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Abstract

Empirical studies in inductive language learning point at pure memory-based learning as a
successful approach to many language processing tasks, often performing better than meth-
ods that abstract from the learning material. The possibility is left open, however, that lim-
ited, careful abstraction in memory-based learning may be harmless to generalization. We
test this hypothesis by investigating a careful abstraction method that generalizes instances
into instance families. The method is applied to a range of language learning tasks. Results
show that the method reduces memory requirements to a reasonable to considerable degree,
while being able to maintain the performance accuracy of pure memory-based learning on
three of the six tasks studied. We discuss the inclusion of the concept of instance families
as a working unit in memory-based language learning.

1 Introduction

Memory-based learning has been studied for some time now as an approach to
learning language processing tasks. It is found by various studies to be success-
ful, attaining adequate to excellent generalization accuracies on realistic, complex
tasks as different as hyphenation, semantic parsing, part-of-speech tagging, mor-
phological segmentation, and word pronunciation (Daelemans and Van den Bosch
1992, Cardie 1994, Cardie 1996, Daelemans, Zavrel, Berck and Gillis 1996, Van
den Bosch 1997). Recent studies in inductive language learning (Van den Bosch
1997, Daelemans, Van den Bosch and Zavrel 1999) provide indications that for-
getting task instances during learning tends to hinder generalization accuracy of
the trained classifiers, especially when these instances are estimated to be excep-
tional. Learning algorithms that do not forget anything about the learning material,
i.c. pure memory-based learning algorithms, are found to obtain the best accura-
cies for the tasks studied when compared to decision-tree or edited memory-based
learning algorithms, which tend to forget.

Nevertheless, the relative computational inefficiency of classification in pure
memory-based learning remains a reason to investigate learing methods that
economize on memory and the time needed for classification. Although earlier
studies show that methods that forget tend to yield lower generalization accura-
cies, their results do provide indications that when forgetting is performed with
care, the performance loss may be tolerable (Daelemans et al. 1999). In the current
paper, we investigate generalized instances, a careful-abstraction approach within
memory-based learning that aims to do roughly the same as decision-tree learning,
while maintaining the basic learning and classification functions of pure memory-
based leaming. The idea underlying generalized instances is that certain sets of
instances (i.e. examples of a task to be learned) are so much alike in terms of their
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behaviour in memory-based classification, that they may be replaced safely by a
single more general instance that carries the joint functionality in memory-based
classification of its merged members.

In this paper we investigate whether careful abstraction with generalized in-
stances is a way of reducing memory requirements, while attaining a general-
jzation performance at or close to the level of pure memory-based learning. To
this end, we have performed a case study in which we apply FAMBL, a careful-
abstracting memory-based learning algorithm that generalizes instances, to six lan-
guage processing tasks: grapheme-phoneme conversion, word pronunciation, mor-
phological segmentation, base-NP chunking, PP attachment and part-of-speech
tagging. In this paper we describe the case study and discuss its results. Analo-
gous to the results reported in Daelemans et al. (1999) on the effects of decision-
tree abstraction, the results show that generalizing instances into instance family
expressions leads to (i) reasonable to considerable memory item compression, and
to (ii) equal or slightly lower generalization accuracy on the six investigated tasks.

The paper is structured as follows. Section 2 provides a brief introduction into
memory-based learning, and presents the FAMBL algorithm. Section 3 describes
the empirical case study in which FAMBL, in comparison with its parent (pure
memory-based) learning algorithm 1B 1-1G, is applied to the six language learning
tasks. In Section 4, the efficacy of careful generalization over families of instances
is discussed, and the idea of viewing these families as linguistic units is outlined.

2 Careful abstraction in memory-based learning

Memory-based learning, also known as instance-based, cxample-based, lazy, case-
based, exemplar-based, locally weighted, and analogical learning (Stanfill and
Waltz 1986, Aha, Kibler and Albert 1991, Salzberg 1991, Kolodner 1993, Aha
1997, Atkeson, Moore and Schaal 1997), is a class of supervised inductive learn-
ing algorithms for learning classification tasks. Memory-based learning treats a
set of labeled (pre-classified) training instances as points in a multi-dimensional
feature space, and stores them as such in an instance base in memory (rather than
performing some abstraction over them).

