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1 Why go partial in knowledge representation?

The possibility of representing knowledge in finite Kripke models was studied
in [Th91b]. The main reasons for the present research stem from results re-
ported in the earlier paper. Finite representation in classical possible worlds
models (i.e. Kripke structures with a bivalent truth assignment) turned out
to be possible under certain conditions. For example, some piece of S5-
knowledge o can be characterized by a ‘global miniature’ M (i.e. M ver-
ifies precisely all the S5 consequences in each world) iff a is introspective
(atgs Ka).

However, though the existence of classical miniatures encourages further
research in this direction, some drawbacks of total models point at the need
of partiality in model-theoretic knowledge representation. For, though the
word ‘miniature’ indicates a tiny thing (reflecting our initial intention), the
classical miniatures are by no means small.! To be more specific, we will
calculate the size of one type of classical S5—miniatures below.

Moreover, most positive results were obtained for S5, which is, in some
sense, the simplest modal logic. For the epistemic logics S4 (which is some-
what closer to human knowledge) and S5y, (which is proper for the case of
many agents reasoning according to $5) there are no equally positive results.
In particular, one proof in [Th91b] can easily be generalized to show that
incomplete S4-knowledge cannot be modelled in finite classical Kripke mod-
els. A similar negative result for $5p,) follows essentially from [FHV91): it
is shown there that non-empty finite Kripke structures can model some and
only contingent common knowledge.

Finally, we notice that modal systems such as S4 do not account for
the way in which human beings deal with knowledge — real agents are not
perfect reasoners, therefore they will not know everything that follows from
their knowledge. These observations lead to the following central questions:

o Can we improve upon the complexity of the representation of S5-
knowledge? A priori, partial models seem proper to diminish the size
of the miniatures.

e Can werepresent the knowledge with respect to other epistemic logics,
such as S4 and S5,,,) by means of partial models?

'Perhaps this shift parallels the history of the word ‘minim’ (the next item in Longmans’
International Reader’s Dictionary): formerly a very short note of music, now quite a long
one. Also, there is no consensus on the etymology of the word ‘miniature’, but the relation
to Latin ‘minim’ is at least one of the possible sources.

-199-



e Can we represent the type of knowledge that is closer to the way
in which human beings think, i.e., logically spoken, knowledge that
accords to a weaker epistemic logic??

The answers to these points depend on the kind of evaluation.® Assum-
ing a non-falsification perspective on valid consequence, we will show that
the total miniatures are among the smaller ones. But under a verification
perspective, the gain of partiality is more substantial since the miniatures
will generally be much smaller and will follow the rules of somewhat weaker
logics.

Complexity of classical miniatures

Total miniatures soon become very large. In fact, the smaller the relative
amount of information, the larger the model will be. Some of the worst cases
are those of complete ignorance with respect to a number of propositional
variables. Assume, for example, that the only information is Kp and the
system is totally ignorant with respect to (only) three other atoms. Then
the miniature will consist of 1024 worlds divided over 255 components. In
general, if there is no information about r atoms, whereas the other atoms
are completely known (i.e. either Kp; or K-p; for, say, : = 1,...,n —
r), the number of worlds and components of the (smallest!) miniature is
superexponential in r. More precisely,

Proposition 1 (size of miniature for simple ignorance)

A classical miniature modelling complete ignorance of r propositional vari-
ables and complete knowledge of the other variables, has §C, = 22 —1
components and a total number of {W, = 22"+7=1 worlds.

Proof: First notice that the miniature is isomorphic to the model that characterizes
zero information with respect to 7 atoms (simply drop the uniform specification
for the known p; out of the worlds). This model consists of all non-empty tight
submodels? of the largest tight model for » atoms, which contains 27 worlds. So

%¢f. [FH88), [Th91a] and [Th92].

*[Th90b] discusses various kinds of mon-schematic (i.e. not requiring closure under
substitutions) consequence relations in partial (modal) logic. A complementary overview
of various kinds of typically modal, schematic consequence relations for total models is
[FHV90).

“See [Th91b).
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there are 22° — 1 components. The total number §W, of worlds in this model can
be calculated by an easy combinatorial argument:5

27 27 2r-1 .

