation of the proposed system. The
fundamental wunit of proof search is now the labelled formula:
( Type, Polarity, Semantics, String, Point ). The first four places of this quin-
tuple are as before. The point label is a string, as in the previous section.

Point labels are built using the non-commutative string concatenation
operator - and from two sets VARP and PARP,
containing point variables and point parameters respectively. v; will be
used for point variables, w; for point parameters and p,g for
arbitrary point labels. To prove the sequent #; : Ay,...,2, : A, -V T : B
one has to build a proof mnet out of the multiset
{{A1,1,21,01,w0),...,{An, 1, 2n, 0n, wo), (B,0,T,01 - ... - On,Wo)} With wy €
PARP. The OL-,0R- links act as in the sequent presentation in the previous
section. Note that nonmodal links simply pass on the point value to their
premisses.

Some examples will help to get acquainted with the system:

1. Onp,O(np\s) = Os. We disregard semantics here, for clarity’s sake.
Crucial is here that there is only one proof net, even though there are
three sequent proofs for the sequent. Every one of these sequent proofs
give the same proof term, so no reading is lost by the proof net approach.
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Ui=T,¢e=9%,p=¢

(a,1,T,p,p) (a,0,U,4,q)

<A) ]-;Ta Y,D- ’U)
ar
(0A,1,T,p,p) {v a fresh element of VARP }

(A,OaT’ (29 w> OR
(0A,0,"T, ¢, p) {w a fresh element of PARP }

(A,latTv(P'Pap) (B:O:Tvpap) <A,07T’()0'Uap> (B,l,:c,a’,p)

L
(A/B,1,t,¢,p) / (A/B,0, 2.T,¢,p) /R
<Aa17tT,P' ‘Pap) (B’OaTrP,p) \L <Aa0vT’0" (,0,])) (Ba]-’mvaap> \R
(B\A’]"t’ (P,p) (B\A, 0’ Aw'T"P,p)
(Aa 1,7('0t, ‘Pvp) (Ba 1:7r1ta'¢‘aP) s (A,O,Ta SO,P) (B)O) Uﬂ/’,P) oR
(Ae B,1,t,0-,p) (Ao B,0,(T,U),¢-%,p)
Figure 3: Proof links for L+{O}
o= Pawgy-vg = w11 P.r=0c-Towp-vy = wp wy
(Tlp,O,P,UIQ"01> (S,I,P'T,’LUQ"U]_)
<nP,1a0'7 wO'vC‘) (np\sal’Ta ’UJ()"01> <3a0aU'T, Wo 'w1>
(Onp, 1, o, we) (O(np\s), 1, T, we) (Os,0,0 - T, wo)

Unifier: {P « o,vp « wy,v; « w1}

2. 2 : Oa = T : Oa. Notice that the only proof term found is “z. This
corresponds in the sequent calculus to a proof which unfolds the types to
their atomic subtypes a. It is therefore crucial for our approach that the
semantics uses intensionally closed expressions only.

z2=U,0=0c,wp v=wp w

| |
(a,1,2,0,wq v) (a,0,U,0,wp- w1) .
byl S i OR{T =T
(Ca,L,z,000) X {06,0,T,0w) o -0

Unifier: {T «"2,U «2,v — w1}

3. Finally we give the proof structure the discussion started out with:
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FAIL!

Wo = Wo * Wy

a,0,0,wq-w
( 0 I)EJR

(a,l,a, '(U()> (DG,O,U,'LU(]>

4.2 Structural Modalities

The system presented can serve as the basis for the structural modalities, since
these have S4-rules in the sequent calculus. So, as long as we stay within an
associative system, the O;L- and O, R-rules are taken care of. Nonassociative
systems present problems of their own, which will have to be dealt with, as
Moortgat [8] shows that such systems can be adequately motivated. This is,
however, not the paper to do this. Let us look at a specific problem associ-
ated with structural modalities: they force us to redesign our proof structures,
because they license relaxations of structural assumptions embodied in our orig-
inal proof structures. The latter proof structures will consider less proofs as
valid than wanted, judging from the sequent calculus. As the structure la-
belling of our formulae encodes these structural assumptions, we must alter
this, without collapsing into a weaker system. Let us give an illustration of
this. np\s,O,np = s is a valid sequent, as the following sequent proof tells us:
np = n
D;fip“:’:‘%p Opl 5o s
Opnp,np\s = s
np\s,Opnp => s

