Design Requirements for Principle-Based Parsers
as Flexible Research Tools

Sebastian Millies
Dept. of Computational Linguistics
University of Saarbriicken
e-mail: millies@coli.uni-sb.de

Abstract

One principal aim in the design of principle-based parsers is to mirror in the
parser the structure of linguistic theory. This raises the issue of what processing
model is appropriate to interacting principles. Parser control strategies are also
important in modelling aspects of linguistic performance. At the same time, the
rapid development in linguistic theory calls for a flexible architecture, in which it
is possible to experiment with different versions of the grammar. This kind of
flexibility, together with a large degree of independence between representation
and control, will be necessary for bridging the gap between computational and
theoretical linguistics by providing a research tool useful to both sides.

1 Introduction: Why PBP?

In this paper, we will discuss some of the decisions that will confront every
implementor of a principle-based parsing system.! Existing PBP systems will be
cited to illustrate the possible outcomes of different decisions at different points
during the design process.2 Accordingly, this paper is not a presentation in depth
of any particular implementation, but rather an overview of procedural models of
GB grammar. The discussion will be a general one, not going into unnecessary
technical detail. In this context, we will restrict our attention to modular systems,
which mirror the internal structure of linguistic theory in such a way that
components of the parser correspond to subtheories of universal grammar.3 Such

1 I will understand "principle-based parsing" to be synonymous with "GB-parsing". Both terms
mean parsing based on theories of the principles-and-parameters type pioneered by Chomsky in
[Chom81]. This paper will presuppose a basic familiarity with GB. For a short introduction, see
[Sel85].

Among them, my own system is described in more detail in [Mil90].

Obviously, it is not enough to require of a principle-based parser that it somehow respect the
principles of GB in constructing its output, for then any adequate parser for a natural language

~181=

systems (experimental ones, to be sure) have become somewhat fashionable lately,
and it may be appropriate to ask whether they are just play-things, or whether
they may evolve to aid either computational or theoretical linguists - or perhaps
even both - in their research. It turns out that the interests both sides have in the
project are closely related: Theoretical linguistics is conducted in an essentially
informal manner, so theoretical linguists may profit from PBP if it succeeds in
providing a way to easily formalize the theory (cf. [Sta89]) and test its predictions,
thereby giving more rigour and a firmer empirical footing to theories of
grammar.4 Computational linguists, on the other hand, will profit from such
systems if they obviate the need to reconstruct insights of GB syntax in a radically
different framework, thereby shortening the development cycle for grammars
used in NL systems. So both sides will essentially expect to be provided with a
high-level GB programming language. In comparison to rule-based systems, one
would expect principle-based systems based on this new implementation
language to be less ad-hoc (because no ad-hoc rules can be added to cover special
constructions), more portable and versatile (because they encode much more
knowledge in a language independent way), and smaller (because principles
generalize over constructions and languages, so there are fewer of them).5 As an
afterthought, let us add that principle-based systems may also yield a better
psychological model of human sentence processing than rule-based ones.

2 Computational differences between rules and principles

In rule-based grammars, every rule builds a local tree. In principle-based
grammars, many independent principles put their individual constraints on a
piece (not necessarily local) of structure. So where does the structure come from?
Obviously, there seems to have to be some sort of generator in the system. A
popular approach is to include X-theory as a rule-based component. This makes
possible the exploitation of standard parsing techniques (e.g., [Fong91] uses LR(1)-
parsing). However, as X-theory defines the entire set of trees (binary trees, in most
versions) as possible structures, this approach is likely to yield parsers which
generate a lot of ill-formed structure, or even do not terminate for ungrammatical
input. More importantly, it is also contrary to the spirit of GB. In modern
grammatical theory, X-theory is often not viewed as a proper module of grammar.

would qualify as principle-based, if only GB were correct. This criterion excludes, for example,
the Marcus parser, which [BW84] have claimed to be principle-based.

Foremost in this respect is the work of Stabler.
This is one of the reasons why compiling a principle-based system out into a huge set of rules

will not necessarily give one a more efficient parser.

~-182=-

Instead, phrase structure is seen as emerging from other grammatical relations,
such as case- or 8-marking and the linear order of heads and complements. The
extreme approach, tried in [Abn86], would try to recover these relations directly
and dispense with phrase structure altogether. A more sensible approach would
try to restrict the phrase structure building component by additional information,
so that only locally well-formed trees can be built.! For example, Millies uses
subcategorization information from the lexicon to do this ([Mil90]). As much of
grammatical theory as possible should be enforced immediately on local
structure. Several methods have been developed to locally compute seemingly
global constraints like subjacency. The indexing schemes of Latecki ([Lat91]) are
particularly suited to this purpose. It is as yet unclear whether there are
"essentially global" principles that cannot be treated this way, and also cannot be
replaced by a series of local computations.”

