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In stochastic language processing, we are often inlerested in the most probabie parse of an input string.
Since there can be exponentially many parses, comparing all of them is not efficient. The Viferbi algorithm
(Viterbi, 1967, Fujisaki et al,, 1989) provides a tool to calculate in cubic time the most probable derivation

of a string generated by a stochastic context free grammar. However, in stochastic language models that
allow a parse tree (o be generated by different derivations - Iike Data Oriented Parsing (DOP) or Stochastic
Lexicalized Tree-Adjoining Grammar (SL.TAG) - the most probable derivation does not ntecessanly produce

the most probable parse. In such cases, a Viterbi-style optimisation does not seem feasible to calculate the
most probable patse. In the present article we show that by incorporating Monte Carlo techniques into a
polynomial time parsing algorithm, the maximum probability patse can be estimated as sccurately as
desired in polynomial time. Monte Carlo parsing is nof only relevant to DOP or SLTAG, but also provides
for stochastic CFGs an interesting altemative to Viterbi, Unlike the current versions of Viterbi-style
optimisation (Fujisaki et al, 1989; Jelinek et al,, 1990; Wright et al., 1991), Monte Carlo parsing is not
restricted to CFGs in Chomsky Notmal Form, For stochastic grammars that are parsable in cubic time, the
fime complexity of estimating the most probable parse with Monte Carlo turns out o be O(3e2), where n
is the length of the input sinng and € the estimation error. In this paper we will treat Monte Carlo parsing
first of all in the context of the DOP maodel, since it is especially here that the number of detivations
generating a single tree becomes dramatically large. Finally, a Mome Carlo Chart parser is used to test the
DOP model on a set of hand-parsed strings from the Air Travel Information S ystem (ATIS) spoken
language corpus. Preliminary experiments indicate 96% test set parsing accuracy.

1 Motivation

As soon as a formal grammar characterizes a non-trivial part of a natural fanguage, aimost every
input string of reasonable length gets an unmanageably large number of different analyses. Since
most of these analyses are not perceived as plausible by a human language user, there is a need for
distinguishing the plausible parse(s) of an input string from the implausible ones. In stochastic
language processing, it is assumed that the most plausible parse of an input string is its most
probable parse. Most instantiations of this idea estimate the probability of a parse by assigning
application probabilities to context free rewrite rules (Jelinek ct al., 1990; Black et al., 1992; Briscoe
& Carroli, 1993), or by assigning combination probabilities to elementary trees (Resnik, 1992;
Schabes, 1992),

There is some agreement now that context free rewrite rules are not adequate for estimating the
probability of a parse, since they do not capture lexical context, and hence do not describe how the
probability of syntactic structures or lexical items depends on that context. In stochastic lexicalized
tree-adjoining grammar (Schabes, 1992), this lack of context-sensitivity is overcome by assigning
probabilities to larger structural units. However, it is not always evident which structures should be
considered as elementary structures. In (Schabes, 1992), it is proposed to infer a stochastic TAG
from a farge training corpus using an inside-outside-like iterative algorithm,

Data Oriented Parsing (DOP) (Scha, 1990,1992; Bod, 1992,1993), distinguishes itself from other
statistical approaches in that it omnits the step of inferring a grammar from a corpus, Instead, an
annotated corpus is directly used as a stochastic grammar. An input string is parsed by combining
subtrees from the corpus. In this view, every subtree can be considered as an elementary structure.
As a consequence, one parse (ree can usually be generated by several derivations that involve
different subtrees, This leads to a statistics where the probability of a parse is equal to the sum of the
probabilities of all its derivations. It is hoped that this approach can accommodate all statistical
properties of a language corpus.



Let us illustrate DOP with an extremely simple example. Suppose that a corpus consists of only two

trees:

TP /VP\ T ~

she NP l /\
he

put the block on the table

>

on the rack

Suppose that our combination operation (indicated with ) consists of substituting a subtree on the
leftmost identically Iabeled leaf node of another tree. Then the (ambiguous) sentence she put the

dress on the table can be parsed as an S by combining the following subtrees from the corpus. (For
an exact definition of subtree, see section 2.)

