EQUIVALENCES BETWEEN CONSTITUENCY AND DEPENDENCY

Dan Maxwell
BSO/Language Technology
Postbus 543

3740 AM Baarn
maxwell@]Itb.bso.nl

1. Introduction

Most work in generative grammar over the past several decades has made use of a
concept known as Constituency. This can be informally defined as the way words
combine to form larger units. The tree in (1), for example, shows how the words this
and lecture combine to form the larger unit this lecture. The two individual words
occupy what are known as lexical nodes at the bottom of the tree. The result of this
combination is provided at a separate node, known as a phrasal node.

(1) (this lecture)

/\

this lecture

During roughly the same period a different concept known as Dependency was also
developed (Tesni€re 1959), though by a much smaller group of linguists. An informal
definition of this concept might be that one word A is dependent on another word B, if
B is a necessary prerequisite for the occurrence of A in this particular usage. The tree
in (2) shows that this depends on lecture. The words in parentheses show the result of
combining these words.

(2) lecture (this lecture)
this

Dependency trees, unlike constituency trees, do not make a separate node available to
show the result of this combination. Indeed, work in dependency grammar has as far
as I know concentrated on the question of how trees should look in order to represent
the relationship between words in the sentence, not how these words are generated and
not how the meanings of these words combine with each other to create the meaning
of such larger units. At least some of the points I make in this paper are not entirely
new (See Schubert 1987 for an overview of work within the dependency tradition).
But even within this work, little research has been done on dependency structures in
the light of proposals presented in more recent generative frameworks (Hudson 1984

-161=

-2-

and Mel’¢uk 1987 are to some extent exceptions). I will suggest on the basis of my
findings here that this connection is worth more attention, since it appears that depen-
dency grammar can be fruitfully combined with at least some generative frameworks.

2. Sibling as Head, Parent as Governor

The tradition making use of constituent structure has clearly been dominant in linguis-
tic research, but starting with the development of X-bar theory (Jackendoff 1977) work
in generative grammar frameworks has been strongly influenced by the dependency
tradition, although this influence is seldom acknowledged in the literature. Thanks to
Jackendoff’s work, it is clear that constituency trees also express dependency. e.g. in
(1), the lexical N lecture is the head of the entire NP and has the determiner this as a
dependent. More generally, we can say that lexical "heads" in constituency trees have
their siblings as dependents. The difference between constituency and dependency trees
is that in the latter the governor of any node is its parent rather than the sibling node
with the same category as the parent or the one specially designated as head.

And we have seen in (2) how a dependency tree can be interpreted as a representation
of how a dependent combines with a parent word in a dependency tree to form a
larger unit. Under this interpretation, dependency trees express constituency. As men-
tioned before, it is not customary to write the result of this combination in dependency
trees. But if some kind of dependency framework were to be combined with a formal
semantics in the tradition started by Montague’s work, then this would become a
necessary step in any case. And the distinction made in HPSG between local and non-
local components of the feature structures at a given node provide a further basis for
such a step, since the nonlocal component of a given node presumably contains,
among other things, the meaning of the subtree dominated by that node.

In (3-5), we see a series of trees represented both as constitituent trees and dependency
trees. This time I have also added categories. The trees in (3a) and (4a) would be gen-
erated in any generative framework, as far as I know. The tree in (5a) has the hierarch-
ical structure generated in GPSG (Gazdar et al., 1985) and HPSG (Pollard and Sag
1987), though not in GB. The words in dependency trees are usually written at the
nodes themselves, since as discussed in section 4, the categories and the dependency
relationships do not themselves uniquely determine the linear order of these words.

(3a) PP (3b) P:on
P NP N:linguistics

on linguistics

-162=-

-B=

(4a) VP (4b) Viread
/N\
V NP

read books N:books

(5a) VP (5b) V:must
V VP V:have

A |
VP V:been
/\ \

- \ .
vV VP V:sleeping
\%
must have been sleeping
These trees make it clear that in a great many cases the structure of a dependency tree
is exactly parallel to its corresponding constituency tree. The difference is that in con-
stituency trees separate nodes are introduced for ihe lexical head and the combination

of this head with its complement, whereas in dependency trees these two different
kinds of information are combined within a single node.!

