
A Genetic Algorithm for the Induction of

Context-Free Grammars

�

Marc M. Lankhorst

Dept. of Computing Science,

University of Groningen,

e-mail: lankhors@cs.rug.nl

Abstract

This paper presents a genetic algorithm used to infer context-free grammars

from legal and illegal examples of a language. It discusses the representation of

grammar rules in the form of bitstrings by way of an interval coding scheme,

genetic operators for reproduction of grammars, and the method of evaluating

the �tness of grammars with respect to the training examples.

Results are reported on the inference of several of these grammars. Gram-

mars for the language of correctly balanced and nested brackets, the language

of sentences containing an equal number of a's and b's, a set of regular lan-

guages, and a micro-NL language were inferred. Furthermore, some possible

improvements and extensions of the algorithm are discussed.

1 Introduction

Genetic algorithms, introduced by Holland Holland

(

1975

)

, are probabilistic search

techniques especially suited for di�cult search and optimization problems where the

problem space is large, complex and contains possible di�culties like high dimen-

sionality, multimodality, discontinuity and noise. Applied to such problems, genetic

algorithms consistently outperform both gradient techniques and various forms of ran-

dom search

(

Bethke, 1981

)

. They manipulate a population of strings de�ned over some

alphabet, which encode possible solutions to the problem at hand. These alternative

solutions are being processed in parallel, giving the algorithm the ability to e�ciently

search a large problem space for global optima.

An example of such a di�cult optimization task is grammatical inference, the

problem of learning a grammar based on a set of sample sentences

(

Fu and Booth,

1986

)

. Many researchers have attacked this problem (for a survey, see

(

Angluin and

�

Most of the computations were carried out on the Connection Machine CM-5 of the University

of Groningen, the investments in which were partly supported by the Netherlands Computer Science

Research Foundation (SION) and the Netherlands Organization for Scienti�c Research (NWO).

Smith, 1983

)

), e.g. trying to induce �nite-state automata to accept regular languages

(

Berwick and Pilato, 1987

)

or to learn context-free grammars directly from examples

(

VanLehn and Ball, 1987

)

. Genetic algorithms have been applied to the induction of

�nite-state automata

(

Zhou and Grefenstette, 1986

)

, context-free grammars

(

Wyard,

1992

)

, and push-down automata

(

Sen and Janakiraman, 1992; Huijsen, 1993

)

.

This paper presents a genetic algorithm that is used to infer context-free grammars

from legal and illegal examples of a context-free language.

2 Genetic Algorithms

Genetic algorithms are search and optimization techniques inspired by the \survival of

the �ttest" principle of natural evolution. A genetic algorithm maintains a population

P (t) = hx

1

(t); : : : x

n

(t)i of candidate solutions x

i

(t) to the objective function F (x),

represented in the form of \chromosomes". These chromosomes are strings de�ned

over some alphabet that encode the properties of the individual. More formally, using

an alphabet A = f0; 1; : : : ; k�1g and a value-based encoding, we de�ne a chromosome

C = hc

1

; : : : ; c

l

i of length l as a member of the set S = A

l

. Each element c

i

of C is

called an allele, and the subscript i itself is called the locus number of that allele.

At each step t of the algorithm|called a generation|the �tness f

i

of the individ-

uals x

i

is evaluated with respect to the optimization criterion; the �ttest individuals

are then selected and allowed to reproduce in order to create a new population. A

sketch of the algorithm is shown in Figure 1.

Usually, reproduction is performed using two operations: crossover and mutation.

Crossover is used to create o�spring from two parent individuals by exchanging parts of

their chromosomes, which can be performed in various ways. An example of one-point

and two-point crossover on bitstrings is given in Figure 2 and Figure 3, respectively.

Subsequently, mutation may be applied to individuals by randomly changing pieces

of their representations, as shown in Figure 4.

The genetic algorithm may be terminated if a satisfying solution has been obtained,

after a prede�ned number of generations, or if the population has converged to a

certain level of genetic variation.

The operation of a genetic algorithm is very simple. It starts with a random

population of n strings, copies strings with some bias toward the best, mates and

partially swaps substrings, and randomly mutates a small part of the population.

On a deeper level, this explicit processing of strings causes an implicit processing of

schemata. A schema

(

Holland, 1975

)

is a similarity template describing a subset of

strings with similarities at certain string positions. Each schema is represented as a list

made up of characters from the set A[f#g. A character from A (i.e., an allele) at any

position in the schema means that the value of the chromosome must have the same

value at that position for it to contain the schema. The #s function as \don't cares",

i.e., a # at any position in the schema means that the value of the chromosome at

that position is irrelevant to determine whether the chromosome contains the schema.