S o NP ] /pp\ = S

/\ N\, /\
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or

S o VP o //I\\JP\
}AP VT/\;P the  dress
I 7\ N\
she v NP ? ){\
|

put on the table

Thus, a parse can have several derivations involving different subtrees. These derivations have
different probabilities. Using the corpus as our stochastic grammar, we estimate the probability of
substituting a certain subtree on a specific node as the probability of selecting this subtree among all
subtrees in the corpus that could be substituted on that node. The probability of a derivation can be
computed as the product of the probabilities of the subtrees that are combined.

As an example, we calculate the probability of the last derivation given above. The first subtree
(S(NP(she), VP}) occurs twice in the corpus among a total of 78 subtrees rooted with an S, Thus, its
probability of being selected is 2/78. The second subtree occurs once among a total of 60 subtrees
that can be substituted on aVP, hence, its probability is 1/60. The probability of selecting the

subtree NFP(the,dress) is 1/18, since there are 18 subtrees in the corpus rooted with an NP, among

which this subtree occurs once. The probability of the resulting derivation is therefore equal 10 2/78 «
1/60 = 1/18 = 1/42120. The next table shows the probabilities of all three derivations given above,

P{lstexample) = 178 = 1/18 « 1/8 = /11232
P(2nd example) = 1778« 1/60 % 1/18 = 1784240
P(3rdexample) = 2/78 « 1/60 + 1/18 = 1/42120

This example illustrates that a statistical language model which defines probabilities over parses by
taking info account only one derivation, does not accommodate all statistical properties of a language
corpus, Instead, we define the probability of a parse as the sum of the probabilities of all its
derivations, Finally, the probability of a string is equal to the sum of the probabilities of all its parses.

An important advantage of using a corpus for probability calculation, is that no training of
parameters is needed, as is the case for other stochastic grammars (Jelinek et al., 1990; Pereira and
Schabes, 1992; Schabes, 1992). Secondly, since we take into account all derivations of a parse, ne
relationship that might possibly be of statistical interest is ignored. Although there is bias in DOP in
favor of parse trees generated by fewer subtrees, this does not lead to 'smaller' trees, as is the case
with stochastic CFGs where 'smaller’ parse trees, generated by fewer miles, are almost always
favored regardiess of the training material (Magerman and Marcus, 1991; Briscoe and Carroll,
1993). Finally, by using corpus subtrees directly as its structural units, DOP is largely independent
of notation systems.

We will show that conventional parsing techniques can be applied to DOP. However, in order to
find the most probable parse, a Viterbi-style algorithm does not seem feasible, since the most
probable derivation does not necessarily produce the most probable parse. We will show that by
using Monie Carlo techniques, the maximum probability parse can be estimated in polynomial time.
In the following, we first outling the DOP mode! in a more mathematical fashion, and provide an
account of Monte Carlo parsing, Finally, we report on some experiments with a Monte Carlo Chart
parser on the Air Travel Information System (ATIS) corpus as analyzed in the Penn Treebank.



2 The Data Oriented Parsing Model

A DOP model is characterized by a corpus of tree structures, together with a set of operations that
combine subtrees from the corpus into new trees. In this section we explain more precisely what we
mean by subtree, operations etc., in order to arrive at definitions of a parse and the probability of a
parse with respect to a corpus.

A subtree of a tree Tis a connected subgraph S of Tsuch that for every node in S holds that if it has
daughter nodes, then these arc cqual to the daughter nodes of the corresponding node in 7. It is
trivial 1o see that a subtree of a tree is also a tree. In the following example Ty and T are subtrees of
T, whereas T3 isn't,

L T, g T2 vp T, S
NP vp NP VP v NP NP VP
/N N |
John Y NP v NP s John NP
]il!es Mary

The definition above also includes subtrees consisting of one node. Since such subtrees do not
contribute to the parsing process, we exclude these pathological cases and consider only the set of
subtrees consisting of more than one node. We shall use the following notation to indicate that a tree
tis a subtree of atree ina corpus Ot t€C =gor I T € C: tis a subtree of T, consisting of more

than one node.