- 2" _ T 2" -1 0T 2" -1 97 2T—1 _ 9274r—-1
Fo(T)=Fr (1) =r ()=
=1 i=1 1=0

This ‘worst case’ analysis is even of some practical importance: a relational
database can be relatively empty, that is, the number of atomic (predicate
logical) formulas may be quite large, whereas the number of known facts
small, and the miniature consequently gigantic (if » ~ 100, W, ~ 101°”),
As we will see, especially with such simple ignorance, partial miniatures have
a dramatically better performance: given the right perspective, the model
will consist of just one (1) world!

2 F—miniatures

First we will give the definition of F-miniature, ‘F’ for non-falsification or
falsifiability. Recall from [Th90b] that M, s # ¢ means that ¢ is not false in
s according to model M, M A o that M,s# ¢ for every sin M and D# ¢
that M,s# ¢ for every model M and situation s such that M,s# §é for all
& € D. So the slash in the consequence relation of relative falsifiability has
a fixed meaning and does not indicate non-consequence.

Definition 1 M is an F-miniature for D iff M is finite and M & ¢ &
D A ¢ holds for each .

Or, equivalently, M is an F-miniature iff
o M is finite,
e MA D,

e MAp=DHop.

Until further notice we will concentrate on models with an equivalence
accessibility relation. Moreover, we assume the models to be coherent, i.e.

® Alternatively, the number W, may be understood as follows: each of the 27 state-
descriptions occurs in 2>~ components (i.e. arbitrary subsets of other state—descriptions
attached to it).
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truth-value assignment can be defined or undefined, but not overdefined.
Then the logic of the F-inferences is essentially S5 without the (proposi-
tional and modal) ez falso rules (but with the rules of tertium non datur).
This logic will be called S5* henceforth.®

We can give a syntactic criterion for the existence of F-miniatures. Both
result and proof resemble the analogous case for classical miniatures.

Theorem 1 D has an F-miniature iff D Fgs. M\ K[D].

Proof: (Cf. the proof of theorem 2 in [Th91b].) Notice that S5* induces a relation
of derivational equivalence H, which corresponds to F-equivalence (i.e. ¢ H 9
if M,s53 ¢ & M,s5 ¢ for all M,s). With respect to this equivalence the logic
is finite, as can be established by either a syntactic normal form argument or a
semantic argument. Moreover, this logic also has the FMP. So the miniature is the
finite disjoint union of finite counter-examples to (equivalents of ) non-consequences.
Using the generation lemma, it is easy to prove that this is an F-miniature for in-
trospective D. =

This result demonstrates that for the usual sets of data, such as epistemic
formulas of the form Ko, model theoretic representation is feasible. It does
not display the form of the miniature, nor how to achieve a minimal model.
In fact, what does an F—miniature look like? In some cases an F-miniature
may be a total model, as the following examples will illustrate.

Example 1 (complete information)
Let Prop = {p,q} and D = {Kp, K—q}. The minimal F-miniature for D is
the singleton model

p,7q

It is easily checked that this is an F-miniature for D, and it cannot be made

smaller, since dropping the only point or omitting, for example, ‘p’ would
give M A K-p.

Example 2 (simple ignorance) For the same atoms, let D = {Kp}. The
minimal total F-miniature for D is the model:

8Cf. [Th90b] and [Th92]. S5* is characterized by the set of rules MrL* U{Tr, 5r},
where Tr and 5r stand for Ko - ¢ and K¢  K—~Ky and their respective contraposi-
tives.
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b, 7q b, g b, q Dy q

So, the idea that invoking non-falsification always produces a reduction
of the model (by dropping either positive or negative information) turns
out to be wrong. We can, of course, add partialized components, or, more
precisely, despecifications modulo finite equivalence.” In the present case
this amounts to possibly copy worlds within a component, reconnect them
to the component and finally omit specifications. Partialization will lead
to larger models, but, more importantly, the resulting miniatures will be
equivalent.

Proposition 2 Adding partialized components to an F-miniature results in
another F-miniature (for the same information).

