A recursive ascent Earley parser

René Leermakers

Instituut voor Perceptie Onderzoek,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail:leermake@prl.philips.nl

1 Introduction

Recently, the theory of LR-parsing gained new impetus by the discovery
of the recursive ascent implementation technique for deterministic [2] and
nondeterministic [3,4] LR-parsers. In short, the novelty is that LR-parsers
can be implemented purely functionally and that this implementation has
very simple correctness proofs. In its primary form, a recursive ascent parser
consists of two functions for each state.

One of the major application areas of the Earley algorithm [1] is the
field of computational linguistics. A few years ago, Tomita [5] has proposed
a nondeterministic LR-parser to parse natural languages. This parser has
stirred some research to establish the differences between the Earley and
Tomita parsers. One of the results of this research was the insight that the
Earley algorithm can be seen as a shift-reduce parser and as such fits in a
large family of parsers to which also nondeterministic LR-parsers belong. A
consequence of this insight is that implementation techniques for LR-parsers
can also be applied to the Earley algorithm. In particular, this can be done
with the recursive ascent technique, and this is the subject of this note.

2 The algorithm

Consider CF grammar G, with terminals V7 and nonterminals Vy. Let
V = Vn U Vr. Recursive ascent parsers consist of a number of functions.
Let us start with associating a function to each item. Items, grammar rules
with a dot somewet referhere in the right hand side, are used ubiquitously
in parsing theory to denote a partially recognized rule. A typical item is

-155=

written as A — «.f, with greek letters for arbitrary elements of V*. We use
the unorthodox embracing operator [-] to map each item to its function:

[A > ap]: Nw— 2N

where N is the set of integers, or a subset 0...75q2, With 7,4, the maximum
sentence length, and 2V is the powerset of N. The functions are to meet
the following specification:

[A — afl(i) = {§|B > ziy1...25},

with 2;...z,, the string to be parsed. So, the function reports which parts of
the string can be derived from § starting from position :. Below we will find
a constructive definition for this function that can be viewed as a functional
implementation. If we add a grammar rule S’ — S to G, with S’ ¢ V then
S 5 @...¢, is equivalent to n € [S' — .5](0), so that the algorithm is to be
invocated by calling [S' — .5](0).

To be able to construct an implementation of [A — «.3] that has no
problems with left-recursive grammars, we need so-called predict sets. Let
predict(A — «.f) be the set of initial items, that are derived from A — a.3
by the closure operation:

predict{A — a.f) = {B — .u|B —» u A B = By}.

The double arrow = denotes a left-most-symbol rewriting with a non-¢
grammar rule, i.e.

a=f=3pwa=BYAB=6YyANB - 6NEF£e).

A recursive ascent recognizer may be obtained by relating to each item
A — a.f not only the above [A — a.f], but also a function that we take to
be the result of applying operator [] to the item:

[A— af]:VxNw—2N
It has the specification (X € V)
[A=afl(X,)={3,: 8> XyAy S 24125}

Assuming z,,; to be some end of sentence marker that is not in V, it can
never be that 8 = 2,417, hence [A — a.8](2ny1,n +1) = 0. For i < n the
above functions are recursively implemented by

-156-

[A - a.p|(i) = [A — af)(ziz1,¢ + 1)U S
{jl13B : B — .c € predict(A — a.f)Aj € [A — a.B](B,i)}U
{il8 = €}

A= afl(X,i) = i3 : = X774 € [A— aXgi)}
{7l3csr 17 € [A - aBC,k)AC — X6 € predict(A — a.f)A
ke[C — X.6(i)}

The correctness of this implementation is shown by the following proof:
First we notice that

ﬂ = il Tj = 3'7(:3 £> Zip1Yy ANy 5 13:,:+2...Z'j)V
EIB‘Y(ﬂ 5 ByYAB — €A Y .t (lii+1...:cj)V
(B=eni=7).

Substituting this in the specification of [A — «.8] one gets

[A— apfl(d) = {§]3,: 8> 2ip17 Ay S 2iq0..25}U
{j13By :B > €AB > ByAy S 2.2}V
{jl8=eni=j}.

This directly leads to the implementation given above, using the specifica-
tions of [A — a.fB](®it1,t+ 1), [A — a.f](B,1) and predict(A — a.8).

For establishing the correctness of [A — «.f] notice that 8 = X either
consists of zero steps, in which case § = X, or it contains at least one step:

1,(BSXyAy S eigg.2;)=3,(B=XyA7 D gigr..2;)V
Jesve(B S CYANC o> XENES i1 Tp Ay = Thoy1...25)

Hence, [A——>T,B](X, 1) may be written as the union of two sets, Sg and S;:
So={jl3y:B=X7A7D ziy1...25}
S1={jl3csk: B> CYANC - XEANE S @ip1. @k AY > Ziy1..25}.
With the specification of [A — aX.y], So may be rewritten as
So={i3: 6= Xy Aj € [A - aXal(i)}.

The set S; may be rewritten using the specifications of [4A — «.8](C, k) and
predict(A — a.f):

S1={jldcsr : j € [4 — a.B](C, k) A
C — . X6 € predict(A— af)AE RPN T4

-157=

With the definition of [C — X.6] one finally gets:
S1 = {4l 3csk : 5 € [A — a.Bl(C, k)A
C — X6 € predict(A — a.B) Ak € [C — X.5](3)}.