0, P
Still, a naive unfolding does not result in a proof net:

FAIL!
Po=0c-71 Wy = Wo * U

‘_ P =_Mo_’
(s,1,P-0,wp) (np,0,P,wg) \L (np,1,7,wp - v)
(np\s, 1, 0, wq) (Opnp, 1, 7, wo)

0,L

(s,0,0 - T, wo)

even though the axiom linking corresponds to the axiom sequents in the se-
quent proof. The problem lies in that we chose string concatenation to be
non-commutative. If we switch to a commutative one the proof structure be-
comes a proof net. However, letting string concatenation be commutative gives
us LP, that is: L with the unrestricted rule of permutation. One option is to
attach new labels to our formulae, that encode further order restrictions, which
the present strings fail to encode.

Another option is to use complex string unification algorithms that can han-
dle permutable strings. The O,-links would then look as follows:

(A,l,A@,p"U) a. L (A,].,(,D,PW)

o,R
(04,1, 9,p) - (04,1, ¢,p) :
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where Ay indicates a string ¢ which is permutable. The equation that fails in
the proof structure above becomes Ay - ¢ = ¢ - ¥, which should now succeed
because v can be moved past ¢ on the left of the equation. Notice that O,R
does not alter its structure label. This is because structural rules in categorial
grammar only make statements about the structure of the antecedent, never
about that of the succedent. This option of enriching string unification seems
the one to choose, as it is easily generalizable to other structural modalities.
One drawback is that the problem is displaced to the axiom-linking, where all
the hard work is done. The kind of unification algorithms required and their
properties will have to be explored.

4.3 Multi-modal systems

Full-fledged categorial grammars will need to use more than a single modality.
One could have a variety of structural modalities, Morrill’s modality and maybe
others. Our point labels should have enough expressive power to differentiate
between the various modalities. A first thing to notice is that, with two S4-
modalities 0; and Oy, 0;02a # O,0;a. A naive unfolding yields the following
proof structure though:

Wo - VgV = Wo Wy W

(a,1,0,wo- v - v1)
(Dzaa ].,Cf, we - 'UU)
(Dlﬂza; 11“: UJ{))

(a,O,cr, wo - wyp - ’LU2>

O,L
0,L

0, R

(O1a,0,0,wq - wy) O0,R

<D2D1a’ 0,0, ’U)o)

wovev; = wowiwsy succeeds under the unifier {vo « wiws,v; « €} (for in-
stance). To capture the fact that different modalities are involved we could
type the variables and parameters in the point label. For each modality we
should then have a different type associated with it (types are superscripted):

(A,l,‘p,p- Ui) 0. L {[:]iA} 01 rpap'w’.)
(0:4,1,0,p) ° (0:4,0, ¢, p)

Variables of one type we must require to be unifiable with parameters of that
same type or with the empty string €. The equation above now becomes
wd - v} - v} = w) w? . w} and unification fails on this, correctly judging the
above proof structure not to be a proof net.

Moortgat and Morrill [9] introduces modalities Ops, where M is a nonempty
set of names for modalities. These combined modalities have the combined effect
of all modalities O,, with s € M. Our previous modalities O; would, in such
a system, become Oy;3. In this system Opra = Opgya iff My C M;. So,in
the axiom linking of proof structures for this system: oM = wiM‘ cwMe iff
My,...M, C M. The treatment of the operational (that is: structural) part of

the modalities remains to be looked at, of course.

O;R
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5 Future work

Logically minded readers will have noticed that all that this paper really does
is give an indication of how the problem of extending proof nets to modal types
can be tackled. It has yet to be proved that a sequent is derivable iff a proof net
can be constructed for it. In other words, soundness and completeness proofs
must follow.

The next step would be the verification of the more speculative claims made
about the extendability to structural modalities and polymodal systems. This
would involve research into specialized string unification algorithms and, again,
soundness and completeness proofs.

Finally, an actual parser (or, in logical terms: a theorem prover) could be
programmed using the proof net approach. Such a parser could use a partially
executed lexicon, as mentioned in section 3.

There remain many linguistic phenomena to be covered, even by the lan-
guage extended with modalities. But, modalities bring us a lot closer to the
goal at hand: an adequate parser that uses the same techniques as reasoning
does: logic.
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