3. Differences between typical constituency trees and dependency trees
While discussing a striking similarity between some kinds of constituency trees and

dependency trees, I also mentioned a few differences. Here they are again with one
new one (8) added:

I There are some constructions for which this correlation does not hold:

(i) complementizers are normally assumed to govern dependent clauses in dependency grammar, though
they are not usually considered to be lexical heads of clauses in constituency trees.

(i) a finite VP is a phrasal head of a clause, but has no corresponding node at all in dependency gram-
mar, since phrasal nodes are generally not part of such frameworks.

(iii) in GPSG, at least, additional VPs are introduced iteratively as parents of adjuncts. These have no
correlate in dependency grammar for the reason mentioned in (ii).

(iv) "filler" constructions, used in GPSG and HPSG to deal with long distance dependencies, have an S
dominating the filler and another S node, which is accordingly the (phrasal) head among this sibling
pair. Although it is perhaps not entirely clear how long distance dependencies should be treated in
dependency grammar, none of the possibilities correlate with the constituency analyses the way (3a-5a)
correlate with (3b-5b).

~163-

-4 -

(6) There are no abstract phrasal categories in dependency trees.

(7) Syntactic categories are expressed both by a lexical head and their phrasal
extensions in constituency trees.

(8) The linear order of words is in general visually expressed in constituency t
rees but not in dependency trees..

A consequence of (7) is that

some principle is necessary to enable sharing of information between a lexical head
and its phrasal extension(s). This is demonstrated in the following example from Ger-
man. The phrase structure or "immediate dominance" rule in (9a), as well as its depen-
dency based correlate in (9b), is presented not only to show another correlation
between constituency and dependency frameworks, but to show how the feature
accusative might be introduced at an NP node. This feature has to be introduced at
this node because of the dependency of this case on the lexical head of the rule, which
must be a transitive verb.

(92) (9b)

VP-->V NP[acc] V-->NJacc]

den grossen Riesen
the(acc) big(acc) giant(acc)

(10a) (10b)
A :
/\ \
V NPlacc] N:Riesen
A \/\I //\
et ’
1>P Det:den A:grossen
A’
l \
A N

den grossen Riesen

But of course the accusative case is present phonetically only on the lexical extension
of the NP. In the same way, once the feature accusative has been instantiated by some
sort of agreement principle (the Control-Agreement Principle in GPSG or structure
sharing in HPSG) on the AP, some way has to be provided of making it appear on the

-164-

lexical Adjective as well.

In other words, some principle is necessary to ensure that certain features such as case
are shared between lexical heads and their phrasal extensions. Such principles have
been proposed in several frameworks. They differ merely in name and the way they
interact with other properties of the framework concerned. They include the following:

Projection Principle (GB)
Head Feature Convention (GPSG)
Head Feature Principle (HPSG)

Such a principle is evidently superfluous in dependency grammar, since such features
are introduced directly on the single node which serves to encorporate both lexical
information and whatever phrasal information is relevant.

4. Linearization

I now turn to the question of linear order of words in a sentence. Although typical
constituency trees present the words of a sentence in the linear order used in actual
speech (cf. (8), above), there are some kinds of sentences in which it is difficult to
maintain this property without modifying the assumption that the siblings of the lexical
head are its arguments.

If constituency trees continue to express dependency relationships as sibling relation-
ships between lexical heads and complements, then in cases involving discontinuity,
they, like dependency trees, fail to visually express linear order.

Dutch is a language in which discontinuities are triggered by a whole class of verbs
rather than only isolated lexical items (Bresnan et al. 1982). The following example is
such a sentence. If the NP is assumed to be a sibling of its lexical head, the verb
houden, then the only way this tree can visually express the linear order of these con-
stituents is by permitting crossing branches, as in (11):

-165=

dat zij een lezing mag houden
that she a talk may hold
"that she may give a talk"

(11)

S
/ ™\
comp S

N/ \VP
A\

vV VP

/
:' I,ﬂ><\ \V
'; r{_X \ \

dat zij een lezing mag houden

Trees with crossing branches have not found wide acceptance as a formal descriptive
device in generative grammar. The formal definition of "tree structure” as given in
textbooks on mathematical linguistics (Wall 1970) explicitly excludes this possibility,
since this would extend the power of any framework in ways difficult to define.

