XML Mixed Content Grammars

Pim van der Eijk and Dennis Janssen
Cap Gemini Nederland B.V.

Abstract

Extensible Markup Language documents are composed of sequences of character data and
embedded markup, under control of a Document Type Definition. We will argue that em-
bedded markup needs to be dealt with at a syntactic level to account for interdependencies
between linguistic structure and document structure, as found in style guides and Controlled
Languages. Purthermore, we discuss the effect of XML content manipulation by NLP tools
on XML document integrity, and outline conditions on grammars under which an NLP sys-
tem preserves XML well-formedness and validity.

1 Introduction

Practical Natural Language Processing (NLP) applications, such as Controlled
Language (CL) authoring support systems' and Machine Translation (MT) sys-
tems, are expected to process word processor documents that include punctuation
and formatting information. Word processor file formats are typically (native) bi-
nary formats or (interchange) formats based on a marked up ASCII text format.
The Microsoft Rich Text Format (RTF) is an example of a common markup for-
mat, which several commercial NLP systems support. The following fragment
shows an RTF encoding of a string in which the word bold is put in bold face.

a piece of \bbold\b0 text in an RTF paragraph \par

This raises the question how, and at what level of linguistic analysis, embed-
ded markup is to be accounted for. A common engineering approach to processing
formatted text is to account for markup at the levels of text analysis and/or lexical
analysis. A text analyzer (often specific for a particular input file format) encodes
markup using a kind of escape syntax. The lexical analyzer skips the escaped
iterns, but anchors them to nearby linguistic items, After syntactic processing, the
markup is put back into the generated output string at the location of the (transla-
tion of the input) text anchors.

Systems based on this approach include several commercial MT systems and
earlier versions of Cap Gemini’s Controlled Language authoring system (van der
Eijk, de Koning and van der Steen 1996), marketed as Cap Gemini CLarity and
referred to as CLarity from now on. In CLarity, an additional distinction is made
between prefix markup (such as \b) and postfix markup (such as \b0), and be-
tween word-level markup and sentence/paragraph-level (\par) markup. The pre-
fix/postfix distinction is also used to account for Extensible Markup Language
(XML) open and close tags (see section 2).

1See Adriaens, Havenith, Wojcik and Tersage (1996) and Mitamura and Nyberg (1998) for recent work
on Controlled Language applications, and van der Eijk (1997) for a general introduction.

198 Pim van der Eijk and Dennis Janssen

This approach is clearly a very useful starting point, as it prevents the user
from having to reapply the original formatting to NLP system output. However,
it is based on two assumptions which we will argue to be incorrect. First of all,
it is assumed that the linguistic content of a document can be processed indepen-
dently from the markup. This assumption is already questionable in the case of
formatting markup (e.g. a text-to-speech engine might generate an audible empha-
sis for bold or italicized text), and clearly invalid for uses of SGML and XML
markup for content tagging. For instance, in the following procedure step (drawn
from an Interactive Electronic Technical Manual), the content tag Button provides
information that Next is a proper noun rather than an adverb:

<Step>Push <Button>Next</Button> for generator repair
instructions.< /Step>

The design philosophy underlying the Standard Generalized Markup Language
(SGML) concept of generic markup is that document content is a combination of
textual content and markup, where the markup provides essential structural infor-
mation, inline metadata content, and links to external multimedia data. In section
3, we will elaborate on this issue and argue that a proper computational account of
style guides and Controlled Language (CL) specifications requires manipulation of
structured content, and that viewing these specifications as a kind of sublanguage
specifications is an inherently limited perspective.

A second problem with the treatment of markup at the text/lexical analysis
levels is the issue of document integrity. The SGML concept of validation implies
that the distribution of markup in a document is controlled using Document Type
Definitions (see section 2.2)., NLP systems that manipulate (e.g. reorder) their
input, including markup, might thus produce invalid document structure. As an
example, assume the following partially content-tagged input sentence:

<Para> The conference is held on <date> <day>11</day> de-
cember 98< /date>< /Para>

The existing lexical analyzer of CLarity would anchor <date><day> as
markup prefix of 11, </day> as its postfix and </date> as postfix for 98. A
(hypothetical) date normalizer would then produce the following alternative, in-
correctly moving the word December outside the content of the date element.