3 The relation of GB grammars to GB parsers

We consider flexibility of the foremost importance in PBP systems. Theoretical
linguistics is rapidly changing, and every linguist has its own favorite version of
it. There is little sense in "hardwiring" a particular version of GB into a parser.
The computational advantages of flexibility are easy maintenance and updatabi-
lity. There seem to be at least two necessary conditions for this kind of flexibility:

e Directness:
There is a one-to-one mapping from the linguistic vocabulary to the
parser vocabulary.

e Faithfulness:
The logical structure of the theory is mirrored by the computational
structure of the parser.

Directness and Faithfulness are generally considered to be among the defining
properties of the notion of GB-parser (cf. footnote 2). What makes these conditions
so difficult to implement is the fact that theoretical linguistics places no
constraints on the kinds of principles it allows and the notions used in expressing
them.8 There is no well defined set of primitive notions in GB, indeed, finding

6 One technique to achieve this is by an interleaving strategy, discussed below.

7 A good candidate for such a principle is the ECP defined in terms of barriers. Although
indexing methods have been used to implement the ECP (e.g. [Mil90]), this relies on goal
freezing and may still lead to generation of intermediate ill-formed structure.

8 Apart from arguments about learnability. Such arguments are notoriously inconclusive, cf.
[Sav87]: "... we are not now in a position to characterize any language class (other than possibly
the finite languages) as either provably learnable or provably not learnable."

-183=

such a set is one of the research goals in the theory of grammar, and this task can
only be solved empirically. Any system will have to choose some such set and will
be open to criticism and revision on this count. Furthermore, linguistic theory is
incomplete and unsound (in an intuitive sense) with respect to natural language
and may even not be consistently formalizable. It is therefore unclear, what
correctness of a parser with respect to such a theory may mean. The parsing as
deduction approach (PAD) suggests one possible answer: In this approach one
formalizes grammatical theory in some suitable logic and defines correctness as
soundness and completeness (in the sense of formal logic) with respect to this
formalization.? However, PAD encounters difficulties in explaining ill-formed
sentences (which will not be theorems in the logic). So we may prefer to rest with
an intuitive definition of correctness based directly on the relation the parser bears
to linguistic theory:10

e (Correctness:
The parser will return the same analyses for grammatical input and
the same explanations for ungrammatical input as a competent
linguist.

Of course, correctness will in general not be a verifiable property of a PBP system,
because program verification in general is impossible. Instead, the coverage and
practical usefulness of competing systems will have to be measured by comparing
their performance on a corpus of linguistic data. At present, such comparison of
competing theories (and parsers) is difficult. First, there is no established test
fragment for any natural language, so every implementor will have to invent his
own. Second, example sentences in the literature tend to be contrived and
complicated, dealing in depth with very special constructions, but disregarding
ordinary continued text. A parser geared only to analyze such data will fare badly
in everyday life. Here is a point where the interests of the theoretical linguist and
of the writer of grammars for NL systems are potentially in conflict with each
other. Third, the question of how to organize the material in such a database in a
theory-neutral way must be addressed. Often, a system is not intended for whole-
sale coverage, but without theory-neutral organization of material, partially
correct system will be difficult to characterize with respect to coverage.

9 Of course, depending on the logic one chooses (e.g. Horn logic, first order predicate logic or
whatnot), correctness may become an undecidable property.

10 A definition like this was first proposed by Fong ([Fong91]).
~184-

4 Architectures for PBP systems

GB grammars encode linguistic claims about what constitutes knowledge of
language, but not about the way humans exploit this knowledge. Of course, as
Abney (([Abn85]) observed:

"A theory of grammar would be of little interest if it were manifestly
incapable of supporting reasonable models of linguistic behavior."

The issue of parser control is therefore of great importance for the plausibility of
GB as a psychologically realistic theory. It is also more or less independent from
considerations of linguistic competence.ll Let us now review three computational
models for PBP that have been documented in recent work.

‘ EXECUTABLE
SPECIFICATION

Figure 1: The Executable Specification Model (ESP)

In the ESP model (see figure 1), every module of grammar is specified in logic
(typically, Horn logic) and then used immediately as input to a general theorem
prover. This idea is due to Mark Johnson ([John88, John89]). Unsurprisingly, it
inherits the difficulties associated with the incompleteness of automated theorem
provers: Left-recursion or e-productions may throw it off, negation is typically
unsound, and so on. The ESP also has an unfortunate tendency towards generate-
and-test algorithms. Johnson proposes to use program transformations like
unfold/fold and co-routining by goal freezingl2 to cope with these problems. The
power of these methods is limited, however, and the transformed grammar may
still have to be recoded by hand to be executable. An alternative description of the
problem is that the idiosyncracies of one's theorem prover introduce extraneous
restrictions on the formalization of the principles. Finally, there is no place in the
ESP to model performance aspects, e.g. preferences in PP-attachment and the
like. Historically, Johnson's work has been very influential, and particularly the

11 But see section 2.

12 Freezing is an alternative control strategy for Prolog, where the execution of a goal is made
conditional on the instantiation of specified variables. It is familiar from Prolog-II and
Sicstus.

