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Abstract

A novel parallel parser is presented, based on a
well-known parallelization of Earley’s algorithm
and an adaptation of Tomita’s generalized LR
parser. For each word a process parses all con-
stituents starting with that word. Constituents
parsed by other processes can be regarded as
atomic symbols. Superficially, a process resem-
bles a Tomita parser for a suffix of the sentence.
The technicalities are somewhat different, how-
ever, and lead to some theoretically interesting
improvements.

Practical comparison with a conventional To-
mita parser shows a decrease in parsing complex-
ity and an increase in constant factors. That is,
the extra costs in communication overhead are
offset by the gain in processing power if the sen-
tence is sufficiently large.

1 Introduction

Tomita’s generalized LR parser [Tomita85] is a
popular parsing algoritm for natural language ap-
plications. It combines the ability to handle most
context-free grammars with the efficiency of the
LR parser. In order to cope with nondetermin-
ism, a set of LR parse stacks is maintained. The
different stacks are merged into a graph structure
for efficiency.

A couple of parallel Tomita parsers, imple-
mented in a parallel logic programming language,
have been presented by Tanaka and Numazaki.
Maintaining a graph structured stack would re-
quire too much synchronization, therefore they
work in parallel on separate copies of linear

1The current adress of the second author is: Dept.
of Mathematics and Computer Science, University of
Groningen, PO Box 800, 9700 AV  Groningen, The
Netherlands (lankhors@cs.rug.nl).

stacks [Tanaka89] or with tree structured stacks
[Numazaki90]. We look at the problem of par-
allel generalized LR parsing from quite a dif-
ferent angle — taking, in fact, a perpendicular
view. Rather than working through the sentence
in LR fashion, we remove the left-to-right restric-
tion and introduce processes that parse the sen-
tence purely bottom-up, starting at every word
in parallel. Each process runs an adapted Tomita
parser, yielding the constituents that start with
its own word. Symbols parsed by other processes
can be used as atomic entities.

Earley’s algorithm [Earley70], [GHRB80] scans
a sentence from left to right, while keeping track
of (partially) recognised constituents in an upper
triangular matrix. Like Tomita's algorithm, it is
a bottom-up parser with top-down filtering. A
straightforward parallelization is obtained by re-
moving the left-to-right restriction, and thereby
the top-down filtering. A purely bottom-up al-
gorithm results, in which each column (or each
row) of the matrix can be computed in paral-
lel. See, e.g., [Chiang84], [Nijholt91]. Despite
the difference in appearance, the algorithms of
Earley and Tomita are structurally very similar
[Sikkel90]. The algorithm to be presented is the
Tomita equivalent of the parallel bottom-up Ear-
ley parser in which a processor is allocated to a
row of the matrix, hence it is called a Parallel
Bottom-up Tomita (PBT) parser.

Parallel processing may save time; it also may
cost time due to increased overhead and commu-
nication. Thompson presented a parallel chart
parser where adding more processors led to an
increase in computation time [Thompson89]. We
tested our parser against Tomita’'s algorithm, us-
ing the test sets given in [Tomita85]. It turns out
that PBT is faster for long sentences; for short
sentences the increase in processing power does
not offset the additional overhead. Furthermore,
we found that adding more processors to the PBT
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parser (up to the number of words in 2 sentence)
always leads to a decrease in computation time.

An interesting theoretical aspect of our PBT
parser is that some problems of the standard
Tomita parser are eliminated. All context-free
grammars can be handled, and nodes in the parse
forest for the same constituent are guaranteed to
be shared. Furthermore, the parsing tables are
easier to construct and much smaller.

The PBT recognizer is described in section 2
and extended to a parser in section 3. In section
4 we discuss empirical comparison between PBT
and Tomita’s algorithm. Conclusions are summa-
rized in section 3.

2 The PBT recognizer

We define a Parellel Bottom-up Tomita recog-
nizer first, and extend it to a parser in the next
section.

Let a;...0, be a sentence according to some
context-free grammar G. For technical reasons,
a special end-of-sentence marker $ is added as
the n+1-th symbol. The recognizer consists of
n+1 processes Py, ..., Pn, communicating asyn-
chronously in a pipeline structure. See Figure 1.
It is not necessary, however, that every process
runs on a different processor; If there are more
words than processors, a single processor can run
multiple processes.