An instance consists of a fixed-length vector of n feature-value pairs, and an
information field containing the classification of that particular feature-value vec-
tor. After the instance base is built, new (test) instances are classified by matching
them to all instances in the instance base, and by calculating with each match the
distance, given by a distance function A(X,Y’) between the new instance X and
the memory instance Y. The memory instances with the smallest distances are col-
lected, and the classifications associated with these nearest neighbors are merged
and extrapolated to assign a classification to the test instance.

The most basic distance function for instances with symbolic features is the
overlap metric A(X,Y) = Y1, &(zi,y:), i.e. the distance between patterns X
and Y, represented by n features, where § = 0 if z; = y;, else 1 (the distance
between matching values is zero, and is one between mismatching values). Classi-
fication in memory-based learning systems is basically performed by the k-nearest
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neighbor (k-NN) classifier (Cover and Hart 1967, Devijver and Kittler 1982), with
k, which determines the number of nearest neighbours on which classification is
based, usually set to 1.

The renewed interest in the k-NN classifier from the late 1980s onwards in the
Al-subfield of machine learning (Stanfill and Waltz 1986, Stanfill 1987, Aha et al.
1991, Salzberg 1991) yielded several implementations of ideas on memory-based
algorithms that invest some effort in the learning phase in generalizing instances.
The proposed algorithms start with storing individual instances in memory, and
then carefully merge groups of nearest-neighbour instances labeled with the same
class to become a single, more general instance, only when there is some evidence
that this operation is not harmful to generalization performance. Although overall
memory is compressed, the memory still contains instances as the basic working
units on which the same k-NN-based classification can be performed. The ab-
straction occurring in this approach is that after a merge, the merged instances
incorporated in the new generalized instance are deleted individually, and cannot
be reconstructed. In this paper we use the FAMBL algorithm to test this kind of
generalization over instances.

2.1 FAMBL: generalizing instances into instance families

FAMBL, for FAMily-Based Learning, is an algorithm that performs careful abstrac-
tion over instances. The core idea of FAMBL is to transform an instance base into
a set of instance family expressions. We outline the ideas and assumptions under-
lying FAMBL. We then give a procedural description of the learning algorithm.

2.1.1 Instance families

Classification of an instance in memory-based learning involves a search for the
nearest neighbors of that instance. The value of k in k-NN determines how many
of these neighbors are used for extrapolating their (majority) classification to the
new instance. A fixed k ignores the fact that an instance is often surrounded in
instance space by a number of instances of the same class that is actually larger or
smaller than k. We refer to such variable-sized set of same-class nearest neighbors
as an instance’s family. The extreme cases are on the one hand instances that have
a nearest neighbor of a different class, i.e. they have no family members and are a
family on their own, and on the other hand instances that have as nearest neighbors
all other instances of the same class.

Thus, families are class clusters, and the number and sizes of families in a data
set reflect the disjunctivity of the data set: the degree of scattering of classes into
clusters. Many types of language data appear to be quite disjunct (Daelemans et
al. 1999). In highly disjunct data, classes are scattered among many small clus-
ters, which means that instances have few nearest neighbors of the same class on
average.
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Figure 1: An example of a family in a two-dimensional instance space (left). The family,
at the inside of the dotted circle, spans the focus instance (black) and the three nearest
neighbors labeled with the same class (white). When ranked in the order of distance (right),
the family boundary is put immediately before the first instance of a different class (grey).

Figure 1 illustrates how FAMBL determines the family of an instance in a simple
two-dimensional euclidean instance space. All nearest neighbors of a randomly-
picked starting instance (marked by the black dot) are searched and ranked in the
order of their distance to the starting instance. Although there are five instances
of the same class in the example space, the family of the starting instance contains
only three instances, since its fourth-nearest instance is of a different class.