We will limit ourselves to the basic operation of substitution. (Other possible operations which
combine subtrees are left to future research.) If ¢ and u are trees, such that the leftmost non-terminal
leafof tis equal to the root of u, then four is the tree that results from substituting this non-terminal

leaf in tby tree u. The partial function o is called substitution. We will write (feu)ov as fouoy, and in

general (..((tjot2)ot3)o. Jotp as t jotpot 30... oty

Tree T'is a parse of input string s with respect to a corpus C, iff the root of Tis labeled S, the yield
of Tis equal to input string § and there are subtrees {},...,tn € C, such that T = t}o...ofy. This
definition correctly includes the trivial case of a subtree from the corpus whose yield is equal (o the
complete inputstring,

A derivation of a parse T with respect to a corpus C'is a tuple of subtrees (11,...,tn) such that ¢ 1reoln
eCandtyo..otp=T

Given a subtree £; £ Cand a node labeled X, the conditional probability P(i=ty | root(f)=X) denotes
the probability that ¢ is substituted on X. If rooi(t 1) # X, this probability is 0. If root(f;) = X, this
probability can be estimated as the ratio between the number of occurrences of £7 in C and the total
number of occurrences of subtrees t'in C for which holds that root(t!) = X, Evidently, X P(t=t; |
roat(t)=X) = I holds.

The probability of a derivation (t1.....tn) is equal to the probability that the subtrees t],...,tp are
combined. This probability can be computed as the product of the conditional probabilities of the
subtreesty,....tn. Let Inl(x ybe the leftmost non-terminal leaf of tree x, then:

P((t],...tn)) = Pa=tjlroot(=8) * ITi_3 0 P(t=ti [root(t) =Inl(tjo...otj.1))



The probability of a parse is equal 1o the probability that any of its derivations occurs. Since the
derivations are mutually exclusive, the pr: bability of a parse is the sum of the probabilities of all its
derivations, The conditional probability of a parse T given input siring s, can be computed as the
ratio between the probability of Tand the sum of the probabilities of all parses of s.

The probability of a string is equal to the probability that any of its parses occurs. Since the parses
are mutvally exclusive, the probability of a siring s can be computed as the sum of the probabilities
of all its parses. It can be shown that X; P(s;) = 1 holds.

3 Monte Cario Parsing

It is easy to show that in DOP, an input siring can be parsed with conventional parsing techniques,
by applying subfrees instead of rules to the string (Bod, 1992). Every subtree ¢ can be seen as a

production rule roel(t) — £, where the non-terminals of the yield of the right hand side constitute the

symbols to which new rules/subirees are applied. Given a cubic time parsing algorithm, the set of
derivations of an input string, and hence the set of parses, can be calculated in cubic time. In order to
select the most probable parse, it is not efficient to compare all parses, since there can be
exponentially many of them, Although Viterbi's algorithm enables us to derive the most probable
derivation in cubic time (Viterbi, 1967; Fujisaki et al., 1989; Wright et al., 1991), this algorithm does
not seem feasible for DOP, since the most probable derivation does not necessarily produce the most
probable parse. In DOP, a parse can be generated by exponentially many derivations. Thus, even for
determining the probability of one parse, it is not efficient to add the probabilities of ali derivations of
that parse,

It is an open question, whether there exists an adaptation of the Viterbi algorithm that selects the
maximum probabilily parse in cubic time for DOP. In this paper, we pursue an alternative approach.
In order to estimate the maximum probability parse efficiently, we will apply Monte Carlo techniques
to the decoding problem. We intend to show that, with Monte Carlo, the maximum probability parse
can be estimated as accurately as desired, making its error arbitrarily small in polynomial time.
Moreover, Monte Catlo techniques can easily be incorporated into virtually any polynomial time
parsing algorithm. Thus, Monte Carlo parsing may also provide for stochastic CFGs an interesting
alternative to Viterbi, which, in its current versions (Fujisaki et al,, 1989; Jelinek et al., 1990; Wright
et al., 1991), is restricted to CFGs in Chomsky Normal Form. We will treat Monte Carlo parsing
first of all in the context of the DOP model, since it is especially here that the number of derivations
generating a single tree becomes dramatiically large.