Proof: given some F-miniature M for D with component N , let N'CN, then
M @ N' is equivalent to M, for there are finite L, L' such that N’ = L' CL=N,
and so (1) M @ N’ will be finite; (2) suppose for some § € D and s in M: N', s §,
then by equivalence and persistence N,s= ¢, thus M, 3= §, which contradicts
M # D. So we obtain N # D, and therefore M @ N' # D; (3) if M @ N'# ¢ then
surely M # ¢, and sa D# . =

The proposition licenses an optimalization procedure: an F-miniature can
be minimalized by dropping components which are partializations of other
components. So, a minimal F-miniature will usually consist of more or less
total components.

Now for those data that can be modelled by a total miniature, we may
also consider whether we can supply a truly partial miniature by replacing
a total component by its different partializations.

Example 3 The information D = {Kp, K-q} was covered by the total
model of example 1. Now consider splitting the single world into the pair
constituting the model M :

7SO, N;\ENz iff for some finite N3,N4: N1 ] N3, Nz ES Ng and N3 E Nq. Here E
expresses extension of valuation for the same frame. Persistence w.r.t. valuation extension
was shown in [Th90a].
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Unfortunately, M does not characterize D: on the one hand M A K-pV
Kgq, but on the other D /g5« K-pV Kgq.

A similar situation can be found for incomplete information which is covered
by a total model:

Example 4 (simple ignorance, continued)

Reconsider D = {Kp} (cf. example 2) A minimal F~miniature for D could
be obtained from the total miniature by omitting some of the literals. Notice
however that contracting the middle component to the singleton p, will not
do: then KqV K-q will be non-falsified, but KqV K —q 1s not a consequence
of Kp. Moreover, dropping both occurrences of ‘p’ in the central component
would give the model

b, g —-q q Pq

This model non-falsifies K-pV K qV K g, which is not an F-consequence of
Kp. Similarly, dropping ‘p’ in the right-hand world of the middle component
admits the non-consequence ~KpV KqV K—q. In fact, as the reader may
check (warning: this is tedious labour), none of the occurences of p’, ‘q’ and
‘~q’ may be omitted without loss of characterization.

These examples suggest that minimal total F-miniatures are unique,
up to isomorphism. The examples and the previous proposition may also
suggest the generalization that classical (S5)- miniatures for some set of
data D are always F-miniatures for D as well. Though tempting, the latter
is not true.

Example 5 Consider the data D = {Kp,K(p — q)}. A total model that
verifies D will also verify Kq. Consequently, essentially the only classical
S5-miniature for D will be the singleton model verifying both p and q. But
Kq is not an F—consequence of D, roughly because S5* does not contain
Modus Ponens. So the singleton model is not an F-miniature for D. A
small F-miniature for D is:
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g -q b»q p,q

Another example of the incongruity of classical and V—miniatures may
be more transparant. The point is that for inconsistent data, F—consequence
and S5-consequence diverge widely.

Example 6 For the data {Kp,Kq, K —q} the minimal F-miniature is:

[ -]

As in the previous example, there is no total F-miniature for this set of data:
a total model that non—falsifies ¢ and —q in each world should verify q¢ and
—q 1n each world, thus has to be the empty model. But the empty model also
non-falsifies K—p, which does not follow from the data in S5*.

¢From these comparisons between (partial and total) F-miniatures and (to-
tal) classical miniatures some generalizations are induced:

e A total F-miniature for D is also a classical miniature for D.

o If D has minimal F-miniature that is partial, it has no total F-
miniature,

The first generalization is easily proved. Looking for a kind of converse
notice that examples 5 and 6 show that classical miniatures may not be
total F-miniatures, in fact that there is information that has a classical
miniature, but no total F-miniature. So the following question emerges:

Is consistent information modelled by an F-miniature iff there
8 a classical miniature?

(From the left to the right this holds trivially (even without consistence): If
D has an F-miniature then D g5. M K[D] and so D Fss /M K[D], thus
D has a classical miniature. For the other direction, notice we cannot leave
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out the consistency requirement; a trivial counter-example runs as follows:
p A —p has the empty classical miniature, but cannot have an F-miniature,
since p A —p /g5« K(p A —p). This observation can be transformed into
a genuine counter-example: Consider @ = (p A -p) V Kq. « is consistent
and classically equivalent to K¢, and so S5-introspective. However « is not
S5*-introspective, for Ka is falsified in the left-hand world of the following
model, but « is not.