When an instance’s family is determined, the whole family (including the start-
ing instance) is converted in FAMBL o family expressions, i.e. generalized in-
stances, by merging all instances belonging to that family simultaneously. Figure 2
illustrates the creation of a family expression from an instance family. It shows
five instances of grapheme-phoneme mappings. Each instance denotes a focus let-
ter ("c’ in all five instances) surrounded by four left and four right neighbouring
letters, and each is associated with the phoneme denoting the pronunciation of the
middle letter (X’ in all five instances, i.e. a /ks/ pronunciation). All values of all

_|_|_lalc|c|eld|e|| X
|| |ale|clell |e|lx d
= |
_{_|_|alc|cle|n|t|[X] —|_|_| _|a|c|c|e|n
o P
_|_|_|a|c|c|e[p]|t || X S
_l_|_lalc|cle|s|s||X

Figure 2: An example of family creation in FAMBL. Five grapheme-phoneme instances
(left) are merged into a family expression (right).
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features are merged into the family expression displayed in the right of Figure 2.
When feature values mismatch between the family members, they are summed up
as a disjunction of values at their particular feature slot.

The general modus of operation of FAMBL is that it selects instances in a ran-
dom sequence from the set of instances that are not already part of a family. For
each newly-picked instance, FAMBL determines its family, generates a family ex-
pression from this set of instances, and then marks all involved instances as be-
longing to a family (so that they will not be picked as starting point or member
of another family). FAMBL continues determining families until all instances are
marked as belonging to a family.

2.1.2 The FAMBL algorithm

The FAMBL algorithm has a learning component and a classification component.
The learning component of FAMBL is composed of two stages: a probing stage
and a family extraction stage.

The probing stage (schematized in Figure 4) is a preprocessing stage to the ac-
tual family extraction as outlined in the previous Subsection. The reason for pre-
processing is visualized in Figure 3. The random selection of starting points for
family creation can be quite unfortunate. When, for example, the middle instance
in the left part of Figure 3 is selected first, a seven-instance family is formed with
relatively large distances between the family members. Moreover, three other in-
stances that are actually quite close to members of this big family become isolated
and are necessarily extracted later on as single-instance families. The situation in
the right part of Figure 3 displays a much more desirable situation, in which the
space is more evenly divided between only two families instead of four.
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Figure 3: Illustration of the need for the preprocessing stage in FAMBL. The left figure
shows a big family with seven members, forcing the remaining three instances to be their
own family. The right figure shows the same space with two other starting points for family
creation, with two more evenly divided families. Black instances denote starting points
for family creation; white instances have the same class as the starting points, and grey
instances have a different class.

In the probing stage, all families are extracted randomly and straightforwardly,
while records are maintained of (i) the size of each family, and (ii) the average
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Procedure FAMBL PROBING PHASE!

Input: A training set T'S of instances I1...n, each instance being labeled with a family-membership flag set to
FALSE

Output: Median values of family size, M1, and within-family distance, M2
i=0
1. Randomize the ordering of instances in T'S

2. While not all family-membership flags are TRUE, Do

o Whilc the family-membership flag of I; is TRU E Do increase i

e Compute NS, a ranked set of ighbors 1o I; with the same class as [y, among all
i with family bership flag FALSE. N ighbor i of a different
class with family-membership flag TRU E are still used for marking the boundaries of the
family.

e Record the number of members in the new virtual family: |[NS| + 1

e Record the average distance of instances in N.S to I;

o Set the membership flags of I; and all instances in N S to TRUE

3. Compute M1
4. Compute Ma

Figure 4: Schematized overview of the probing phase in FAMBL.

distance between the starting instance of each family and the other instances in the
family. When all instances are captured in families, the medians of both records are
computed, and both medians are used as threshold values for the second, actual
family extraction phase. This means that in the family extraction phase, schema-
tized in Figure 5, (i) no family is extracted that has more members than the probed
median number of members, and (ii) no family is extracted that has an average
distance from the starting instance to the other family members larger than the
probed median value. Summarizing, the actual family extraction phase applies
extra careful abstraction, under the assumption that it is better to have several
medium-sized, adjacent families of the same class than one big family overlap-
ping the medium ones except for some adjacent boundary instances that get iso-
lated. This is a heuristic solution to the problem depicted in Figure 3, and is not
guaranteed to solve all of the problematic situations as depicted in the left part of
the figure. Further research should focus on devising a more principled solution,
that will probably need to take the local neighbourhood of families into account,
rather than following heuristically-set thresholds that reflect only global aspects of
the data.