-185~

META-INTERPRETERS

4:—> SPECIALIZED

Figure 2: The Multiple Interpreters Model (MIM)

use of a declarative formalism with goal freezing is a hallmark of many PBP
systems now around, including those incorporating the MIM and DUM models
discussed next.

With the MIM (see figure 2), it is not the principles which are executed and co-
routined, but rather special-purpose inference engines which exploit the know-
ledge formalized in the modules of grammar. The model was first introduced by
Crocker ([Cro91]). In the extreme case, there may be one interpreter for each
module. This model is more flexible than ESP in at least two respects: First,
different proof strategies may be appropriate to different principle systems.
Second, performance aspects can be modelled in the proof strategies, e.g. by
including selection rules for the application of principles (as proposed in
[Fong91]). Selection rules may be dynamic, i. e. sensitive to the history of the proof.
The main danger in implementing such a system is that too much linguistic
knowledge may actually be coded in the interpreters, by inadvertently or
purposefully hand-compiling parts of the grammar away. Changes in the
grammar would have non-local repercussions.

The DUM (see figure 3) does not suffer from the last-mentioned defect, because the
parsing strategy can access the grammar component of the system only via an
interface. The model effectively isolates the grammar from the parser. The
parsing strategy is to be thought of as completely grammar-independent. It will
use very general structure-building instructions only (like "get the next input

(")

< —> PARSING STRATEGY

. J

Figure 3: The Dual Model (DUM)

-186-

word", "have a projection made") and pass structures to the grammar component
to check for well-formedness. In this model, both the principles and the parsing
strategy will be interleaved. Such a system can be very flexible, but may also be
impure: Only the grammar need be logically formalized, while the parsing
module is completely unrestricted and may not even have a declarative
semantics. Systems according to this model were introduced by [Mil90] and
[Mac91]. To conclude: Both the MIM and the DUM are viable alternatives for
practical systems, both with their own advantages and shortcomings.

While we have been concerned with the relation of the representation of linguistic
knowledge to the procedural control of the parser, we will now briefly consider the
interactions between the principles themselves. Of course, the desire for a
modular system will make the implementor strive to minimize such interaction.
If every module operated only on its own representation, without regard to other
modules, a real parallel implementation of PBP might even be possible. In all
current systems known to the author, on the other hand, a/l modules have access
to phrase structure (PS),13 and there is usually at least one special representation
in addition to PS, namely for chains. This has proved useful in guiding the
insertion of empty categories and enforcing global grammatical constraints
([Cro91], [Fra90], [Mil90]). We may consider the universal accessibility of PS a
defect, because each principle should only be concerned with certain features of it.
Again, indexing techniques can be used to "condense" certain properties of PS
into a new representation which is then passed to the appropriate module
([Mil90]). More thought needs to be given to the creation of well-defined interfaces
between modules.

Many systems adopt an interleaving and licensing approach to parsing simulta-
neously. The licensing approach goes back to [Abn86], who states: "A structure is
well-formed only if every element in it is licensed.” In an interleaving strategy,
licensing conditions will be activated as early as possible to avoid building any un-
grammatical structure. This approach is found most often in a parsing as
deduction approach, where the emphasis is on efficient derivation of grammatical
structure. It is less suited to the intuitive standard of correctness proposed above,
which demands explanations of ill-formed input. Similar observations can be
made with regard to derived principles, i.e. principles derived from a set of first
principles by (hand-)compiling them away, or explicitly asserting some of their
consequences. E.g., elementary consequences of case- and 0-theory, such as that

13 It is suggested in [Cro91] that every module construct its own representation only. However,
Crocker's implementation as well gives every module access to phrase structure.

-187-

case-bearing items without 6-role head an NP-chain, are sometimes used
immediately to guide the process of chain formation. Again, the advantage is
efficiency. The disadvantage in this case is twofold. First, the capacity for
adequately explaining why a structure is ill-formed is lost, because principles
derived from several sources are too coarse-grained. Second, maintenance will
become difficult, because changes in proper principles will necessitate revision of
the entire set of derived principles. This kind of efficiency-mongering should
therefore not be part of the design of research tools. Of course, when ultimately an
application system is sought after, an existing parser may be compiled out to yield
a static, inflexible, and efficient system.

