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Abstract

In this article the DRT rule for introduction of markers in a DRS is inter-
preted as the logical rule of ezistential instantiation. Consequently, markers are
taken to be constants witnessing existential formulas, instead of existentially
quantified variables. Models are introduced, where these witnesses denote par-
tial objects and various proof systems are studied. Finally, a ‘dynamic’ extension
of the ‘static’ DRT framework is proposed.

Introduction

In traditional Discourse Representation Theory (DRT) the occurrence of the indef-
inite noun phrase ‘a man’ in the sentence “A man walks in” gives rise to a twofold
action: (1) a marker ‘z’ is introduced in the discourse representation structure (DRS)
for future reference to this man, (2) a condition “man(z)” is added to the DRS to
the effect that this marker stands for a man. Semantically the marker is interpreted
as an ezistentially quantified variable: the DRS is true with respect to a particular
model if there is a variable assignment, mapping z to an element in the domain of
the model, such that the predicate man holds for this element.

Now, a logician can’t fail to notice the resemblance between this rule for the intro-
duction of a marker and the logical rule of ezistential instantiation.

3z man(z)
man(a)

and note that the introduction of the marker and the addition of a condition consti-
tute a single logical action. Under this interpretation a marker is no longer seen as
an existentially quantified variable, but as a witness for the corresponding existential
sentence.

When we interpret markers as witnesses for existential sentences, they are constants,
and, unlike variables, constants denote. What element of the domain can we take
these constants to denote? Every individual we choose will have a lot more prop-
erties than are accounted for by the text. In fact, the totality of his properties will
constitute a maximally consistent set. Consequently, this interpretation of marker
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introduction, forces us to consider the denotation of markers as partial(ly specified)
objects. A partial object a associated with the phrase “a man” will be an object
with only those properties that can be concluded from the fact that it is a man. In
the models we will construct, this takes the form of the following equivalence:

M* = Vz(man(z) - €(z)) <= M* E Iz man(z) — £(a).

Notice that this interpretation of partiality gives us one of the so—called ‘donkey
equivalences’.

1 Models for Partial Objects

The semantic structures of our theory are, in essence, K. Fine’s Arbitrary Object
Models (Fine [2, 3]). They contain two disjoint domains: a domain M of stendard
tndividuals and a domain A of arbitrary objects. Every arbitrary object in A is
associated with a set of individuals from M, the set of its insiances. This association
will be formalized by a set V of (finite) functions from A into M: for v € V, the
element v(a) of M is taken to be an instance or completion of a.

M*=(M, A, V, <, I)is an Abitrary Object Model, (AO-Model) if

1. M and A are disjoint sets. M the standard domain consisting of standard
individuals, A, the generic domain, consisting of arbitrary objects.

2. V C M4 is a set of finite functions from A in M.

3. < C Ax A, the dependency relation, is a strict partial order that is conversely
well-founded. (More will be said about this relation.)

4. I is an interpretation function, satisfying: for € € C : I(c) € M and for
ze A: I(a) € A

Truth

The idea behind the notion of truth regarding sentence containing constants de-
noting arbitrary objects is that these objects have a certain property if all their
completions have that property. This is the principle of generic attribution.

Given M* = (M, A, I, <, V), we will assume to have a set C of constants m for all
elements of M, and a set A of constants @ for all elements of A. The set of constants
from A occurring in a formula ¢ will be denoted by A(¢).

The variable assignments g will always be mappings from VAR, the set of individ-
ual variables of £, to M; so formulas without constants from A are interpreted
standardly in M = (M, ]| C), the first—order structure underlying M*. Finally,
v(¢(@y, .. .,d,)) will denote the result of the simultaneous substitution in ¢ of 7;

for @;, where, forv € V, 1 <i < n, v(I(g;)) = m;.
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Definition 1 Truth Definition.
Let ¢ be an L—formula such that A(¢) = {@1,...,@n} and let Vg = {v € V|
A(¢) C dom(v)} , then

M* = ¢ [g] iff Vv € Vg MEv(d) 9]

Definition 2 Validity
For T a set of L-sentences and ¢ an L-sentence,

o the inference T |= ¢ is truth-to—truth valid in model M* if, whenever M* |= T
then M* |= ¢

e the inference T |= ¢ is case—to-case valid in model M* if, forallv € V defined
over the constants in 7' and ¢, whenever M |= v(T) then M = v(¢).