After learning, the original instance base is discarded, and further classifica-
tion is based only on the set of family expressions yielded by the family-extraction
phase. Classification in FAMBL is analogous to classification in pure memory-
based learning: a match is made between a new test instance and all stored family
expressions. When a family expression records a disjunction of values for a cer-
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Procedure FAMBL FAMILY-EXTRACTION PHASE:

Input: A training set T'S of instances I1...n, each instance being labeled with a family-membership flag set to
FALSE

Output: A family set F'S of family expressions F1, . .m,m <1
i=f=0
1. Randomize the ordering of instances in T'S

2. While not all family-membership flags are TRUE, Do

e While the family-membership flag of I; is TRU E Do increase 4
e Compute NS, a ranked set of nearest neighbors to I; with the same class as Iy, among all

instances with family-membership flag FALSE. N neighbor i of a different
class with family-membership flag TRU E are still used for marking the boundaries of the
family.

o Compute the number of members in the new virtual family: [N S| + 1

e Compute the average distance of all instances in NS to I;: Ans, 1

e While ((JNS + 1| > M1)OR(Ans,1 > Ma)) Do remove the most distant family
memberto I in NS

o Set the membership flags of I; and all remaining instances in N.Sto TRUE

e Merge I; and all instances in N S into the family expression Fy and store this expression
along with a count of the number of instance merged in it

e f=f+1

Figure 5: Schematized overview of the family-extraction phase in FAMBL.

tain feature, matching is perfect when one of the disjunctive values matches the
value at that feature in the new instance. When two or more family expressions
of different classes match equally well with the new instance, the class is selected
with the highest occurrence summed over the matching expressions. When the
tie remains, the class is selected that occurs the most frequently in the complete
family expression set.

FAMBL allows for the inclusion of informational abstraction in the form of
feature-weighting, instance-weighting and value-difference metrics. To compare
FAMBL to pure memory-based learning, as described in the next section, we
have included information-gain feature weighting (Quinlan 1986, Daclemans and
Van den Bosch 1992) in FAMBL. Information-gain feature weighting is used to
differentiate between features that are important to the classification task at hand,
and features that are not. In addition to classification in pure memory-based
learning, it introduces a factor w; in the distance function A(X,Y’) given ear-
lier: A(X,Y) =Y 1, w; 8(z;,y;). wi, the information gain of feature 4, is the
difference in instance-base entropy (i.e., uncertainty, or scrambledness of informa-
tion) between the situations without and with knowledge of the value of that fea-

H(C}»-Z P(u)xH{C]u)
ture: wy = ) , where si(f) = Evevf P(v)log, P(v),
C is the set of class labels V¢ is the set of values for feature f, and H(C) =
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# # Values of feature # | # Data set

Task | Features 1 2 3 4 § 6 7 8 9 10 ll]Classes| instances
GP 9 42 42 42 42 41 42 42 42 42 6L | 675,745
GS 7 42 42 42 41 42 42 42 159 | 675,745
MS 9 42 42 42 42 41 42 42 42 42 2| 573,544
Py 4| 3474 4612 68 5780 2 23,898
NP 11120,231 20,282 20,245 20,263 8 87 8 8 3 3 3 3| 251,124
POS 5 170 170 498 492 480 169 | 1,046,152

Table 1: Specifications of the six data sets of the GP, GS, MS, NP, PP, and POS learning
tasks: numbers of features, values per feature, classes, and instances.