The task of process P; is to recognize all con-
stituents starting with word ai41, i.e, al X eV
such that X =" a;s1...a; for some j. Recog-
nized symbols are tagged with place markers so
as to indicate which part of the sentence they
span. Thus the sentence will be recognized iff Py
can recognize a symbol (0, S, 7).

' Py Py e—
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I | 1
+—Pp 14— Pr |
I i

2 a Gn ]

Figure 1: A pipeline of processes

Each process P; starts by recognizing its “own”
terminal (,a;+1,3+ 1) Symbols that have been
recognized by some other process upstream are
read from the right neighbour. These are passed
on 1o the left neighbour, while newly recognized
symbols are inserted into the stream. In a more

sophisticated version, a svmbol can be discarded
if it can be decided locally that such a symbol is
irrelevant for the remainder of the pipeline.

Each P; uses two data structures: a pre-
computed parsing table and a graph structured
stack in which (partially) recognized constituents
are stored. It is called “graph structured stack”
as in Tomita’s algorithm. It is not really a stack,
though, as nothing gets ever deleted. The stack
contains siate vertices labelled with parser states
and symbol vertices labelled with recognized sym-
bols.

Rather than giving a formal definition, we will
explain the algorithm by working through an ex-
ample. The grammar G is defined by

(1) S — NP VP
(2) NP — det *n
(3) NP — *n

(4) NP — NP PP

(5) PP — *p NP
(6) VP — *u NP
(1) VP — VP PP

The parsing table is shown in Figure 2, its con-
struction will be discussed later.

! action| goto
L *d *n *p *» § NP PP VP §
i 01 |4 5 6 7 1 2 3
1 | acc
2| | g 8 i
i3 10
L4 11
| 5| red .
i 6 12 !
PT 13
| 8] rel
| 91 red
10 | re7
11 | re2
12 | red
13 | re6

Figure 2: The PBT parsing table for G

The action column tells in which state a reduc-
tion can be carried out, and which production is
being reduced. Shift actions are not explicitly
mentioned, a symbol can be shifted in a particu-
lar state if a successor state is shown in the goto
table. Acceptation is disguised as a shift; the sen-
tence is accepted iff $ is shifted.

As an example we take the canonical sentence

I saw the man with a telescope. We single out P
and follow the construction of its stack. It's task
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is to recognize all constituents startin with saw.
The stream of symbols that is read from P; in
due course is

(2, NP,4), (4, PP,T), (2,NP,7), (7,8,8).

We start with an empty stack, represented by a
single state vertex labelled 0. First, P;’s terminal
symbol (1,xwv,2) is shifted. That is, a symbol
vertex with that label is created, followed by a
state vertex labelled 7 (the new state according to
the goto table). No reduction can be made, so we
read (2, NP, 4) from the pipe. In state 7 this can
be shifted. The new state is 13, requiring action
re6. Using rule (6) we rewrite (1, *v,2)(2, NP, 4)
into (1, VP,4). We do not delete the reduced
branch from the stack, as it might still be needed.
We simply start a new branch from the initial
node, shifting the completed VP just as if it had
been read from the pipe, See Figure 3.

1 g e
@@—CD—L@

Figure 3: The stack after reducing (1, VP, 4)

It is important to notice that state nodes are
grouped into sets, which are identified by posi-
tions in the sentence. We may jump back and
forth between positions, making extensions wher-
ever appropriate.

The next symbol, (4, PP, 7), is shifted in state 3
(at position 4) and (1, VP, 4)(4, PP,7) is reduced
to (1, VP, 7).

Note that (4, PP,7) could not be shifted from
state 13 — there is no entry in the goto table
— although (2, NP,4){(4, PP,7) is reducible to a
compound NP. This is because P; only creates
new symbols that start at position 1. As we read
the next symbol, it turns out that (2, NP, 7) has
been created by P already. It is shifted at posi-
tion 2. Subsequently we can reduce a verb phrase
(1, VP, 7). This symbol is already present in the
stack and need not be added again.