The essence of Monte Carlo is very simple: it estimates a probability distribution of events by taking
random sampiles (Hammersley and Handscomb, 1964). The larger the samples we take, the higher
the reliability. Since the events we are interested in are parses of a certain input string, we should
randomly sample parses of that input string. The parse tree which is sampled most often is an
estimation of the maximum probability parse. We can estimate the maximum probability parse as
accurately as we want by choosing the number of randomly sampled parses as large as we want. The
probability of a certain parse T given input string s can be estimated by dividing the number of
occurrences of T by the total number of sampled parses N. According to the (Strong) Law of Large
Numbers, the estimated probability converges to the actual probability. In the limit of N going to
infinity, the estimated probability equals the actual probability: P(Tls} = #T/N, From g classical result
of probability theory (Chebyshev's inequality) it follows that, independently of the distribution, the

time complexity of achieving a maximum estimation error £ by means of random sampling, is equai
to O(e2). |

Let us now turn to the question of how to randomly sample a number of parses of an input string.
The most straightforward way seems to be the following: first the set of parses of an input string is
derived, yiclding a shared parse forest. Next, random samples are taken from this forest, by
randomly retrieving parses. Starting for instance at the S-node, a random expansion from the
possible expansions is chosen at every node, taking into account the refative frequencies. The parse
which is sampled most often is an estimation of the maximum probability parse. Given a cubic time
parsing algorithm and assuming that the construction of a parse forest and the retrieval and



comparing of parses can be dene in cubic time (Leermakers, 1991), the time complexity of ihis
method is O(n’e-2).for a string of length 1 and an estimation error &,

Depending on the size and the redundancy of the corpus, this method is not always the most efficient
one. Instead of applying Monie Carlo techniques after the parsing process, we might also incorporate
them into the parsing process. This second method consists of calculating a random subset of the

parses. Instead of taking into account all candidates! at a every point in the chart, we take a random
sample from the candidates at every point. In this way, a set of parses is calculated which is smalier
than the total set of parses of an input string, Repeating this process allows us 10 randomly generate
as many parses of a siring as desired. If no parses are found during a round, the samples from the
candidates may be increased wntil at least one parse is generated. If, instead, for a new input string a
large number of parses is found, the current vajue of the sample size may be decreased again, and so
forth. In the worst case the sample size equals 100% of the total number of candidates and no
speedup is achieved. However, this can only happen with nron-ambiguous grammars where every
string has exactly one derivation, For an ambiguous grammar, any ambiguous string can always be
parsed by taking samples from the candidates smaltler than the total number of candidates (except that
taking a sample from 1 candidate must yield at least that candidate). In our experiments with the
ATIS corpus (see next section}, it turned out that taking maximally 5% of the candidate subtrees,
sufficed to calculate at least one parse for the input string (though often more were found).

As to the time complexity of this second method, it might seem that calculating a subset of
exponentiaily many parses, will yield again exponentially many parses. And comparing
exponentially many parses takes exponential time., Nevertheless, by taking the sample sizes relatively
small, a tractable upper bound N can be defined, which, if exceeded by the number of parses

generated sofar, serves as a stop condition in the repeated parsing process. Secondly, N can be made
arbitrarily large, in order to make the estimation erfor € arbitrarily small in, as we have seen,

quadratic time. Hence, given a cubic time parsing algorithm and assuming that the sampie sizes can
be made smalier than the total number of candidates bui large enough to generate at least one parse
(as is the case for redundant grammars like DOP), the time complexity of this method is O(Pe2).