— Y cec Pl(c) logg P(c) is the entropy of the class labels. The probabilities are es-
timated from relative frequencies in the training set. The normalizing factor si(f)
(split info) is included to avoid a bias in favor of features with more values (Quin-
lan 1993). Pure memory-based learning with information-gain feature weighting
was introduced in Daelemans and Van den Bosch (1992) as an extension to 1B 1
(Aha et al. 1991), and was called 1B1-1G. In numerous language learning stud-
ies, 1B1-1G has been shown to outperform the unweighted 1B1 (Van den Bosch
1997, Daeclemans et al. 1999),

We conclude our description of the FBAMBL algorithm by noting that it is related
to two earlier approaches to generalized instances: NGE (Salzberg 1991) and RISE
(Domingos 1996). Part of the motivation for the design of FAMBL is to have a
faster version of the process of generalizing instances as compared to that in NGE
and in RISE. Current implementations of the latter two algorithms scale badly
with data sets of the magnitude as discussed in this paper. The main difference
between FAMBL and both NGE and RISE is that FAMBL is not incremental (NGE)
or cyclic (RISE): families in FAMBL are extracted once and not grown later on.
An additional differences between FAMBL and RISE is that RISE uses wildcards to
represent a disjunction of feature values in a generalized expression, while FAMBL
always lists the full disjunction of feature values. For more discussion on NGE
and RISE and an empirical comparison with FAMBL, cf. Van den Bosch (1999, to

appear).

3 Careful abstraction applied to six language learning tasks

We applied FAMBL to six language data sets that have been used in earlier studies
(Van den Bosch, Daelemans and Weijters 1996, Veenstra 1998, Daclemans et al.
1999, Van den Bosch 1999, to appear). The selection of data sets represents a range
of language tasks: grapheme-phoneme conversion, word pronunciation, morpho-
logical segmentation, base-NP chunking, PP attachment, and POS tagging. Table 1
lists the numbers of instances, feature values, and classes of the data sets of the six
tasks. We briefly outline the underlying tasks that these three data sets represent.
Grapheme-phoneme conversion (henceforth referred to as GP) is the map-
ping between the spelling of a word and its phonemic transcription. We define the
task as the mapping of fixed-sized instances representing parts of words to a class
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representing the phoneme of the instance’s middle letter. To generate the instances,
windowing is used (Sejnowski and Rosenberg 1987). Example instances and their
classifications were given earlier in Figure 2. We chose a fixed window width of
nine letters, which offers sufficient context information for adequate performance
(in terms of the upper bound on error demanded by applications in speech technol-
ogy) (Van den Bosch 1997). The data used in the experiments described here are
derived from the CELEX lexical data base of English (Baayen, Piepenbrock and
van Rijn 1993).

Grapheme-phoneme conversion combined with stress assignment (hence-
forth referred to as GS) is similar to the GP task, but differs in two respects: (i) the
windows only span seven letters, and (ii) the class represents a combined phoneme
and a stress marker. The stress marker part denotes whether the phoneme is the
first of a syllable receiving primary or secondary stress. For example, class ‘/b/1’
indicates a phoneme /b/ being the first of a syllable receiving primary stress (e.g. as
in the instance ___book from the word booking). See Van den Bosch (1997) for
more details.

Morphological segmentation (henceforth MS) is the segmentation of words
into labeled morphemes. Each instance represents a window snapshot of a word
of nine letters. Its class represents the presence or absence of a morpheme bound-
ary immediately before the middle letter. If present, it also encodes the type of
morpheme starting at that position, i.e. whether it is a stem, an inflection, a stress-
neutral affix, or a stress-affecting affix. For example, the word booking is com-
posed of the stem book and the inflection ing; consequently, the first instance gen-
erated from the word is ____booki with class ‘present-stem’, the second ___bookin
with class ‘absent’, the fifth booking__ with class ‘present-inflection’, etc. See
Van den Bosch (1996) for more details.