-q p
*4+—>o0

3 V-—-miniatures

The notion of ‘V-miniature’ is similar to ‘F-miniature’, with verification
(‘V’) instead of non-falsification. The definitions of global verification (M = ),
and relative verification (also called ‘strong consequence’) are obvious.®

Definition 2 M is ¢ V-miniature for D iff M is finite and M= ¢ &
D= ¢ holds for each .

Or, equivalently, M is a V-miniature iff
o M is finite,
e M= D,

e ME o= DE ¢.

As noticed in {Th90b], the set of V-consequences is usually considerably
smaller than the set of normal consequences; so the V-miniature may have
to represent less, which is enabled by possibility of underspecifying worlds
for their propositional contents.

In this section we still restrict ourselves to coherent models with an
equivalence accessibility relation. For relative verification the inference rules
will again be somewhat weaker than the usual S5 ones. Call this logic, which
is also a variant of good-old S5, now with the ez falso rules but without
tertium non datur: S5%, ‘coherent verificational 5.2

®See [Th90b] for details.
®Cf. [Th90b] and the chapter on completeness in partial modal logics in [Th92]. 857
is characterized by MrL*U{Tr, 5r}.
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We may repeat the question of correspondence: which syntactic or de-
ductive qualities of D enable its verificational representation by a finite par-
tial model? Existence of V-miniatures is warranted by the already familiar
syntactic condition of (deductive) introspection:

Theorem 2 D has a V-miniature iff D Fgs+ M\ K[D].

Proof: (Cf. the proof of the previous theorem.) The condition is clearly necessary,
but also sufficient. To show the latter, notice that S5% is logically finite and has
the FMP. If & = Form/ =, then the disjoint union of counter-examples of non-
consequences produces

M= @{N | NE D, N tight and reduced & N £ ¢ for some ¢ € $}.

It is easily checked that M is indeed a V-miniature for D. "

Notice that this theorem guarantees existence of the V-miniature for
introspective information, but does not produce a minimal V-miniature.
As a matter of fact, the model produced in the proof will be usually (much)
larger than the classical miniature. But in many cases smaller models can
be obtained, as the examples below will demonstrate.

The gain of relative verification becomes clear in cases where only part of
the propositional variables are known. Recall that for such simple ignorance
the F~miniature amounts to a classical model of superexponential size (in
the number of unknown variables).

Example 7 (simple ignorance)

Assume complete information about py,...,pi (i.e. Kp; or K-p; for each
i=1,...,k), and complete ignorance of the rest. This set of data is modelled
by the singleton miniature M : 1°

(—')pla . -.~1 (_').'Pk

The last example was a case of ‘simple ignorance’: nothing was known
about p; for ¢ > k, even D i/ " Kpjy1V - K—pgy1. This contrasts with types
of ‘strong ignorance’ in which, for example, there is full knowledge about
P1,..-,pr but D F - Kp; A =K-p; for all i > k.

10The correctness of this and the following miniatures is proved in the appendix.
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Example 8 (strong ignorance)

Let D = {Kp;,~Kpy,~K-py,~Kp3,~K-ps}. D is represented by the fol-
lowing manimal model:

P1, P2 D1, P2

e

PN

D1, P3 P1,7P3

Notice on the one hand that in cases of ‘strong ignorance’ the information
can be strengthened further: e.g. in the above example, D If =K (p2 V p3).
Yet adding such a formula implies an increase of knowledge, so it seems fair
to say that then the ignorance would have decreased.

On the other hand, in between simple and strong ignorance there are
intermediate cases of semi-strong (or, partial) ignorance. Here is a paradigm.

Example 9 (semi-strong ignorance)
Assume that D = {Kp;,~Kp,}. D is minimally represented by:

P1,7p2 D1

o -4—>r-0

Now adding (negative) information such as - K p; has a remarkable effect:
it reduces the size of the classical miniature, but magnifies the size of the
partial V-miniature somewhat. To wit, assume the initial information Kp;.
As we saw in the introductory section, the classical miniature for the atoms
P1, P2, p3 has 32 worlds (distributed over 15 components). Adding —Kp,
leads to some reduction: for this case of semi-strong ignorance the classi-
cal minjature contains 28 worlds (12 components). The final addition of
- K -py, 2 Kp3 and - K —p3 (strong ignorance) involves a classical miniature
of 20 worlds (and 7 components). As the above examples show, the number
of worlds of partial V-miniatures for these cases of simple, semi-strong and
strong ignorance are 1, 2, and 4, respectively (and just one component in
each case).