The last symbol, (7,8$,8), cannot be shifted
anywhere. It also signals the end of the stream,
hence P; has finished its task. The final parse
stack is shown in Figure 4.

Symbols are sent on to the left neighbour as

2 4 7
2@
2@

L, vPA—(3)—{4PP7}-(10)

—————1,VPT} @

Figure 4: The final stack of P,

soon as they are read or created, in order to min-
imize waiting time. Some ordering requirements
must be made, however, so as to guarantee a
proper functioning of the algorithm. In partic-
ular, a symbol (j, Y, k) must have been preceded
by all symbols (i, X, j) for i < j < k, otherwise
the state vertex on which (7, Y, k) is to be shifted
might not yet be present. This requires some
careful handling when multiple nullable symbols
(4, X,J) and (j,Y,7) are present. In all other
cases, the ordering requirements are satisfied nat-
urally.

If all symbols created by all processes are
passed down the pipeline, this may result in
a communication bottleneck. With some addi-
tional effort most symbols can be discarded that
are not needed further down the pipeline. For
example: P,, with terminal (2,det,3), will re-
ceive the noun phrase (3, NP, T), man with a tele-
scope. But (2,det, 3)(3, NP, 7) cannot be part of
a sentential form, hence the latter symbol can
be discarded. Such knowledge can be compiled
into “communication tables”, indicating in which
cases symbols can be safely discarded. For more
detailed treatment of filtering see [Lankhorst91].

Construction of a PBT parsing table resembles
the construction of a conventional LR(0) parsing
table [Aho77]. States, represented by integers, in
fact consist of sets of LR(0) items. The initial
state O is defined as

{8 = .88, NP — .NP PP,
S — NP VP, PP — .*pPP,
NP — .det *n, VP — .*u NP,
NP — ¥, VP — .VP PP }

That is, initially we are ready to recognize any
constituent. The dot indicates how far we have
proceeded in scanning each of of the right-hand
sides. For each symbol after a dot, an entry in
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the goto 1able and a new state must be defined.
If a constituent starts with a NP, for example,
we move 10 state 4, being

{§— NP.VP, NP — NP.PP}

In a conventional LR table, one should add the
PREDICT sets of VP and PP to this state; not so
in a PBT table! if a PP is to follow the NP, a
PP symbol will arrive in due course, created by
another processor further upstream. Such a PP
svmbol leads to a state {NP — NP PP.}. This
is state 9 in the table, in which the reduction into
a compound NP is called for.

The small simplification by leaving out the
PREDICT set makes a dramatic difference for the
size of the table. As table size we take the num-
ber of non-empty table entries; Goto tables are
usually large and sparse, therefore they are repre-
sented as an array of lists rather than a matrix.
For large grammars (as III and IV in {Tomita85])
the PBT tables are typically an order of mag-
nitude smaller than Tomita’s tables. Table size
and computation time is linear in the size of the
grammar. Hence, in situations where the size of
a standard LR table is prohibitive or where the
grammar is often changed, a sequentialized ver-
sion of PBT could be run on a single workstation.

3 The PBT parser

The PBT recognizer can be easily extended into
a parser. As with Tomita's algorithm, the parser
vields a packed shared forest, a graph structure in
which common sub-parses are shared. The for-
mat in which this forest is delivered is a parse
list, containing an entry for each node, with a list
of pointers to child nodes (if any). Ambiguities
are represented by multiple lists of child nodes
(called sub-nodes by Tomita). If the sentence can
be parsed, a pointer to the root node is given.

In order to compute the parse list in a dis-
tributed fashion, one technical adjustment need
be made: the left place marker of a symbol is an-
notated with its label in the parse list. Whenever
a processor reduces a symbol, a node is added to

its part of the parse list. If the same symbol is re-

duced a second time, a new sub-node is added to
the already existing node. The completed parse
list for the example sentence is shown in Figure
5, the root node is (0.4, 5, 7).