Often it suffices to stop repeating the algorithm if the total number of parses exceeds a pre-
determined bound N. The most frequently generated parse is then an estimation of the maximuin
probability parse. We shall see in the next section that for the ATIS corpus it sufficed to limit the
number of randomly calculated parses to 100, in order to get high parsing accuracy. Though such a
small sample may yield inaccurate probabilities for the single parses, it apparently suffices to
determine which parse is the most probable one.

Although the worst case time complexity of this second method is equivalent to that of the first one,
the average performance furns out to be superior. This can be explained by the fact that in the second
method only a small part of the actual grammar is used. Since arbitrary CFGs are parsable in 1G12
time, parsing a string 100 times using 5% of the grammar tends to be more efficient than parsing the
same string only once using the whole grammar. Secondly, it turns out that the probability estimation
of the second method alsc converges significantly faster, Thus, it seems that this method is especiaily
apt to stochastic parsing with huge amounts of redundant data.

It should be stressed that incorporating Monte Carlo techniques into a parsing algorithm is only
feasible if the samples from the candidates can be made much smaller than the total number of
candidates, but still large enough to generate at least one parse. Secondly, the demanded maximum

error should not be too small, in order to keep the actual time cost to an acceptable degree. For those
interested in the Theory of Computation: the algorithms which employ the Monte Carlo techniques
described here, are probabilistic algorithms belonging to the class of Bounded error Probabilistic
Polynomial time (BPP algorithms. BPP-problems are characterized as follows: it may take
expounential time to solve them exactly, but there exists an estimation algorithm with a probability of
error that becomes arbitrarily small in polynomial time,

e, ‘predictions’ or 'proposed edges’, depending on the kind of parser used.
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4 Experiments

In order to test ihe DOP-model, in principle any annotated corpus can be used. This is one of the
advantages of DOP: its independence of a notation system. For our experiments?, we used the
naturally occurring Air Travel Information System (ATIS) corpus (Hemphill et al,, 1990) as
anatyzed in the Pennsylvania Treebank (Marcus, 1991; Santorini, 1991). This corpus is of interest
since it is used by the DARPA community to evaluate their prammars and speech systems.

We used the standard method of randomly dividing the corpus into a 90% training set and a 10% test
sef. The 675 trees from the training set were directly used as our stochastic grammar, from which the
subtrees and their relative frequencies were derived. The 75 part-of-speech sequences from the test
set served as input strings that were parsed with the training set using a bottom-up Monte Carlo
Chart parser with top-down filtering. To establish the performance of the system, the parsing results
were then compared with the trees in the test set. (Note that the "correct” parse was decided
beforehand, and not afterwards.)

To measure accuracy, one often uses the notion of bracketing accuracy, i.e. the percentage of
brackets of the analyses that are not "crossing” the bracketings in the Treebank (Black et al., 1991;
Harrison et al., 1991; Pereira & Schabes, 1992; Grishman et al., 1992; Schabes et al., 1993). We
believe, however, that the notion of bracketing accuracy is too poor for measuring the performance
of a parser, A test set can have a high brackeling accuracy, whereas the percentage of sentences in
which no crossing bracket is found {(senfence accuracy) is extremely low, In (Schabes et al., 1993}, it
is shown that for sentences of 10 to 20 words (taken from the Wall Street Journal corpus), a
bracketing accuracy of 82.5% corresponds to a sentence accuracy of 30%, whereas for sentences of
20 to 30 words a bracketing accuracy of 71.5% cormresponds to a sentence accuracy of 6.8%! We
shall employ the even stronger notion of parsing accuracy, defined as the percentage of the test
sentences for which the maximum probability parse is identical to the test set parse in the Treebank.