Truth—to-truth validity deals with inferences leading from properties of arbitrary
objects to other properties. Here the .A-constants behave purely as constants. This
interpretation does not allow us to conclude the universal validity of ¢ — ¥ from
the validity of the inference ¢/v. Case—to—case validity of inferences, on the other
hand, allows us to conditionalize; for finite T': if the inference T/¢ is case—to case
valid, then the sentence T — ¢ is universally valid. In case-to-case validity, the
scope of the (hidden) quantifier in the premise includes the conclusion. The case-
to—case interpretation makes the constants act like free variables, where premise and
conclusion are evaluated with respect to the same variable assignment.

The Dependency Relation

Markers are introduced at certain points in a discourse, and a new marker may
depend on previously introduced ones. A representation of the text “A man walks
in. His mother follows him as usual” must incorporate the fact that the marker for
“His mother” depends on the marker for “A man”: if an individual m is a completion
of “His mother”, then mn must be the mother of the completion chosen for “A man”.
These dependencies between the objects are dynamically created in the course of a
text and are sensitive to the order in which the sentences are presented. For instance,
the text “A woman walks in. As usual she is preceded by her son” will give rise to
other dependencies than the ones generated by the above example.

In AO-models, the dependency relation formalizes the ‘static projection’ of these
dependencies.

In order to get a general perspective on this relation we will let the constants exhibit
dependencies explicitly: whenever a witness is introduced for an existential formula,
Jz¢(z), it will be indexed by the formula that led to its introduction.

32';t'(:';ia:i .. '-dn)
(Cg(e,ay...an)r @1 - - .8p)

Note that the parameters in Jz¢(z) will occur in the index ¢(z) of Ty(s)- We will
now take these indexed constants to refer to partial objects. Partial objects will be
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arbitrary objects, indexed by formulas from £(z), the set of all L—formulas in which
exactly variable z is free.

Definition 3 Partial Object Models
A Partial Object Model (PO-Model) is an AO-model M* = (M, Az, V, <, I)
where

o Ar = A x L(z) with A a non-empty set disjoint from M
o I(ay) = ay forsomeac A

o M* = 32d(2)  4(3p)

o ay < ay <= Ty < Tdy

Remark 1 Notice that the Truth Definition does not mention the dependency re-
lation. This relation is not involved in truth or falsehood of a sentence, but in its
well-formedness. For instance, if we have a sentence like "another man walks in”
in which the noun phrase another man depends on the existence of a (previously
introduced) marker @man, then the absence of such a marker will not affect the truth
of this sentence, but it will cause it to be non wellformed.

2 Proof System

The proof system belonging to partial object models consists of a standard system
of rules of natural deduction for the boolean connectives extended by the following
instantial rules

Instantial Rules

Vep(z) deg(z)
@n g D g,
(ve) vff()x) (BG) Tff()z)‘

Here, @4 € A and ? is any L-term free for z in #(z). Notice that only in EI the
instantial term is indexed by ¢; in the constant ag introd1_1ced by EI, a is uniquely
associated with ¢(z). So if we have @, and by, where @ # b, at most one can be the

result of an application of EL
The absence of an index in the terms of rules EG, UG, and UI reflects the fact that

any term can occur in a valid application of these rules.

To be sound, a deduction D in the system has to satisfy the following restrictions
(adapted from Copi [1])
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Definition 4 Derivations
A derivation D is correct if and only if it satisfies:

WF Weak Flagging: no term ay that results from an application of EI in D, is also
an UG instantial term.

IND Independence: in any application of UG, no A-letter occurring in either the
conclusion or the suppositions to the inference can be identical to or depend
upon the instantial term.

Weak Flagging speaks for itself, it prevents the drawing of universal conclusions from
existential premisses. Independence extends the usual proviso for UG — that t does
not occur in any of the undischarged suppositions on which ¢(Z) is based — to cover
all constants on which ¥ depends: it may be the case that ¢ does not occur in the
suppositions, but that we have a suppostion (@) where @ < . Independence rules
out this case as a foundation for the application of UG. Given these restrictions, ¢
is derivable from premise set T in our proof system if and only if ¢ is derivable
from T in any standard axiomatization of first-order logic. Notice that only the
identity of the constant enters in the formulation of the restrictions on deductions;
consequently, as long as we respect these restrictions, it does not matter whether the
constants involved are elements of A or C. The difference between these constants
only shows up in the semantics.