The parse forest is not identical to the one pro-
duced by Tomita's algorithm. For every triple

symbol children
t (6.1, "n, T)
| (6.2, NP, 7) (6.1)
(5.1, det, 6) ;
(5.2, NP, 7) (5.1, 6.1) i
i (4.1, "p, 5) i_
© (4.2, PP,3) (4.1, 5.2) ;
(3.1, *n, 4) |
(3.2, NP,4) (3.1)
i (3.3, NP,7) (3.2,4.2)
(2.1, det, 3)

| (22,NP,4) (21,3.)
(2.3, NP,7T)  (2.2,4.2)

i (1.1, *v,2)

i (1.2, VP, 4) (1.1, 2.2)

[ (1.3, VP, 7T) (1.1, 2.3) (1.2,4.2)
i (0.1, *n,1)

| (0.2,NP,1) (0.1)

| {0.3, 5,4) (0.2, 1.2)

i (0.4,5,7) (0.2, 1.3)

Figure 5: The parse list, root is 0.4

(1, X.j) such that X =" @;41...aj, a node is
added to the forest. Tomita, using the top-
down filtering implicit in shift/reduce parsing,
only creates a node if the additional condition
S =" ay...a;7 is satisfied for some v € V*.
Hence our forest contains more unreachable nodes
than Tomita'’s. On the other hand, if X does pro-
duce a;+1 ...a;, this is represented in our forest
with a unique node, possibly containing multiple
sub-nodes. Thus the structure of our parse for-
est is fully specified. For Tomita's algorithm is
it very hard to precisely specify the forest that
will be delivered; a symbol spanning some spe-
cific part of the sentence is usually represented
by a single node. Sharing fails, however, if iden-
tical symbol vertices on the stack are followed by
different state vertices.

A more substantial improvement upon To-
mita’s algorithm is the acceptance of arbitrary
context-free grammars. Apart from cyclic gram-
mars, there is a class of non-cyclic context-free
grammars that cannot be handled by Tomita’s
algorithm. This problem has been identified in
[Nozohoor89). We call a grammar pseudo-cyclic
if there is a terminal A such that A =2* aAj3, with
a =7 ¢ and 3 #* €. Consider the pseudo-cyclic
grammar

{§—ASb, S—z, A—-c¢}

If the string starts zb..., how many A’s must be
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reduced before the z is shifted? Tomita's algo-
rithm, anticipating an arbitrary number of b’s,
creates infinitely many A’s for a start. Nozohoor-
Farshi proposes to create a loop in the graph-
structured stack; as many A’s as needed can be
used by unrolling the loop arbitrarily often. In
the PBT parser the problem with pseudo-cyclic
grammars simply does not occur. A single symbol
(0, A,0) — or, to be precise, the state vertex fol-
lowing it’s symbol vertex — can be used to shift
any (0, S, k) and subsequent (k,b,k+1) on.

Cyclic grammars are also parsed in a natural
way, without the need for extra sophistication.
Consider the grammar {S — S, § — a}, and
the sentence a. When (0, 5,1) is recognized, it
is reduced to {0, S, 1), which is already present,
and need not be added again. Thus the parser
will add the corresponding node as a sub-node to
itself. The complete parse list is shown in Figure
6.

. symbol children |
| {(0.1,a,1) ‘
L0251 (©02) @)

Figure 6: The parse for a, G = {S — S|a}

Dealing with arbitrary grammars and optimal
node sharing for Tomita's algorithm are discussed
in Chapter 1 of [Rekers92]; in our approach both
features come about naturally.

4 Empirical results

The PBT algorithm has been tested in a series
of experiments in which parallel execution was
simulated on a single workstation, In this way
we could experiment with an arbitrary number of
(simulated) processors.

The simulation set-up is as follows. Each (vir-
tual) process is run consecutively. The stream
of symbols is stored internally, rather than writ-
ten to a pipe. When the next virtual process is
started, the clock is reset. For every (simulated)
read and write an extra processing time of 1 ms is
counted. Each symbol that is sent from one vir-
tual process to another is timestamped. When a
process receives a symbol with a timestamp later
than its own time, the clock is updated and the
waiting time accounted for.

We implemented PBT in the language C and
re-implemented Tomita’s algorithm so as to en-
sure compatibility. We have not attempted to
optimize run-time efficiency at the expense of
straightforwardness. The timing experiments
have been conducted on a Commodore Amiga be-
cause of its accurate timing capabilities.