More generally, (semi-)strong ignorance can be captured by tight V-mi-
niatures of polynomial, in fact even linear size, whereas the classical pen-
dants need a superezponential amount of worlds.
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Proposition 3 (size of miniatures for (semi-)strong ignorance) The
minimal V-miniature modelling (semi-)strong ignorance with respect to r
atoms and complete knowledge of the others has at most 2r + 1 situations
(in 1 component). A corresponding classical miniature requires at least 22" 1
worlds, divided over at least 22" =% components (if r > 0).

Proof: the examples above of (semi-)strong ignorance obviate that the largest
minimal V-miniature will the one for strong ignorance of » atoms, where 2r + 1
situations suffice: apart from the known literals, which occur in all situations, one
containing p; and one containing —p; for each unknown p; and one containing none
of these.

For the classical case, notice that strong ignorance now gives the smallest minia-
ture. Its largest component will have 2" worlds (state-descriptions). Each set con-
taining more than half of these state-descriptions will necessarily satisfy both p;
and —p; for all unknown p; (for if not than there can be no more than 27! states
in the set), and thus will constitute a component of the miniature. So we have that

"
27 1 1 27 -
uCTZ Z ( i )25'22_5(27—1)222 i

21-—-1+1

if » > 0. A similar calculation for the number of worlds shows 11

27 2"-1
P A A N 20 =1\ _or b oroy  oam4r—2 o o271
uw,zzz.(i)_z Z( ; )_2-§~2 =2 > 2
2r—141 27—1
if 7 > 0. (the last estimation also holds for the borderline case r = 0). =

This proposition illustrates our point that partial models are superior
to classical models for at least two reasons: first, they are usually much
smaller and, second, more natural since they tend to grow when informa-
tion is added. Classical miniatures, on the other hand, are rather clumsy
in describing knowledge. Total Kripke structures may be said to model ig-
norance rather than knowledge, which they are supposed to. One of the
additional advantages of partial models is that, since simple ignorance does
not need to be modelled, only ‘relevant’ propositional variables (which oc-
cur in the data) have to be taken into account. Consequently, we omit the
specification of Prop in examples of V-miniatures.

Y'The summation may be replaced by a perhaps more insightful argument: more than
half of the subsets of state~descriptions containing some particular state will contain at
least half of the state-descriptions. This also yields the number 27 - % 22277
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The above examples provided V-miniatures consisting of a single com-
ponent. More complex types of incomplete knowledge may require several
components, however. Before discussing some more involved examples, let
us find the proper analogue for proposition 2. In order to reduce its size,
we need to know how V-miniatures are related to partialization. Again
the relation T between components of a V-miniature involves a minimal-
ization procedure, but now in the reverse direction. So, we can now make
components more complete by extending specification of worlds, after which
equally specified worlds may be identified. Completization will also lead to
larger models, but the resulting miniatures will be equivalent.

Proposition 4 Adding partially completed components to a V-miniature
results in another V-miniature (for the same information).

Proof: similar to proposition 2. L]

By proposition 4 a V-miniature can be minimalized by dropping components
which are essentially partial completions of other components. Therefore a
minimal V-miniature will consist of ‘most unspecified’ components. This
optimization is especially useful for more complex cases.

Example 10 (honest disjunctive knowledge)
The smallest V-miniature for K(p V q) is:

® <4—>0 °
P q q

S e

In comparison with the classical miniature’? the above model is still small:
the classical S5-miniature is a graph consisting of 12 vertices and 6 edges,
divided into 7 components.

Although the last miniature consists of 3 components, the model as a whole
represents a proper piece of information. Typically, one can succesfully de-
clare to know only this or that; then the miniature has to be restricted to its
central component. [HM85] discusses cases of so-called dishonest knowledge
in which such a consistent circumscription is impossible: e.g., one cannot
consistently claim to know only whether this or that. The informal expla-
nation of Halpern & Moses is that a dishonest formula does not correspond

12Cf. [Th91b, example 3]
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to a state of knowledge. In stead of (non-monotonically) circumscribing
knowledge, we have chosen to (monotonically) describe the knowledge.'®

Example 11 (dishonest disjunctive knowledge)
The minimal V-miniature for Kp Vv Kq happens to be the model:

Comparison with the classical miniature’ again points at a still considerable
reduction: the classical S5-miniature has 7 worlds (and 2 edges, 5 compo-
nents).