Base-NP chunking (henceforth NP) is the segmentation of sentences into non-
recursive NPs (Abney 1991). Veenstra (1998) used the Base-NP tag set as pre-
sented in Ramshaw and Marcus (1995): I for inside a Base-NP, O for outside a
Base-NP, and B for the first word in a Base-NP following another Base-NP. As
an example, the IOB tagged sentence: “The/I postman/I gave/O the/I man/I a/B
letter/I ./O” results in the following Base-NP bracketed sentence: “[The postman]
gave [the man] [a letter].” The data is extracted from the Wall Street Journal text
in the parsed Penn Treebank (Marcus, Santorini and Marcinkiewicz 1993). An
instance (constructed for each focus word) consists of features referring to words
(two left-neighbor and one right-neighbor word), their part-of-speech tags, and
IOB tags (predicted by a first-stage classifier) of the focus and the two left and
right neighbor words. See Veenstra (1998) for more details, and Daelemans et
al. (1999) for a series of experiments on the data set also used here.

PP attachment (henceforth PP) is the attachment of a PP in the sequence VP
NP PP (VP = verb phrase, NP = noun phrase, PP = prepositional phrase). The
data consists of four-tuples of words, extracted from the Wall Street Journal Tree-
bank (Ratnaparkhi, Reynar and Roukos 1994). They took all sentences that con-
tained the pattern VP NP PP and extracted the head words from the constituents,
yielding a V N1 P N2 pattern (V = verb, N = noun, P = preposition). For each
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pattern they recorded whether the PP was attached to the verb or to the noun in
the treebank parse. For example, the sentence “he eats pizza with a Sfork” would
yield the pattern eals, pizza, with, fork, verb.. A contrasting sentence would
be “he eats pizza with anchovies™: eats, pizza, with, anchovies, noun. From
the original data set, used in statistical disambiguation methods by Ratnaparkhi et
al. (1994) and Collins and Brooks (1995), and in a memory-based learning experi-
ment by Zavrel, Daelemans and Veenstra (1997), Daelemans et al. (1999) took the
train and test set together to form the data also used here.

POS tagging (henceforth Pos) is short for part-of-speech tagging of word
forms in context. Many words in a text are ambiguous with respect to their mor-
phosyntactic category (part-of-speech). Each word has a set of lexical possibili-
ties, and the local context of the word can be used to select the most likely category
from this set. For example in the sentence “they can can a can”, the word can is
tagged as modal verb, main verb and noun respectively. We assume a POS-tagger
that processes a sentence from the left to the right by classifying instances rep-
resenting words in their contexts (as described in Daelemans et al. (1996)). The
word’s already tagged left context is represented by the disambiguated categories
of the two words to the left, the word itself and its ambiguous right context arc
represented by categories which denote ambiguity classes (e.g. verb-or-noun).

For each task FAMBL is compared with 1B 1-1G by applying both algorithms to
the six data sets in a 10-fold cross validation setup (Weiss and Kulikowski 1991).
Table 2 lists the average generalization accuracies obtained in these comparisons.
The results of 1B 1-1G on the GS, NP, PP, and POS tasks are reproduced from Daele-
mans et al. (1999). One-tailed ¢-tests yield significance results that show at a gen-
eral level that 1B1-1G is significantly more accurate than FAMBL on the MS, G,
and PP tasks. On the GP, NP, and POS tasks, the difference is not significant.

B1-1G FAMBL-1G

Task % +  >FAMBL? %

GP 97.37 0.09 9732 0.09
MS 98.02 0.05 — 97.84 0.06
GS 93.45 0.15 ¥ 9322 024
NP 98.07 0.05 98.04 0.05
PP 83.48 1.16 - 81.80 .14
POS 97.86 0.05 97.83 0.04

Table 2: Generalization accuracies (percentages of correctly classified test instances, with
standard deviations) of 1B1-IG and FAMBL on the GP, GS, MS, NP, PP, and POS tasks.
Asterisks denote the outcomes of one-tailed ¢-tests, denoting a significantly better accuracy
of IB1-IG as compared to that of FAMBL. ‘**’ denotes p < 0.01; ****’ denotes p < 0.001.