It is easy to see that if we have an alphabet of size k, there are (k + 1)

l

schemata

2

procedure Generational GA

begin

t := 0;

initialize P (t)

evaluate structures in P (t);

while termination condition not satis�ed do

t := t + 1;

select P (t) from P (t� 1);

recombine structures in P (t);

evaluate structures in P (t)

end

end;

procedure recombine

begin

for i := 1 to population size/2 do

pick mom, dad from P (t);

kids := crossover mom,dad based on crossover rate;

mutate kids based on mutation rate

end

end

Figure 1: A Genetic Algorithm

� � � � �j � � � � � �

� � � � �j � � � � � �

)

)

(

� � � � �j � � � � � �

� � � � �j � � � � � �

Figure 2: One-point crossover

� � j � � � � � j � � � �

� � j � � � � � j � � � �

)

)

(

� � j � � � � � j � � � �

� � j � � � � � j � � � �

Figure 3: Two-point crossover

� � � � � � � � � � �

+

� � � � � � � � � � �

Figure 4: Single mutation

3

01101

0##01

#11#1

#####

Figure 5: Examples of schemata in a single bit string

de�ned on strings of length l. Every string is a member of 2

l

di�erent schemata: each

locus can have an allele or a don't care. It follows that a population of n members

may contain at most n � 2

l

schemata. Figure 5 shows a single chromosome and some

of the schemata represented in that chromosome. Just like chromosomes represent

points in the search space, schemata represent hyperplanes. A hyperplane consists of

those points that are represented by the strings that match its accompanying schema.

If we use a reproduction technique that makes reproduction chances proportional

to chromosome �tness, then we can use Holland's Schema Theorem or Fundamental

Theorem of Genetic Algorithms

(

Holland, 1975

)

to predict the relative increase or

decrease of a schema in the next generation of the genetic algorithm.

In e�ect, the Schema Theorem says that a schema occurring in chromosomes with

above-average evaluations will tend to occur more frequently in the next generation,

and one occurring in chromosomes with below-average evaluations will tend to occur

less frequently. Since short schemata are less likely to be disrupted by mutation and

crossover than longer ones, genetic algorithms tend to construct new chromosomes

from small, contiguous pieces of chromosomes that score above-average �tness.

This feature of genetic algorithms, also called the building blocks hypothesis, is the

main motivation for applying GAs to the problem of grammatical inference. Parts

of di�erent grammars and rules can be recombined to form new, and possibly better

performing grammars and rules.

3 Representation

We have used an interval encoding that represents a vector of integers in one bit-

string encoded number. Each grammar rule is taken as a vector of symbol numbers

(with a �xed maximum length n). We can encode such a vector p = [p

1

; : : : ; p

n

]

with 0 � p

i

< m

i

by successively subdividing the interval [0; 1) in m

k

equal subin-

tervals. At each level k, the subinterval corresponding to p

k

is used as the basis for

the next stage, i.e., if we want to encode an integer p

k

at stage k, we choose the

subinterval [a

k+1

; b

k+1

) � [a

k

; b

k

) with a

k+1

= a

k

+ p

k

� (b

k

� a

k

)=m

k

and b

k+1

=

a

k

+ (p

k

+ 1) � (b

k

� a

k

)=m

k

. With a

1

= 0 and b

1

= 1, the number E(p) that encodes

the complete vector is given by:

E(p) =

n

X

i=1

0

@

p

i

�

i

Y

j=1

1

m

j

1

A

(1)

4

4 Genetic Operators

In our algorithm, we have used the following genetic operators.

� Selection: Selection is based on a ranking algorithm, i.e., in each generation the

individuals are sorted by �tness, and the probability of selecting an individual

for reproduction is proportional to its index in the sorted population. The

selection itself is carried out by a stochastic universal sampling algorithm

(

Baker,

1987

)

. This ranking algorithm is used to help prevent premature convergence

by preventing \super" individuals from taking over the population within a

few generations. Furthermore, we employ an elitist strategy in which the best

individual of the population always survives to the next generation.

� Mutation: Following the heuristic given by B�ack

(

B�ack, 1993

)

, we have used a

mutation rate of 1=` throughout all the experiments (` being the number of bits

in the chromosome), i.e., each bit in each chromosome has a probability of 1 in

` of being mutated.