All the previous examples of incomplete information revealed V-miniatu-
res which were (much) smaller than the classical ones. This suggest the
generalization that representing incomplete knowledge by V-miniatures will
always be more efficient. By inspection of a stronger kind of incomplete
information it shows that this generalization is not true.

Example 12 The minimal V-miniature for K (p e q) ts:

b, q b, q -, g -b, g

At first sight, things may even get worse in that V-miniatures may be larger
than classical ones.

Example 13 The minimal V-miniature for {-Kp,~K-p} is:

-p p
o4—p-0t—>p0

The classical miniature with respect to Prop = {p} has one world less:

13See [Th91b, sections 6,7,9] for a more profound exposition and comparison of the two

approaches.
1 Cf. [Th91b, example 4]
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Before jumping to conclusions, note that proposition 3 indicates that larger
V-miniatures are quite exceptional: for (semi-) strong ignorance the last
example is the only case in which the linear growth function exceeds the
superexponential one. Of course, other types of information may require
larger miniatures. However, this does not give an increase of the theoret-
ical complexity: after reduction, but even before minimalization triggered
by persistence, the number of components is at most 23" — 1 and the total
number of worlds 3™ - 23”1 (cf. proposition 1). We have seen that minimal-
ization usually cuts these numbers down considerably. Moreover, we believe
that the actual absolute excess will be limited.

Given the extensive comparison between partial and classical miniatures
in this section, we can evidently pose the same question as at the end of
section 2: is existence of a V-miniature for (consistent) information equiv-
alent to existence of a classical miniature. Actually, since S5 contains
the ez falso rules, the consistency requirement is immaterial now. Again
the implication holds in one direction: if D has a V-miniature, D is S57—
introspective, and S5% is contained in S5, so D is S5—introspective as well,
and therefore has a classical miniature. In the other direction the implica-
tion is clearly false: pV —p has a classical miniature (the same as for (), but
no V-miniature, since p V -p t/gs+ K(pV —p).

4 Alternative: local miniatures

A perhaps more obvious semantic approach to characterize knowledge would
involve Kripke’s original localmodels. The idea is to have a designated world,
from which the evaluation starts, containing the facts, and the accessible
worlds containing the knowledge of these facts, and the knowledge of this
knowledge, etcetera.

This approach was rejected in [Th91b] because only complete informa-
tion can be described in this way. More precisely, only D which were com-
plete and consistent theories qualified. We blamed bivalence in the root
world for this recalcitrant behaviour. Now, giving up bivalence, the hope of
finding new possibilities for local miniatures is reviving. So, let us consider
local F- and V- miniatures. To that purpose, replace M in definitions 1
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and 2 by (M, s). We will discuss both kind of local miniatures separately.

Local F-miniatures

Like their global partners, the knowledge modelled by local F-miniatures
does not have to be consistent. This oddity is illustrated by example 6, which
also shows that if the global miniature is a singleton model, it coincides with
the local miniature. Moreover, local F~miniatures do not capture honest
disjunctive knowledge. For assume that, for example, K (pV ¢) has a local
miniature (M,w). Then M,w# K(p V q), so M,w# p or M,w# q, but
neither p nor ¢ are consequences of K(pV ¢q). The conditions for local F-
miniatures appear to be very strong.

Theorem 3
D has a local F-miniature iff D is both complete and saturated.'®

Proof: analogous to theorem 1 in [Th91b], using part of the canonical model by
filtration over D + its subformulas. The suitability of saturation follows from the
Henkin completeness proof in [Th90a]. 0]

Local V—-miniatures

Since (global) V-miniatures are more efficient then F-miniatures, we may
hope for more success in the case of local V-miniatures than we experienced
for local F-miniatiures. However notice that disjunctive knowledge is still
troublesome: K(p V ¢) has no local V-miniature. The conditions for local
V-miniatures are still very strong.

Theorem 4
D has a local V-miniature iff D is both consistent and saturated.