We also monitored for all experiments the number of families that FAMBL
probed and extracted, including the median sizes and within-family distances it
found during probing. Table 3 displays these results averaged over the ten exper-
iments performed on each task. The table also displays two additional quantities:
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generalization probing stage extraction stage

accuracy cluster- % item median cluster- % item
Task % + # edness  compr. size  distance # edness comp. |
GP 9732 0.09 | 31,224 1908 90.5 2 0.096 | 162,954 10,230 50.7
MS 97.84  0.06 | 18,783 8435 93.4 2 0.078 | 131,776 74,616 53.7
[« 93.22 0.24 | 37,457 1693 83.2 1 0.084 | 153,441 8445 31.0
NP 98.04 0.05 5238 2413 917 3 0.155 59,376 29,072 72.4
PP 81.80 1.14 157 8 99.3 1 0.078 6414 3193 70.1
POS 97.83  0.04 | 11,397 479 98.0 2 0.283 | 140,488 4766 75.1

Table 3: Measurements on FAMBL output during the probing stage and the family extraction
stage on each of the six learning tasks. Probing stage measurements are the number of
probed families, the clusteredness of the classes, the item compression compared to the
original instance base, and the median family size and within-family distance. Extraction
stage measurements are the number of probed families, the clusteredness of the classes, and
the item compréssion compared to the original instance base. The generalization accuracies
are repeated from Table 2.

(i) the measured clusteredness, i.e. the number of disjunct clusters (families) per
class, averaged over classes, weighted by their frequency, and (ii) the percent-
age of compression over the number of memory items (instance types vs. family
expressions—note that this item compression cannot be translated directly to raw
memory compression, since family expressions take up more space than instance
types). Both quantities are reported for the probing stage as well as the family
stage.

Table 3 illustrates how much abstraction is attained by FAMBL. In the probing
phases, the clusteredness of classes is already in the order of a thousand, except
for the PP task. In the family extraction phase, clusteredness in the GP, Ms, and
NP tasks reaches levels in the order of ten thousand. The numbers of extracted
families are also very high (e.g. 162,954 for the GP task in the family extraction
phase). (The increased numbers of families and the clusteredness in the family
extraction phase as compared to the probing phase are the direct effect of using the
median thresholds computed in the probing phase.) The thresholds on family size
found in the probing stages show that family extraction is strictly limited to size
one in the GS and PP tasks, i.e. family members are allowed to mismatch in only
one feature value. With GP, MS, and POS, two mismatching features are allowed,;
with NP three. Together with the high clusteredness, these numbers indicate that
all six datasets are highly disjunct. Families seldom contain more than a handful
of instances (the PP data set being the exception). Put in other words, when two
instances mismatch in only a few features, they can be expected to have a different
class (two out of seven in the case of the GS task; two out of four with PP; three
out of nine with GP and Ms; three out of five with POS; or four out of eleven with
NP).

In the extraction phase, compression (the percentage reduction on the num-
ber of items in memory, from instances in pure memory-based leamning to family
expressions) ranges from 31.0% with the Gs task to 75.1% with Pos, which is



14 Antal van den Bosch

considerable. The lowest compression is obtained with GS, and the highest com-
pression is obtained with NP and POS. On both latter tasks FAMBL equaled 1B1-1G.
This would suggest that the underlying assumptions of FAMBL apply successfully
to the NP and POS tasks, and that the GS task data has properties that FAMBL han-
dles less adequately. We have two working hypotheses on what these properties
might be. First, the GS data is very disjunct: FAMBL detects a relatively high num-
ber of families during probing and family extraction. The random selection of
starting points for family extraction, although heuristically patched with the pre-
processing of the probing phase, may still lead to unwanted effects as illustrated
in Figure 3 when data is extremely disjunct. Second, FAMBL tends to blur feature
interaction: it allows the combination of feature values that never occurred in that
constellation in the learning material, while for some tasks, including Gs, this gen-
eralization may be unwanted. For example, considering the example of Figure 1, it
may be actually counterproductive for the family expression in this figure to fully
match with ___accepe or ___accedt, which are nonsensical, but for which it is in
any case unclear whether the ¢C would be pronounced a stressed /ks/.

The incorporation of feature interaction, both in FAMBL and in IB1-1G, is a rel-
evant focus point for future research (cf. recent work on maximum entropy models
applied to language learning (Ratnaparkhi 1998) and Winnow algorithms (Golding
and Roth 1998, forthcoming)).