It is one of the most essential features of the DOP approach, that arbitrarily large subtrees are taken
into consideration, In order to test the usefulness of this feature, we performed different experimenis
constraining the depth of the subtrees. The depth of a tree is defined as the length of its longest path,
The following tabie shows the results of seven experiments, The accuracy refers to the parsing
accuracy at N = 100 sampled parses, and is rounded off to the nearest integer.

depth accuracy
<2 87%
< 02%
<4 93%
<5 3%
<6 95%
<7 95%
unbounded 9%6%

Parsing accuracy for the ATIS corpus, at N= 100,

The table shows that there is a relatively rapid increase in parsing accuracy when enlarging the
maximum depth of the subirees o 3. The accuracy keeps increasing, at a slower rate, when the depth
is enlarged further. The highest accuracy is obtained by using all subtrees from the corpus: 72 out of

2Some of the experiments reported here were published in (Bed, 1993).



the 75 sentences from the test set are parsed correctly. In the following figure, parsing accuracy is
plotted against the number of randomly generated parses N for three of our experiments: the
experiments where the depth of the subtrees is constrained to 2 and 3, and the experiment where the

depth is unconstrained.
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Parsing accuracy for the ATIS corpus, with depth <2, with depth < 3 and with unbounded depth.

It might also be interesting to look in detail at some parses derived with different constraints on the
depths of the subtrees. Consider the test sentence " Arrange the flight code of the flight from Denver
to Dallas Worth in descending order”. According to the Treebank, this sentence has the following
structure (for a description of the notation system see (Santorini, 1990,1991)):

S Np *
VP VB Arrange
NP NP DT the
NN flight
NN code
PP IN of
NP NP DT the
NN flight
PP PP IN from
NP NP Denver
PP TO to
NP NP Dallas
NP Worth

PP IN in
NP VP VBG descending
NN order

Thus, the corresponding p-o-s sequence of this senience is given by the string "+ VB DT NN NN
IN DT NN IN NP TO NP NP IN VBG NN".? Limiting the depth of the subtrees to 2, the following

3Empty elements, like #, had to be treated as part-of-speech elements, in order to be able 10 use the training
set directly as a grammar.



following maximum probability parse was estimated for this siring (where for reasons of readability
the lexical items are added to the p-0-8 tags):

S NP *
VP VB Arrange
NP NP DT the
NN flight
NN code
PP IN of
NP NP DT the
NN flight

PF PP IN from
NP NP Denver
PE TC to
NP NP Dallas
NP Worth
PP IN in
NP VP VBG descending
NN order

In this parse tree, we see that the prepositional phrase "in descending order” is incorrectly attached to
the NP "the flight" instead of to the verb "arrange”. This false attachment might be explained by the
high relative frequencies of the following subtrees with depih 2 (that appear in structures of
sentences like "Show me the transportation from SFO to downtown San Francisco in August”,
where the PP "in August” is attached to the NP "the transportation”, and not to the verb "show").

NP NP NP NP
PP FF PP
PP IN PP
NP PP IN
NP

Only if the maximum depth of the subirees was enlarged to 4, subirees like the following could be
sampled, which led to the estimation of the correct parse tree.

VP VB
NP NP
pp
pp IN
NP VB VBC
NN

It is interesting to note that this subtree occurs only once in the corpus, Nevertheless, it induces the
correct parsing of the test sentence. This seems to contradict the observation that probabilities based
on sparse data are not reliable (Gale and Church, 1990, Magerman and Marcus, 1991). Since many
large subtrees are once-occurring events (hapaxes), there seems to be a preference in DOP for an
occurence-based approach if enough context is provided: large subirees, even if they occur once,
tend to contribute to the generation of the correct parse, since they provide much contextual
information. Although these subtrees have low probabilities, they tend to induce the correct parse



because fewer subirees are needed to construct a derivation, and therefore the prebability of such a
derivation tends to be higher than a derivation constructed by many small highly frequent subtrees.