� Reproduction: The representation scheme we used, allowed crossover operations

to break the right-hand side of production rules. Crossover within an individual

right-hand side of a production rule has the advantage of creating a larger variety

of right-hand sides in the population. Furthermore, it might be bene�cial to

construct a new right-hand side from parts of the parents' right-hand sides. Not

allowing this crossover to occur,

(

Wyard, 1992

)

had to rely on mutation alone

to change the right-hand sides of production rules.

We have used two-point crossover, which has some theoretical advantages over

one-point

(

DeJong, 1975

)

, and a crossover probability of 0.9.

5 Fitness Evaluation

The most important issue in constructing a genetic algorithm is the choice of a partic-

ular evaluation function. Suppose we have sets S

POS

of positive and S

NEG

of negative

examples of a language L, and a grammar G = hN;�; P; Si. De�ning the fraction of

correctly analyzed sentences as follows

cor(G; �) =

(

1 if � 2 L \ L(G) or � 2 L \ L(G)

0 otherwise

cor(G; S) =

1

jSj

X

�2S

cor(G; �) (2)

a simple evaluation function would be

F

1

(G; S

POS

; S

NEG

) = cor(G; S

POS

)� cor(G; S

NEG

) (3)

which yields �tness values between 0 and 1.

5

However, to evaluate the �tness of a particular grammar with respect to the posi-

tive and negative training examples, it does not su�ce to simply count the correctly

accepted (rejected) positive (negative) examples. In this way, a grammar that can

analyze large parts of the examples correctly, but fails to recognize the complete sen-

tences, would receive a very low �tness value. Although recombination of such a

partially correct grammar might yield a better result, this low �tness will cause it to

be thrown away, thereby destroying valuable information.

To evaluate a grammar, we would like to credit correctly analyzed substrings of

each positive training example a

1

: : : a

n

. To do so, we can look at the length of the

longest substring derivable from a single nonterminal

sub(G; a

1

: : : a

n

) =

MAX fl j 0 � l � n ^ 9A 2 N : 9i : 0 � i � n� l ^ A)

�

a

i+1

: : : a

i+l

g (4)

and, with m(S) being the maximum sentence length of S, we can take the normed

total over the set of sentences:

sub(G; S) =

1

m(S) � jSj

X

�2S

sub(G; �) (5)

Naturally, this is only meaningful for legal examples, so we de�ne our new evaluation

function to be

F

2

(G; S

POS

; S

NEG

) = (cor(G; S

POS

) + sub(G; S

POS

))� cor(G; S

NEG

) (6)

A second aspect of the quality of a grammar consists of its predictions on the next

symbol a

k+1

of a string, given the previous symbols a

1

: : : a

k

. The more accurate these

predictions are, the tighter the grammar �ts the sentence. Hence, this information

might be helpful in rejecting grammars that are too permissive. A criterion for this

accuracy is given by:

pred(G; a

1

: : : a

n

) =

1

n + 1

n

X

j=0

1

jf� 2 � j 9� 2 V

�

: S)

�

a

1

: : : a

j

a�gj

(7)

and

pred(G; S) =

1

jSj

X

�2S

pred(G; �) (8)

Incorporating this into our evaluation function, we get

F

3

(G; S

POS

; S

NEG

) =

(cor(G; S

POS

) + sub(G; S

POS

) + pred(G; S

POS

))� cor(G; S

NEG

) (9)

Furthermore, we might include information on the generative capacity of a grammar.

We can use the grammar G to generate a set of strings S

GEN

(G) and test whether

6

1 \brackets";

2 \AB";

3 (10)

�

;

4 no odd zero strings after odd one strings;

5 no triples of zero's;

6 pairwise, an even sum of 01's and 10's;

7 number of 1's - number of 0's = 3n;

8 0

�

1

�

0

�

1

�

;

9 \micro-NL".

Figure 6: The test languages

these strings belong to the language. We can augment our evaluation function with

this information, obtaining

F

4

(G; S

POS

; S

NEG

) =

F

3

(G; S

POS

; S

NEG

)� cor(S

GEN

(G)) (10)

Unfortunately, this requires a teacher with prior knowledge of the underlying structure

of the language for which we want to infer a grammar.

6 Results

The genetic algorithm has been tested with 9 di�erent languages, which are listed in

�gure 6 and discussed in the following sections. For each experiment, we have ran-

domly generated an equal number of positive and negative examples, with a Poisson-

like length distribution and a maximum sentence length of 30. An example of this

distribution for the \AB" language is shown in �gure 7. Domain knowledge was used

to determine the terminal symbols and the size|i.e. the maximum size of the right-

hand sides of rules and the number of rules and nonterminals|of the grammars to be

inferred. These features could also be encoded on the chromosomes, but that would

impose an extra computational burden upon the genetic algorithm.