4 Discussion

In a case study we applied the pure memory-based learning algorithm 1B1-1G
and its careful-abstracting variant FAMBL to a range of language learning tasks.
FAMBL performed close to 1B 1-1G, though equaling it on only three of the six tasks
(grapheme-phoneme conversion, base-NP chunking, and part-of-speech tagging).
Closer analyses of the learned models indicated that tasks such as word pronun-
ciation may have properties (such as very high disjunctivity or local feature inter-
action) that FAMBL does not handle adequately. On the other hand, FAMBL was
shown to be able to reduce the number of items in memory considerably (which,
depending on the implementation, can translate to substantial reduction of allo-
cated computer memory), particularly for base-NP chunking (72%) and part-of-
speech tagging (75%).

The results on the six selected tasks again provide indications for the claim
that has been stated on several occasions now (Van den Bosch 1997, Daelemans et
al. 1999, Van den Bosch 1999, to appear), that language data are highly disjunct.
Learning algorithms that ignore, forget, or cut across disjuncts (families) tend to
lose generalization accuracy (Daelemans et al. 1999). Learning algorithms that
attempt to preserve the boundaries that separate small disjuncts from each other,
be it decision trees that are forced to be more careful than default (Daelemans
et al. 1999), or carefully-abstracting memory-based learners such as FAMBL that
produce generalized instances, attain levels of generalization performance that are
equal to, or close to, those of pure memory-based learners.

In addition, we note, qualitatively and briefly, some interesting features of
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Task | Example family expression class

GP {Bpciw} rick{k[is} {in-} {leg.-}

{oe,i} {us} {s)t}ness__

-..re{wo} {ri} {ir} {Le}

Gs {-n.a} {n.c}on-{iv} {iioc}

{efgiklmprsuv}eted__

{-oy} s {ya} nt{ha} {ecx}

MS _-._un{ds}i{gdsv}

_-dioxide

{jurh} {i,a} {gn}glier.

NP the {news,notion,fime,understanding} that {Brifish, Mr.} DT NN INNP 111
{of.solar} {vans,systems,reporters} and {light, TV} {iN.JJ} NNS CC NN |1 {O,I}
{sluggish,possible,second} {growth,sale,quarier} or {even,other,second} ...
....JNNCCWIII

PP {takens,casts has,is,play} {case,nothinglight,skeiches,number,outfielder} on side
boost stake in {conglomerate, business,maker}

adding {confusion,argument,insult,land,measures,money,penny,voices} to. ..

- . . {situation,arsenal,injury,residencs,it,balances,tax,chorus}

o0loe Mg~

< Z<~

Table 4: Examples of probed families for five of the language learning tasks investigated in
Section 3.

family-based learning that allow for further research. Consider the examples dis-
played in Table 4 of actual family expressions as found by FAMBL on the five of
the six language learning tasks investigated here (examples of the POS task are left
out for reasons of clarity). For each task, three examples are given. Curly brackets
bound the disjunctions of merged values at single features. We note two general
characteristics of families we see being extracted by FAMBL. First, in every fam-
ily, there is at least one feature (usually with a high 1G) that has one fixed value.
In some examples, most or all features are fixed (e.g, in the ‘dioxide’ example of
the M3 task, apparently disambiguating the segmentation between i and 0 in this
particular word with other . ..i0... instances in which there is no morphological
segmentation. This high degree of ‘fixed’ values is reflected also in the low median
family sizes (Table 3). Again, if instances differ in more than a few feature values,
they can be expected to have another class. Second, values that are grouped on
one feature are sometimes linguistically related. In cases where values are letters,
graphematically and phonetically close groups, such as {0,e,i}, tend to reoccur. In
cases where values are words, grouped values often appear to display some sort of
syntactic—semantic relatedness.

In sum, there appears to be information hidden in extracted families that may be
useful for other purposes, or for further abstraction, e.g. by summarizing frequently
reoccurring groups using single identifiers or wild-cards. Moreover, merged value
groups represent a sort of non-hierarchical clustering, that may be used as (or
transformed into) an information source for the learning task itself, or to other
related learning tasks.
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