2.1 Extended Proof Systems

In the basic proof system the identifiers of the objects are structurally meaningless.
The proof of soundness of the deductive system only mentions the identity of the
constants. As yet, we have no relations between partial objects and even, for in-
stance, the objects as and agng, or agay and aysg, may lack common instances.
This implies that the general system is sensitive to all structural differences between
the identifiers, and we can create a representafional system by formulating rules
that relate objects in terms of the identifiers. To bring this into familiar territory
we will introduce a relation of ‘local consequence’ f C £(z) x £(z) between L(z)-
formulas, where will say that ¢(z) = ¥(z) holds in model M* if the witness for
#(z) satisfies P(z), i.e., M* |= ¥(@3) where @y is the unique constant associated
with ¢(z). To take a classic example from non-monotonic logic. Let P(z) stand for
the property of being a penguin, B(z) the property of being a bird, and F(z) the
property of flying, then we can have M* |= B(ap) A F(ag) A ~F(ap). This does
not constitute an inconsistency, it only means that the value ranges of ap and ap
will be disjoint. So in this set-up inconsistency is not the problem — we do not
have to get rid of certain logical principles — the object, on the contrary, is to add
principles in order to relate objects. So, for instance,

Y(ag) A €(ay)
£(ay)
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would give us transitivity of the conditional p~ and inconsistency of the sentence
above. We are free to fix this inferential relation in any way we want, by formulating
rules relating the properties of objects with different identifiers.

Reflexivity

An important difference between the conditional as defined here, and standard for-
malizations, comes out when we look at the principle of reflezivity, common to most
sub—structural logics, i.e., for all ¢(a)

¢(@) i ¢(2)

This is not a universally valid inference in our system, because M* |= ¢(ay) only
holds in models where Jz@(z) holds. In other words ¢(@;) is not an axiom in our
system, but the conclusion of a rule.

dzd(z)
¢(a) b ¢(a)

Here Jz¢(z) gives rise to the introduction of a reflezivity statement. What this
means is that our proof system will only give us sound inferences for objects that
have been introduced (markers).

That Reflexivity does mot hold in general has the important consequence that
#(a) i —$(a) is generally not an inconsistent statement. This is as it should be,
for in PO-models ~¢(ay) « Vz-¢(z) is a valid formula. To derive an inconsis-
tency we need ¢(@) b #(@). Without reflexivity for ¢(a@) there is no guarantee that
M* |= 4(@y) will hold for classical consequences ¢ of ¢.

Introduction and Elimination of Connectives in the Identifiers

As we have introduction and elimination rules for the connectives on the level of £—
formulas, so we want to have rules introducing and eliminating these in the identifiers
of objects. Addition of such rules to the standard proof system entails relating the
witnesses for different £(z)—formulas. We will only mention two candidate rules.

Conjunction

P(ag) €(ay) P(ay) E(@ny)
(A1) £(@pny) (A TE) £(ag)

Here we have the rules of Cautious Monotony and Cautious Cut respectively (Makin-
son [11], Gabbay [5]). These rule will figure prominently in the next section.
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3 Discourse Representation Theory

In our theory, candidates for discourse markers are constants indexed by formulas in
one free variable (properties). A DRS is boolean combination of atomic sentences.
Its markers are the constants @, occurring in it, for which #(@,) holds, i.e. constants
that are indexed by the formulas that have led to their introduction. The flexibility
of this set—up, can be illustrated by two examples

o Firstly, in the translation to logical formula, a choice will have to be made,
whether to render phrases as identifiers of markers, or as conditions on them.
So the sentence “A man walks” may give rise to walk(aman) — translating “A
man walks” — or to man(ayuk) — translating “A man walks” — or even to
man(@manawalk) In this way, the topic-comment (‘theme’—‘rheme’) distinction
can be formalized in a natural way.

s Secondly, syntactic information can be used to determine the logic of the mark-
ers. For instance, the syntactic feature [+ specified quantity] of plurals, may
guide Existential Instantiation in the choice of a logic domain: a set of objects
governed by rules of the extended proof system.

3.1 Basic Discourse Representation Structures

To start our formal discussion of DRT within the framework of partial object models,
we restrict ourselves to basic DRS’s, i.e., formulas (@) where ¢ as well as ¢ are
congunctions of literals. So, whenever we refer to L-sentences, L(z)-formulas or A,
constants, we mean only elements from this restricted language. We can think of
such sentences and formulas as derived from a purely first—order theory through the

basic proof system.

Definition 5 Let S be a finite set of L—sentences and A(S5) the set of Ac—constants
occurring in S, then

o the set M(S) of markers of S is given by M(S) = {@y € A(S) | S+ (@)}
o §is closed if A(S) U |A(S)| C M(S), i.e., for all @, € A(S), @y € M(S) and
if @, < @, then @y € M(S)

So, the markers of a set of sentences §, are the constants occurring in it that have
been introduced (Izd(z) «» $(Ty)); S is closed if all constants in .5 are markers.