Additional experiments seemed to confirm this hypothesis. Throwing away all hapaxes, yielded an
accuracy of 92% (without constraints on the depth of the subtrees and for N = 100), which is a
decrease of 4%. Distinguishing between small and large hapaxes, showed that the accuracy was not
affected by filtering the subtrees from hapaxes smaller than depth 2 {(although the convergence
seemed to be slightly faster). Eliminating the hapaxes larger than depth 3, however, decreased the
accuracy. Thus, statistical reliability seems only to be relevant if not enough contextual information is
available. In such a case, best guesses must be as reliable as possible. When much
structural/contextual information is known, on the other hand, there tends to be only one choice. This
seems 1o correspond to the fact that small parts of sentences tend to have many more real structural
ambiguities (since not enough information is known) than longer subsentences or whole sentences.

Given the high accuracy achieved by the experiments, we might conclude that the ATIS corpus is a
relatively large corpus for its small domain, where almost all relevant constructions occur. It scemed
interesting to know how much the accuracy depends on the size of the corpus. For studying this
question, we performed additional experiments with different corpus sizes. Starting with a corpus of
only 50 parse trees (randomly chosen from the initial training corpus of 675 trees), we increased its
size with intervals of 50. As our test set, we took the same 75 p-0-s sequences as used in the
previous experiments. In the next figure the parsing accuracy, for N= 100, is plotted against the
corpus size, using all corpus subtrees,

100
[e)
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o o
751 ° -
]
&
&
8 50 ¢ e B
8
o O
(]
Q
254 -
6 1§ I 1 1 | 1
109 200 300 400 500 600 675

corpus size

Parsing accuracy for the ATIS corpus, with unbounded depth.

The figure shows the increase in parsing accuracy. For a corpus size of 450 trees, the accuracy
1eaches already 88%. After this, the growth decreases, but the accuracy is still growing at corpus size
675. Thus, we might expect an even higher accuracy if the corpus is further enlarged.

Finally, it might be interesting to compare our results with those of others. In (Pereira and Schabes,
1992), 90.36% bracketing accuracy was reported using a stochastic CFG trained on bracketings

from the ATIS corpus. As said above, the notion of bracketing accuracy is much poorer than that of
parsing accuracy. Thus, our pilot experiment suggests that our model has better performance than a
stochastic CFG. Some work that reports high parsing accuracy, though with different test data, are
the parsers Pearl and Acky of (Magerman and Marcus, 1991) and (Magerman and Weir, 1992). In
their work, a stochastic CFG is combined with trigram statistics, yielding about 90% parsing
accuracy with word sequences as input strings. We do not yet know what accuracy is achieved if
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DOP is directly tested on word sequences, instead of on p-o0-s sequences. It is likely, that larger
corpora are needed for this task,

5 Conclusions

Although a Viterbi-style algorithm provides a tool to derive in cubic time the most probable
derivation generated by a stochastic context free grammar, this algorithm does not seem feasible for
stochastic language models that allow a parse tree to be generated by different derivations (like DOP
or SLTAG), since the most probable derivation does not necessarily produce the most probable
parse.

We showed that, by incorporating Monte Carlo techniques into a polynomial parsing algorithm, the
most probable parse can be estimated as accurately as desired, making its error arbitrarily small in
polynomial time. For stochastic grammars that are parsable in cubic time, the time complexity of

cstimating the most probable parse with Monte Carlo turns out to be O(n3e-2 ). for a string of length
n and an estimation error £, We suggested that Monte Carlo parsing may also provide for stochastic
CFGs an interesting alternative to Viterbi, which, in its current versions, is resiricted to CFGs in
Chomsky Normal! Form. Nevertheless, Monte Carlo parsing seems especiaily apt to stochastic
parsing with huge amounts of redundant data, where one parse is generated by exponentially many
(different)derivations,

A Monte Carlo Chart parser was used to test the DOP model on a set of hand-parsed strings from
the ATIS corpus. It sufficed to limit the number of randomtly calculated parses to 100, in order to get
satisfying convergence with high parsing accuracy. It turned out that parsing accuracy improved if
larger subtrees were used. Qur experiments suggest that statistical reliability is only relevant if not
enoughstructural/contextualinformationis available,
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