An alternative to the idea of expressing linear order of the words in a sentence by their
order at the bottom of the tree is to do this by numbers. Such an approach presupposes
some sort of procedure for correctly assigning the numbers. Such a procedure is gen-
erally available in the system of ID rules and LP statements used in GPSG and HPSG,
although éhis procedure currently has no fully satisfactory way of dealing with discon-
tinuities.

Such a system can be adapted to a dependency grammar as follows:

LP statements in dependency grammar express relative order between Governor and
Dependent.

A precise interpretation of LP statements within a dependency framework is the fol-
lowing:

for any two nodes X and Y such that X governs Y, the LP statement X < Y
means that X and any dependents other than Y must precede Y, i.e. be assigned
a lower number than Y, and all of its dependents. If all the {X,Y} pairs in the
tree obey all of the LP statements, then the tree is "LP-acceptable” (this term is

2 Reape 1990 offers an extension of HPSG designed to deal with discontinuities in the way just out-
lined.

-166-

-7-

borrowed from Gazdar et al. 1985:99).

Such LP statements express constraints on what might be called "G-D (Governor-
Dependent) linearization." These must be supplemented by rules (or principles)
expressing the relative order of siblings in just those subtrees in which more than one
offspring precedes or follows the parent. An example in English would be sentences in
which the verb governs both an object and an prepositional complement, such as [/
gave the book to Tom, since both of these complements follow the governing verb.

In HPSG, a principle called the "Obliqueness Hierarchy", based roughly on the NP
Accessibility Hierarchy proposed in Keenan & Comrie 1977 for entirely different rea-
sons, is used to deal with dependents which are also complements. Pollard and Sag
assume that this principle is specific to English, but in fact it seems to have some vali-
dity - in many cases perhaps only as the "default principle” - to a wide variety of
languages. Such a principle could perhaps be extended to adjuncts as well and in any
case seems to be applicable without change to any dependency-based version of
HPSG. But in the example below, no such principle is in fact necessary, since the ord-
ering of the only pair of siblings in the tree is uniquely determined as a by-product of
G-D linearization.

In dependency frameworks, but not constituency frameworks, sentences with different
word orders, but the same dependency relationships, can have trees which are identical
except for the numbers determining linear order, as the following example based on
Dutch and English shows. I give in addition to the trees the linearization of the tree as
it develops step by step from the top down. To the right of the trees are the number(s)
of the LP statement(s) which is (are) applicable at that level of the derivation.

(12a) zij heeft een lezing gehouden

she has a talk held
"she has given a talk"

/geft\:V[fin]J (heeft)
zij:N,1 gehouden:V([pspl,5 (zij heeft gehouden)[(i), (ii)]

lezing:N,4 (zij heeft lezing gehouden) [(i)]
Yen:N,3 (zij heeft een lezing gehouden)[(i)]

()G>D
(ii) [fin] < [-fin]

where ’< (>)’ means "has a lower (higher) number than’

—167-

(12b) she has given a talk

as:V[fin],2 (has)

she:N,1 g&/en:V[psp]S (she has given) [Gi), ()]
talk:N,5 (she has given talk) [@)]
a:N,4 (she has given a talk) [(iii)]

i)G<D
(ii) [fin] > N
(iii) N > Det

These LP rules are chosen largely for the sake of clarity in these examples, although
consideration of a larger amount of data would very likely justify some kind of adjust-
ment.

The interaction among the individual LP statements in either set is based on the hierar-
chy of specificity proposed (for a somewhat different purpose) in Schubert 1987:162ff.
The first rule in each case is the default rule by virtue of the fact that it is less specific
than the other(s); G is a metavariable for any governor and D a metavariable for any
dependent. The default rules apply to a given {G,D} pair whenever none of the more
specific rules meets the conditions for application to this pair.

If we interpret LP statements procedurally, it is in fact necessary to interpret LP rules
as requiring adjacency between the governor and dependent at the time of application
of the rule. Otherwise, it would be possible on the basis of LP (iii), for example, to
place the determiner a anywhere in the sentence that precedes its governor talk.