Remark 2 The difference between the markers M(S) of some set 5 of L—sentences
and the other constants occurring in elements of S can be interpreted in various
ways. Here the markers are viewed as the constants that have been introduced,
but other interpretations are: the constants that have been constructed, declared or

found (relative to some search procedure).
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Definition 6 Discourse Representation Structures

A Discourse representation Structure (DRS) is a finite set of L-sentences. A DRS is
open if it is not closed. A set S of L—sentences is a possible continuation of a closed
DRS D if DU S is closed.

A continuation § of structure D need not itself be closed. The set A(S) = (A(S)U
IA(S)]) ~ M(8) will be called the set of anaphors of §. Anaphors can occur up
to any finite depth along the dependency relation: a promoun like ‘he’ is a top-—
level anaphor (€ A(S) — M(S)), while a phrase like ‘his brother’ will translate to
T otnen(ey € M(S) where b ¢ M(S).

We will represent discourses ¢(@g) A £(ay) by [(@) (£(@x))] where the left element
contains the markers and the right one the conditions.

Definition 7 Truth Definition for DRS’s
M*E [(a_;s, . ..Egn) (Y1, ..., ¢%)] iff

o for all markers @, : M* |= 6i(Ty,)
s for all conditions ; : M* |= ¥;

Remember that we are only considering structures built from literals; a DRS may
contain a second structure as a complex condition — of the form ¢(@y) A ¥(@g) —
and such a condition will correspond to a DRS containing markers with complez
indices.

3.2 Static and Dynamic DRT

A DRS may contain two kinds of constants. (1) Constants that have been intro-
duced by an application of EI: for any two such constants (@, ¢(z)), (b,%(z)) we have
@ #b. (2) Constants (g, ¢(z)), (b,%(z)) where @ = b. Here, at least one of them is
not the product of an application of EL Such a pair, we will interpret as referring
to the same object: we will consider one of them as an update of the other. Given
¢(ay4), the condition t(ay) gives information about @y and updating the marker
with this information results in the new marker @gny Where the same constant from
A is indexed by the extended formula. We will introduce some proof rules to achieve
this.

We will consider models for DRS’s to be PO-models satisfying two additional prin-
ciples, formulated as proof rules.

Definition 8 DRS-Models
Any model for a DRS will satisfy the rules of Cautious Monotony and Cautious Cut

from the previous section.
Corollary The following rule is valid on all DRS models:

P(ay)
£(ay) « E(Tpny)

(E-Rule)
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This follows, by conditionalization, from C.M. and C.T. So if 1 holds for @4, then
Gyny and @, satisfy the same formulas, they denote the same partial object.
Definition 9 Markers @y, Gy are equivalent, @, ~ @y if M* = x(T@) <= M*
x(@y) for all x € L(z). Equivalence classes are defined accordingly, i.e., [@4] = {ay |
ag ~ oy}

Lemma 1 Reduction to Objects

For every DRS, [(@3) (¥(@s))] and model M* satisfying the E-Rule:

i M e @) (), then { ) 2 () O

The proof of this lemma is an immediate consequence of the E-rule. We have for
instance

#(as) ¥(ay)
$(@sny) A P(@pny)
Notice that we derive a reflezivity statement (¢(@gay) A ¥(Tpay)) Without using EI.

Corollary Every closed discourse is reducable to a set of markers closed under
successors along the dependency relation.

Note the key assumption that the DRS’s are closed: an open DRS may be partially
reducable, but it will always contain irreducable conditions.

This lemma will form the basis for our interpretation of Discourse Representation
Structures. It entails that we can consider the condition ¥(ay) of DRS [(@4) (¥(a3))]
to be a map from [(@y) (0)] to [(@gay) (9)] preserving all conditions that hold for G4.
So from a general perspective, DRS conditions can be viewed as update functions of
the sets of markers involved. Informally,

[¥(@)] : [(@s) ()] — [([@say) (B)]
and the relation between the traditional and the update perspective can be stated
in a simple way:

Definition 10 Fixed Points
An equivalence class [@g) of marker @y is a fized point for ¥(ay) if [¢(@p)]([@s]) =

[[%(@4)](4)] = [@y]-

Lemma 2 Update Lemma

M* = [(@g) (¥(@p))] iff [@g] is a fixed point of [ (ay)]

So, if 9(@y) already holds for marker @y in M*, then updating only results in change
of the name for the object ay.

In this way, we embed the standard, static, Discourse Representation Structures in
a dynamic framework, where conditions are interpreted as update functions mapping

(sets of ) markers to (sets of) markers.
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