The implementation of the genetic algorithm we used was based on Genesis 5.0, a

genetic algorithm package written by John J. Grefenstette

(

Grefenstette, 1990

)

. We

ported it to a 16-node Connection Machine CM-5 by parallelizing the evaluation of

the chromosomes. This was done using a master-slave programming model, in which

the host (the master) executed the genetic algorithm, and the CM-5 nodes (the slaves)

conducted the chromosome evaluation. At each generation, this meant parsing several

hundred example sentences per chromosome. Since parsing consists mainly of symbol

manipulation, we could not use the extensive
oating point processing capabilities of

the CM-5. Hence we only employed the Sparc processor of each of the nodes. Despite

the computing power of the CM-5, the longest run of the algorithm took about two

days to complete.

7

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Figure 7: Sentence length distribution for the \AB" language

6.1 The \Brackets" Language

The \Brackets" language consists of all correctly nested and balanced brackets expres-

sions. We performed �ve runs, each with a population of 48 chromosomes, 100 legal

and 100 illegal example strings. The maximum number of rules per grammar was

set at 5, the size of the right-hand side of the grammar rules was �xed at 2, and the

grammars were allowed to have two nonterminal symbols other than the start symbol

S.

S ! A

A ! (B

A ! �

B ! A)

B ! A B

Figure 8: Grammar inferred for the \Brackets" language

Since every string of brackets can be followed by a `(' or a `)' in some sentence

of the language, we have used evaluation function F

2

(de�nition 6), which does not

contain information on the predictive qualities of grammars. Every run resulted in a

correct grammar, which took on average 592 generations. As an example, one of the

inferred grammars is given in �gure 8.

6.2 The \AB" Language

This experiment was conducted on the \AB" language, which consists of all sentences

containing equal numbers of a's and b's. Four di�erent runs were performed, each with

8

a population size of 48 chromosomes, 100 positive and 100 negative example strings.

The maximum number of rules per grammar was �xed at 11, and the maximum size

of the right-hand side of the grammar rules was 3.

For reasons similar to those stated in the previous section, the evaluation function

we employed was F

2

(see de�nition 6). In all �ve runs a correct grammar of the \AB"

language was found, after 271 generations on average. An example of such a grammar

is shown in �gure 9. In this example, we have deleted multiple occurrences of rules

and inaccessible rules.

S ! X

X ! X Y

X ! Y X

X ! �

Y ! X

Y ! a Y b

Y ! b X a

Figure 9: Grammar inferred for the \AB" language

generations

�tness

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140

best of population

Figure 10: Convergence of the GA for the \AB" language

To illustrate the discontinuous character of the convergence of the GA, a graph of

the �tness function during one of the runs is shown in �gure 10. Small changes to a

grammar can cause it to parse many more of the examples correctly, which explains

the sometimes quite substantial jumps in the convergence process.

9

S ! NP VP

NP ! det n

NP ! n

NP ! NP PP

PP ! prep NP

VP ! v NP

VP ! VP PP

Figure 11: Grammar for the \Micro-NL" language

6.3 A Set of Regular Languages

Further tests were conducted using a set of six regular languages, used by Tomita

(

Tomita, 1982

)

in a number of experiments in inducing �nite automata using hill-

climbing. The easiest language, 1

�

, was omitted from this set since it posed no chal-

lenge to our algorithm. The remaining languages are listed as numbers 3{8 in �gure 6.

Numbers 4, 7, and 8 were also used in

(

Zhou and Grefenstette, 1986

)

.

For all these languages we used evaluation function F

2

and a set of 100 positive

and 100 negative examples. For some languages, grammars evolved that could parse

all examples correctly, but generated a number of incorrect strings. This cannot be

prevented, since these languages are sparse, i.e., the number of correct strings formed

from the terminal alphabet is much smaller than the number of incorrect strings.

All grammars were also tested on a set of positive examples that did not occur in

the training set. The grammars scoring 100% on the positive training examples, also

analyzed the test set correctly. The other grammars scored within 5% of the training

set score.

The results obtained are summarized in �gure 12.