But at the beginning of the discussion of LP statements, I gave a declarative interpreta-
tion which requires not only the dependent word itself, but also all its descendants to
have a specific precedence relationship with respect to its governor. This is in itself
sufficient to exclude any of the undesired results. If a were to precede gave, for exam-
ple, this would violate LP (i), since this requires not only any dependent of gave, but
also any descendants of such a dependent to follow it.

It is interesting to speculate how the case of discontinuity shown in (11) might be dealt
with in a dependency-based framework. The first point to be made in this regard is the
fact that there is no difficulty in generating a tree for such sentences; crossing branches
do not occur, since the form of the tree is not constrained by the order of the words in
the sentence. We shall subsequently see, however, that the converse of this relationship
is valid: the form of the tree constrains the order of words.

The tree is shown in (13). One additional LP rule (iii) is necessary to deal with the

relative order of the complementizer dat and its dependent. The numbering of the other
LP rules refers to the numbering in the previous example.

~-168=~

(iii) comp < V

(13)
dat:1 (dat)
mag:5 (dat mag) [iii]
zi]:2 houden:6 (dat zij mag houden) [(ii),(i)]

lezing:4 (dat zij lezing mag _ houden) [(i)]

een:3 (dat zij een lezing mag _ houden) [(i)]

In a dependency framework, the problem of discontinuity is reduced to a problem of
linearization. On the basis of LP statements as defined above, it is impossible to derive
the sequence of numbers on the above tree. In the derivation of linear order to the
right, the dash indicates where the dependent ought to occur according to the LP rule
applied. The order which actually occurs ought to be excluded by LP (ii), since this
excludes any order in which any descendant of mag precedes it, and een lezing is such
a descendant.

The problem with this tree is apparently that the dependent een lezing is ordered not
with respect to its governor houden, as we would expect, but rather with respect to the
parent mag of this governor. It seems to be necessary to introduce something in the
tree which makes such a procedure possible in just this sort of syntactic environment.
But I will not attempt to show how this could be done here.

5. Conclusion

I have argued that the fundamental differences between constituency and dependency
are actually less significant than generally seems to be supposed. Three fundamental
developments in generative grammar - X-bar theory, the conception of a node on a
tree as a complex of features with its own internal structure, and the ID/LP framework
- have made comparison between consituency trees and dependency trees more feasible
than previously. It even appears possible to create a form of generative grammar based
on dependency trees. Since such trees have many fewer nodes than their corresponding
constituency trees, I would expect such a framework to be both easier to deal with
computationally and also easier to teach and learn than a corresponding framework
based on constituency.

References

Bresnan, Joan, Ron Kaplan, Stanley Peters, Annie Zaenen. 1982. Cross-Serial depen-
dencies in Dutch. Linguistics Inquiry13: 613-35.

-169=

- 10 -

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, Ivan Sag. 1985. Generalized Phrase
Structure Grammar. Oxford: Basil Blackwell.

Hudson, Richard. 1984. Word Grammar. Oxford: Basil Blackwell.

Jackendoff, Ray. 1977. X-bar Syntax: A Study of Phrase Structure. Cambridge, Mas-
sachusetts: MIT Press.

Keenan, Edward & Bermnard Comrie. 1977. Universal grammar and noun phrase acces-
sibility. Linguistic Inquiry 8.1: 63-99.

Mel’¢uk, Ivan. 1986. Dependency Grammar: Theory and Practice. Albany: State
University of New York Press.

Pollard, Carl, Ivan Sag. 1987. Information-based Syntax and Semantics. Stanford:
CSLL

Reape, Mike. 1990. Getting things in order. 125-139 in the proceedings of symposium
on Discontinuity. Tilburg: Institute for Language Technology and Artificial Intelli-

gence.

Schubert, Klaus. 1987 Metataxis: Contrastive Dependency Syntax for Machine Trans-
lation. Dordrecht: Foris Publications.

Tesniere, Lucienne. 1959. Eléments de syntaxe structurale. Paris: Klinksieck [2.ed., 4.
print. 1982].

Wall, Robert. 1972. Introduction to Mathematical Linguistics. Englewood Cliffs, New
Jersey: Prentice Hall.

-170-