The grammars and example sentences are the
ones given in [Tomita85]. Grammar I is the
toy grammar of our example. Grammars II, III
and IV have 42, 223 and 386 rules, respectively.
Sentence set A contains 40 sentences, taken
from actual publications; set B is constructed as
*n*y det *n(*p det *n)*~1 with k ranging from 1
to 13. In Figures 7 and 8 the timing results for
set B and grammars III and IV are plotted on a
double logarithmic scale. These figures show that
gain in speed due to parallelisation outweighs the
additional communication overhead only if a sen-
tence is sufficiently long. An exact break-even
point cannot be given, as it depends on the gram-
mar, the sentence, the characteristics of the par-
allel architecture and the implementation.

Similarly, Figure 8 shows that the extra over-
head for filtering pays off only if the sentence is
not too small. We could tip the balance some-
what more in favour of PBT by improving the
filter. In the program that was used to produce
these plots, the filter has a computational com-
plexity linear in the size of the grammar. In retro-
spect, this could have been handled rather more
efficiently. Adding sophistication to handling the
graph structured stack and parsing table look-up
could improve the performance in absolute terms;
relatively it would make less difference, however,
as all programs would benefit from it.

Testing sentence set A produces plots of a more
varied nature, as sentences of comparable length
may differ a lot in complexity. Using linear re-
gression analysis, we found the overall trend to
be similar to the results for set B. For reasons of
space, we refer to [Lankhorst91] for more details.

The complexity of a parsing algorithm can be
measured as a function of the length of the in-
put sentence. For formal languages this makes
sense, as strings (i.e., computer programs) can be
very long indeed. For natural languages this is a
rather doubtful measure. The size of the gram-
mar, usually much larger than the average sen-
tence, is constant and therefore considered irrele-
vant. Nevertheless, sentence set B shows the com-
plexity of the algorithms rather nicely, because
of the combinatorial explosion of PP attachment
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aumber of words

—6— PBT, unfiltered —%— PBT, filtered

Figure 7: Sentence set B and grammar III

time (1000 me)

number of words

—6— Tomita —€— PBT, unfiltered —d— PBT, filtered

Figure 8: Sentence set B and grammar IV

ambiguities. Moreover, constant factors as dis-
cussed above are abstracted from. For set B and
grammars III and IV we estimated the asymp-
totic complexity. These figures, for what they are
worth, are shown in Figure 9. Similar computa-
tions for sentence set A confirm the trend that the
complexity of PBT, using n parallel processes, is
roughly O(y/n) better than Tomita’s algorithm.

Finally, we have estimated the speed of the
PBT algorithm as a function of the number of
processors. The 37 processes for the sentence 13
of set B have been allocated to any number of
processors ranging from 1 to 37, with the pro-
cesses evenly distributed over the processors. Let
p be the number of processors, and k such that

algerithm grammar
111 v
| Tomita O(n?*%)  O(n?%)
| PBT, unfiltered o(n*%?) 0(n?'%)
| PBT, with filtering O(n'*%) O(n'5)

Figure 9: Asymptotic complexity for set B

k < 37/p < k + 1. The higher ranked processes
are groups in clusters of k + 1, the lower ranked
in clusters of k. The results are shown in figure
10. The decline is sharpest when k is decreased,
i.e., the processor handling Py, P,... is relieved
of one of its processes.

number of processors

Figure 10: Performance vs. number of processors

5 Conclusions

We have presented a parallel adaptation of a gen-
eralized LR parser that works purely bottom-up.
A nice theoretical improvement upon Tomita’s al-
gorithm is the ability to handle arbitrary context-
free grammars without additional effort. Also,
a specification of the shared parse forest can be
given easily.

The size and computation time of the parsing
table is linear in the size of the grammar. This
makes a (possibly sequentialized) PBT parser an
interesting candidate for a linguist’s workbench
in which the grammar is often changed.

Experiments based on the test sets provided
in [Tomita85] indicate that parallelization pays
off for sufficiently long sentences. A conventional
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Tomita parser is faster for short sentences. Fur-
thermore, a decrease in number of processors al-
located to the PBT parser leads to an increase in
computation time, and reversed.
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