6.4 The \Micro-NL" Language

The \Micro-NL" language can be described by the grammar of �gure 11. A �rst

experiment with this language, using 250 positive and 250 negative example sentences,

a population of 128 individuals, and �tness function F

2

(de�nition 6), did not result in

a correct grammar. Neither enlarging the population nor using more examples could

improve the results signi�cantly.

Some grammars evolved that scored a high �tness value by analyzing all examples

correctly, but generated many illegal sentences. The cause of this problem is the fact

that the set of correct sentences forms a very small part of the total set of sentences

that can be generated from the given nonterminals. Therefore, restricting the grammar

just by training it on illegal sentences is a very hard job. To overcome this problem,

we decided to use evaluation function F

4

(de�nition 10), that includes information on

the predictive and generative capacity of the grammar at hand.

To overcome this problem, we decided to train the GA incrementally. First, we

only o�ered it noun phrases as positive training examples. After a correct grammar

10

nr. pop. rules syms bits gen's eval's pos. neg. gen. test

1 48 4 4 28 592 28416 100 100 100 100

2 48 8 5 88 271 13008 100 100 100 100

3 48 4 4 44 17 816 100 100 100 100

4 48 14 8 154 933 44784 85 100 100 81

5 48 14 7 154 1438 69024 80 100 100 75

6 48 14 10 154 2085 100080 100 99 61 100

7 48 8 6 88 1067 51216 100 91 84 100

8 48 8 7 88 825 39600 100 86 87 100

9 128 10 8 140 1984 231763 100 100 55 100

\nr.": number of test language (see �gure 6);

\pop.": population size;

\rules": maximum number of rules;

\syms": number of symbols (terminals and nonterminals);

\bits": number of bits in chromosomes;

\gen's": avg. nr. of generations until �rst occurrence of best solution;

\eval's": avg. nr. of chromosome evaluations until �rst occurrence

of best solution;

\pos.": percentage of positive examples analyzed correctly;

\neg.": percentage of negative examples analyzed correctly;

\gen.": percentage correct of generated sentences;

\test": percentage of test set analyzed correctly.

Figure 12: Results

had been inferred, the training set was augmented with verb phrases. This approach

resulted in the inference of grammars that could analyze all positive and negative

examples correctly, and generated only a modest number of incorrect sentences. The

results are shown in �gure 12.

7 Conclusions and Plans

In this paper, genetic algorithms have been shown to be a useful tool for the induction

of context-free grammars from positive and negative examples of a language. Gram-

mars for the language of correct brackets expressions, the language of equal numbers

of a's and b's, a set of regular languages, and a micro-NL language have been in-

ferred more or less correctly. Further experimentation will have to show whether this

technique is applicable to more complex languages.

We are planning to investigate several extensions of this work. The evaluation

functions we used weighed di�erent aspects of grammars and condensed these into a

single scalar. Instead of using such a scalar �tness, we could employ a multiobjective

algorithm such as Scha�er's Vector Evaluated Genetic Algorithm (VEGA)

(

Scha�er,

11

1985

)

, that uses multidimensional �tness vectors.

We can further enhance our �tness function by regarding the \educational value"

of the example sentences. If many of the grammars in the population can judge an

example correctly, this educational value is quite low. On the other hand, di�cult

sentences that are often classi�ed incorrectly should be valued higher. To include

these educational values in the �tness function, we could assign a weight factor to

each sentence, which is proportional to the number of grammars of the population

that do not analyze this sentence correctly. This has, however, the disadvantage that

we cannot work with a \moving target" approach in which new sets of examples are

generated in every generation.

Another possibly useful approach, introduced by Hillis

(

Hillis, 1992

)

, is to use the

concept of co-evolution. The example sentences form a population of parasites that

compete with the population of grammars. The �tness of a sentence is based on the

di�culty with which the grammars can analyze this sentence, i.e., the more di�cult

a sentence is, the higher its �tness will be.

The reproduction of correct sentences can be implemented using De Weger's tree

crossover (TX) operator

(

de Weger, 1990

)

, or recombination operators analogous to

those of Koza's Genetic Programming paradigm

(

Koza, 1992

)

. In this paradigm, Lisp

expressions are represented as parse trees, and crossover is implemented by taking

suitable subtrees and exchanging them.

Reproducing incorrect sentences is even simpler, since there is no tree structure

to be preserved. Therefore, a straightforward recombination of parts of incorrect

examples (which is likely to result in new incorrect sentences), combined with a test

whether the o�spring is incorrect, will su�ce.