4 Levels of Representation

While GB is distinguishes several levels of representation, GB-parsers are
typically monostratal. It has often been noted that there is no convincing evidence
for D-structure as a psychologically real level of representation. Talk of movement
is regarded as metaphorical, with move-o being just one more static relation in
the syntactic structure. Johnson has shown how constraints on D-structure can
be folded into a deductive parser without actually having to construct D-structure
itself. So the greatest omission in those systems seems to be the absence of a level
of Logical Form (LF). Interestingly, recent work on the syntax-semantics
interface suggests that LF is not needed for many purposes for which it was once
thought necessary, in particular with regard to quantifier scope and anaphoric
binding. Even more important is the insight, that the sequential model of
syntactic-semantic processing inherent in GB's conception of LF is necessarily
inadequate. Pinkal convincingly argues in [Pin91] that some syntactic constraints
on anaphoric binding can only be enforced after a certain amount of semantic
processing has already taken place. At Saarbriicken University, we seek to
develop an S-structure based module for semantic interpretation, consisting of
very general, declarative principfes of semantic interpretation, not making
reference to or duplicating parts of the syntactic structure, and a set of semantic
objects (denotations) associated with positions in the syntax tree. This module will
be co-routined with the syntactic modules, so that the application of interpretation
rules can be sensitive to the syntactic environment and vice versa. If this is
feasible, it will provide a point of comparison to another well-established
paradigm (which one may call principle-based in a wider sense), namely HPSG.

-188-

5 Conclusion

Several modular, declarative, faithful, and direct implementations of GB-parsers
have been developed in the past few years. Progress has been made in rigorously
formalizing GB, investigating the consequences of the parsing-as-deduction
paradigm for PBP, discovering advantages and disadvantages of several control
strategies with regard to different (and sometimes conflicting) desiderata for
parser behaviour, and in developing guidelines for plausible architectures. There
exist prototypical, tool-box like system for the development of GB-based grammars.
It is hoped that principle-based approaches to parsing will help to elucidate the
human language faculty, as well as help to bridge the gap between computational
and theoretical linguists.

6 References

[Abn85] Abney, S. & Cole, J. (1985), A Government-Binding Parser, North
Eastern Linguistic Society 16, pp. 1--17.

[Abn86] Abney, S. (1986) Licensing and Parsing, North Eastern Linguistic
Society 17, pp. 1--15.

[Chom81] Chomsky, N. (1981), Lectures on Government and Binding, Foris,
Dordrecht.

[Chom86] Chomsky, N. (1986), Barriers, MIT Press, Cambridge, Ma.

[Cro91] Crocker, M. W. (1991), Multiple Interpreters in in a Principle-Based
Model of Sentence Processing, EACL Proceedings 5, Berlin.

[Fong91l] Fong, S. (1991), Computational Properties of Principle-Based
Grammatical Theories, unpubl. diss., MIT, Cambridge, Ma.

[Fra90] Frank, R. (1990), Licensing and Tree Adjoining Grammar in
Government Binding Parsing, Ms., GB-Parsing Workshop, Univer-
sité de Genevé.

[John88] Johnson, M. (1988), Deductive Parsing with Multiple Levels of
Representations, ACL Proceedings 26, Buffalo, NY.

[John89] Johnson, M. (1989), Parsing as Deduction: The Use of Knowledge of
Language, Journal of Psycholinguistic Research, Vol. 18, No. 1.

[KT 91] Kolb, H.-P. & Thiersch, C. (1991), Levels and Empty Categories in a
Principles-and-Parameters Approach to Parsing, in: Haider, H. &
Netter, K. (eds.), Representation and Derivation in the Theory of
Grammar, Kluwer Academic Press, Dordrecht.

=-189-

[Lat91]

[(Mac91]

[Mil90]

[Pin91]

[Sav87]

[Sel85]

[Sta89]

Latecki, L. (1991), An Indexing Technique for Implementing
Command Relations, EACL Proceedings 5, Berlin.

Macias, B. (1991), An Incremental Parser for Government-Binding
Theory, unpubl. diss., Wolfson College, Cambridge.

Millies, S. (1990), Ein modularer Ansatz fiir prinzipienbasiertes Pars-
ing, IWBS Report 139, IBM Germany Ltd, Stuttgart.

Pinkal, M. (1991), On the Syntactic-Semantic Analysis of Bound
Anaphora, EACL Proceedings 5, Berlin.

Savitch, W. (1987), Theories of Language Learnability, in: Manaster-
Ramer (ed.), Mathematics of Language, John Benjamins Publishing
Company, Amsterdam/Philadelphia.

Sells, P. (1985), Lectures on Contemporary Syntactic Theories, CSLI
Lecture Notes No. 3, CSLI, Stanford, Ca.

Stabler, E. (1989), The Logical Approach to Syntax, MIT Press,
Cambridge, Ma. (forthcoming)

-190=