O

3 Complexity and Variants

The above recognizer needs exponential time resources unless the functions
are implemented as memo-functions. Memo-functions memorize for which
arguments they have been called. If a function is called with the same ar-
guments as before, the function returns the previous result without recom-
puting it. In conventional programming languages memo-functions are not
available, but they can easily be implemented. The use of memo-functions
obsoletes the introduction of devices like parse matrices [1]. The worst-
case complexity analysis of the memo-ized recognizer is quite simple. Let
n be the sentence length, |G| the number of items of the grammar, p the
maximum number of different left hand sides in a predict set (bounded by
the number of nonterminals), and g the maximum number of items in a
predict set with the same symbol after the dot. Then, there are O(|G|pn)
different invocations of recognizer functions. Each invocation of a function
[T] invocates O(gn) other functions, that all result in a set with O(n) el-
ements. The merge of these sets into one set with no duplicales can be
accomplished in O(gn?) time on a random access machine. Hence, the total
time-complexity is O(|G|pgn®). The space needed for storing function re-
sults is O(n) per invocation, i.e. O(|G|pn?) for the whole recognizer. These
complexity results are almost identical to the usual ones for Earley parsing.
Only the dependence on the grammar variables |G|, p and ¢ slightly differs.
Worst-case complexities need not be relevant in practice. We claim that for
many practical grammars the present algorithm is more efficient than exist-
ing implementations, for the following reason. The above formulae can be
interpreted as to define two functions [-] and [], that will work for variable
grammars and strings. This view is convenient when building prototypes. If
efficiency is an issue, however, one should precompute as much as possible
and actually create, for a fixed grammar, the functions [I] and [I] for every
item I. In the terminology of functional programming the functions [-] and
H are to be evaluated partially for each item. In this way, the grammar is
compiled into a collection of functions, just like conventional parser genera-

tors compile a grammar into LR-tables or a recursive descent parser. Quite

-158-

some work that is done at parse time by the standard Earley parser, such
as the creation of predict sets and the processing of item sets, is transferred
to compile time when transforming the grammar into a functional parser.
As a consequence, the compiled parser is more efficient than the standard
implementations of the Earley parser.

The above considerations only hold if our algorithm terminates. If the
grammar has a cyclic derivation A 5 A, the execution of [T](A,) leads to
a call of itself, and the algorithm does not terminate. Also, there may be a
cycle of transitions labeled by nonterminals that derive e. This occurs if for
some k one has that for i = 1...k

Aiy1 — ;110841 € pTediCt(Ai — ai.ﬂ,-) N a; =i €

while 4; = Ak+1 Nay =appy AP = ,Bk+1-

Then the execution of [A; — «1.01](¢) leads to a call of itself, and the
algorithm does not terminate. A cycle of this form occurs iff there is a
derivation 4 & aAB such that o b e It is easy, however, to define a
variant of the recognizer that has no problems with these derivations. It is
obtained from dropping the restriction that the left most symbol derivation
= may not use e-rules. Then this paper’s analysis can be repeated. The
redefinition of = affects the function predict and the way g > T;y1...2; is
to be expressed in terms of =:

g5 Tip1..2; = 3,(B =Y YAy > Tiy2..2;) V(B SHeNi= 7).

Also the decomposition of 8 = Xy must be rephrased: X is introduced by
a grammar rule C' — pX§ or it is not. The result is the following recognizer:

[A— a.f)(3) = [A = af](ziy1,i + 1) U{i|8 > €}
[A— a.Bl(X,i)={i|3yu: B=pXyApSenjeAd— apXq](i)u

{i3csue : 5 € [A — aB)(C, k) A C — .uX§ € predict(A — a.B)A
poeAkelC— pX.6](7)}

To conclude, the above offers attractive alternatives to the standard Ear-
ley parser. Only for cyclic grammars there is a problem with termination.
For other grammars one gains efficiency. The above recognition algorithms
are not the most efficient ones, however. For instance, there is an additional
improvement following from the observation that [4 — a.8] and [4A — a.f]
only depend on 3. Therefore, functions for different items may be identical

=159

and can be identified. A similar improvement is applicable to many imple-
mentations of the Earley algorithm. A recursive ascent recognizer with this
improvement is

[81(3) = [Bl(@iy1, 6+ 1) U{ilB 5 €}

BIX,4) = {j[Fyu: B=nXyAp > enje (U
{513csuk : 5 € [BUC,k)AC — .uXb € predict(B) A p 5 enk e [6)(d)}

with predict(8) = {B — .u/B — u AP 2 By}. The algorithm is to be
invocated by calling [S}(0).

References

1 J1.C. Earley, An efficient context-free parsing algorithm, Commun. ACM
(1970) 13(2):94-102.

2 F.E.J. Kruseman Aretz, On a recursive ascent parser, Information Pro-
cessing Letters (1988) 29:201-206.

3 R. Leermakers, Non-deterministic Recursive Ascent Parsing, Proceedings
of the 5th Conference of the European Chapter of the Association of
Computational Linguistics, 1991.

4 R. Leermakers, L. Augusteijn and F.E.J. Kruseman Aretz, A functional
LR-parser, Theoretical Computer Science (accepted).

5 M. Tomita, Efficient Parsing for Natural Language, A Fast Algorithm for
Practical Systems (Kluwer Academic Publishers, 1986).

-160-