As Wyard already pointed out

(

Wyard, 1992

)

, a bucket-brigade algorithm

(

Hol-

land and Reitman, 1978

)

, in which the population consists of rules instead of complete

grammars, might prove to be useful. In such an algorithm, a population member's

�tness is determined by scoring its ability to correctly analyze the examples in con-

junction with the other rules of the population. This approach has been employed

successfully in the inference of classi�er systems

(

Goldberg, 1989

)

. A possible advan-

tage of this approach is that in a population of rules we only have to evaluate the

merit of di�erent grammar rules once, as opposed to a population of grammars, in

which a single rule might appear in many di�erent grammars. This could alleviate

the computational burden of the algorithm.

References

D. Angluin and C.H. Smith. Inductive inference: Theory and methods. Computing

Surveys, 15(3):237{269, 1983.

T. B�ack. Optimal mutation rates in genetic search. In S. Forrest, editor, Proceedings

of the Fifth International Conference on Genetic Algorithms ICGA'93, pages 2{9,

San Mateo, CA, 1993. Morgan Kaufmann.

12

J.E. Baker. Reducing bias and ine�ciency in the selection algorithm. In J.J. Grefen-

stette, editor, Genetic Algorithms and Their Applications: Proceedings of the 2nd

International Conference, pages 14{21. LEA, Cambridge, MA, July 1987.

R.C. Berwick and S. Pilato. Learning syntax by automata induction. Machine Learn-

ing, 2:39{74, 1987.

A.D. Bethke. Genetic Algorithms as Function Optimizers. PhD thesis, Computer

Science Dept, University of Alberta, 1981.

M. de Weger. Generalized adaptive search: Analysis of codings and extension to

parsing. Paper written for the course \Seminarium Theoretische Informatica" at

the Dept. of Computer Science, University of Twente, The Netherlands, 1990.

K.A. DeJong. Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD

thesis, Dept. of Computer and Communication Sciences, University of Michigan,

1975.

K.S. Fu and T.L. Booth. Grammatical inference: Introduction and survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 8:343{375, 1986.

D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.

Addison-Wesley, Reading, MA, 1989.

J.J. Grefenstette. A User's Guide to GENESIS Version 5.0, 1990.

W.D. Hillis. Co-evolving parasites improve simulated evolution as an optimization

procedure. In C.G. Langton, C. Taylor, J. Doyne Farmer, and S. Rasmussen,

editors, Proceedings of the Second International Conference on Arti�cial Life II,

Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol. X, pages 313{

324, 1992.

J.H. Holland and J. Reitman. Cognitive systems based on adaptive algorithms. In

Waterman and Hayes-Roth, editors, Pattern-directed Inference Systems. Academic

Press, 1978.

J.H. Holland. Adaptation in Natural and Arti�cial Systems. University of Michigan

Press, Ann Arbor, 1975.

W. Huijsen. Genetic Grammatical Inference: Induction of Pushdown Automata and

Context-Free Grammars from Examples using Genetic Algorithms Master's thesis,

Dept. of Computer Science, University of Twente, Enschede, The Netherlands,

1993.

J.R. Koza. Genetic Programming: On the Programming of Computers by means of

Natural Selection. MIT Press, Cambridge, MA, 1992.

13

J.D. Scha�er. Multiple objective optimization with vector evaluated genetic algo-

rithms. In J.J. Grefenstette, editor, Proceedings of the First International Confer-

ence on Genetic Algorithms ICGA'85, pages 93{100. Lawrence Erlbaum, 1985.

S. Sen and J. Janakiraman. Learning to construct pushdown automata for accepting

deterministic context-free languages. In G. Biswas, editor, SPIE Vol. 1707: Ap-

plications of Arti�cial Intelligence X: Knowledge-Based Systems, pages 207{213.

1992.

M. Tomita. Dynamic construction of �nite-state automata from examples using hill-

climbing. In Proceedings of the Fourth Annual Conference of the Cognitive Science

Society, pages 105{108, Ann Arbor, MI, 1982.

K. VanLehn and W. Ball. A version space approach to learning context-free grammars.

Machine Learning, 2:39{74, 1987.

P. Wyard. Context free grammar induction using genetic algorithms. In R.Belew and

L.B.Booker, editors, Proceedings of the Fourth Conference on Genetic Algorithms

ICGA'92. Morgan Kaufmann, 1992.

H. Zhou and J.J. Grefenstette. Induction of �nite automata by genetic algorithms.

In Proceedings of the 1986 IEEE International Conference on Systems, Man and

Cybernetics, pages 170{174, Atlanta, GA, 1986.

14