Proof: analogous to the previous theorem. m

5 Below and beyond S5: partial miniatures

Within classical logic the paradigm cases of cautious extension or variation
of the S5 system are S4 and S5(m)- The possibilities for miniaturization of

'®Completeness here expresses D F ¢ or D | —p, saturation DF ¢ V¢ = D | ¢ or
DF .
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information turned to be extremely limited for these background logics. For
the epistemic logic S4 (advocated by Hintikka) complete information can be
represented in a singleton model. In [Th91b] we conjectured that incomplete
information does not have S4-miniatures; this claim has been verified for
simple and semi-strong ignorance. The situation for S5(m) is even worse:
consistent information (whether ‘complete’ or not) does not have S5 (m)—
miniatures. Is the situation for partial logic similarly distressing? To study
this in some detail, we will focus on V-miniatures in the rest of this section.

S4T—miniatures

Partiality slightly improves the chances for $5*-miniatures: both complete
knowledge and simple ignorance can be modelled by singleton V-miniatures.
A simple induction proof shows that S4* and S5% have the same inferences
from this kind of information. Consequently, the miniature of example 7
still qualifies with respect to S47.

For (semi-)strong information we find the opposite situation. E.g., con-
trasting to example 9, {Kp, K¢} has no S4*-miniature, for suppose M
would qualify. Then M= - Kq,so M= K-Kgq. However, Kp,~KqF¢ K-Kq.

More generally, negative information appears to obstruct possible minia-
tures. More challenging are the cases of positive partial knowledge, such as
K(pVq). We believe that a characterizing model requires chains of unlimited
length, but this has not been proven with formal rigour yet. On the other
hand, the ‘dishonest’ formula Kp Vv Kq appears to have the same miniature
as in example 11.

S5(m) T —miniatures

Here the situation is worse. One of the points is that for a multi-agent logic
there can be no complete information without contingent common knowl-
edge, which can not be expressed in the simple modal language. And with-
out an operator for common knowledge, we cannot obtain miniatures: the
models will always be too strong. In fact the proof of the nonexistence
of S5(py)—miniatures for consistent data can simply be transposed to the
realm of partial semantics. On the other hand, simply adding an operator
C for common knowledge may not solve all problems. Though it is clear
that C-introspection is a necessary condition for the existence of S5(m)+—
miniatures, it is not obvious that the condition is sufficient.
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A Correctness of several V—-miniatures

correctness of example 7 (simple ignorance)

Proof: Clearly M= D, and assume that M p. LetN,sE D for some model
M containing situation s, then for the generated submodel N, also N, E D. Thus
MLCN,, for M can be obtained from N, by omitting all p; specifications for { > k
and then identify equally specified situations. Therefore N, E ¢, s0 N,sE ¢, and
consequently DE ¢. u

correctness of example 8 (strong ignorance)

Proof: Correctness and minimality of this miniature can be shown by constructing
the semi-lattice of verifying tight models, partially ordered by L, which has the
displayed miniature as its bottom element. This, however, is a laborious exercise.
An easy argument may do just as well: Notice that every tight model verifying D
will consist of situations which at least contain p;, whereas some situations should
contain pz, —p;, p3, and —p3. Now the given model can be strengthened to any
verifying model, and thus minimally characterizes D (cf. proposition 4 for formal
Jjustification). m

correctness of example 9 (semi-strong ignorance)

Proof: Here a construction of the semi-lattice of verifying components is feasible.
In fact there are two ways to generate this structure. One may inspect the 8
minimal models which have p; in each world and possibly also p; or —p2, and check
whether ~Kp; holds in them. Then the obtained models are ordered for C, and the
displayed miniature then appears to be the bottom of 3 element semi-lattice. But
one may also start with the classical miniature for D: its components will verify D
in the partial sense too.

P1,7pP2 P, 7DP2 D1,D2
® o ¢—p-0

Then by weakening (i.e. partializing and possibly duplifying and identifying situ-
ations) the minimal partial miniature is obtained in the end. The latter method
often turns out to be more efficient. n
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correctness of example 10 (honest disjunctive knowledge)

Proof: it suffices to draw the graph of all (reduced) tight V-models for K(p V q),
ordered with respect to C (indicated by lines), where the uphill components are
more specific and thus may be omitted.
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