<Para>The conference is held on December <date><day>11,</
day>1998< /date></Para>

This shows that the content tag date needs to be treated at a (phrasal) syn-
tactic level rather than a lexical level. Also note that, if December is tagged as
<month>December< [month> in the input sentence, the month element would
be moved outside the date element. Depending on whether the DTD allows month
clements as content of Para elements, the application of the date normalizer might
then invalidate the document.

XML Mixed Content Grammars 199

In this paper, we will outline an approach to processing structured documents
that accounts for document structure at the level of syntactic analysis. As this
approach requires some understanding of document technology concepts, section
2 will first provide a brief introduction to some concepts and jargon from structured
document processing (SGML/XML).

The issue of accounting for structured content will be taken up in section 3,
which will provide two case studies that require integrated content processing. In
section 4, we will discuss a recent generalization of CLarity to a system for con-
trolled content creation, and will show how this allows us to more accurately and
completely implement Controlled Language specifications and to provide better
support to authors of Controlled Language content.

The issue of accounting for document integrity will be discussed in section 5,
where we will outline a number of conditions under which controlled content ma-
nipulation systems will preserve the two types of document integrity distinguished
in the XML standard. Section 6 will discuss related work. Section 7 will summa-
rize the results of this paper and will outline some potential extensions.

2 Structured Documents
2.1 Extensible Markup Language

Extensible Markup Language (XML) is a representation language for structured
documents defined by the World Wide Web Consortium (W3C) for Internet appli-
cations (Bray and Paoli 1998). It is derived from Standard Generalized Markup
Language (SGML), an International Standard (ISO 8879). XML retains the core
SGML concepts of generic markup and validation but eliminates the engineering
complexity of SGML and a number of rarely used or less well-designed properties
of SGML.

XML offers an object-oriented approach to modelling and processing docu-
ment content. Documents are viewed as tree-structured assemblies of individual
logical information components, called elements, and are represented physically
using a markup syntax. Elements can either be empty or have content. Non-empty
clements are marked up using a start tag and an end tag. For instance, the Hello,
world string is enclosed by open and close tags of the greetings element. Empty el-
ements, as the
 example, are marked up using a single tag that has a special
syntax;

<greetings>Hello, world< /greetings>
there’s a line
 break in this line

Elements that have content can be subdivided in three subclasses. Many ele-
ments, typically including the top-level document element, are containers for other
elements. For instance, the element Atml in the HTML DTD consists of two ele-
ments, viz. a head and a body. This case is called element content. A hypothetical
element CardNumber, which might occur in an E-Commerce application to tag a
credit card number, would not contain subelements but would only contain a string
of digits. This is called data content.

200 Pim van der Eijk and Dennis Janssen

<html><head><!- head content ...-></head><body><!-
body content ...—></body> < /html>

<CardNumber>5437 4027 5726 5306</CardNumber>

Many elements contain a mixture of running text with embedded subelements.
An example of this is the IETM generator repair instruction we discussed in section
1. This fragment can be thought of as representing a (sub)tree with a mother node
labelled Para that has three daughter nodes, viz. an embedded subelement labelled
Button with data content Next, which separates two untagged nodes containing data
content, the strings Push and for generator repair instructions, respectively. Such
combinations of data content and subelement content are called mixed content. A
data content node in mixed content is sometimes referred to as a pseudo element.

2,2 Document Type Definitions

In XML, a class of documents is modelled using the Document Type Definition
(DTD) modelling language. DTDs are used by content entry systems to support
guided authoring, and can restrict the user to insert only those subelements or data
content that are allowed at a particular location in the document. DTDs are also
used as interface specification in information or data exchange applications.

The distinction between data content elements, mixed content elements and
element content elements is accounted for in the DTD by element definitions. The
examples of elements that illustrate the three types of content given in section 2.1
can be defined as follows.

<!{ELEMENT br EMPTY>

<!ELEMENT CardNumber (#PCDATA)>

<!ELEMENT html (head, body)>

<|ELEMENT Para (#PCDATA|Button)*>

</ELEMENT list (head?, ((label, item)+ | item+))>

The last of these definitions is an element that illustrates a more complex type
of element content definition, the TEI Lite (Burnard and Sperberg-McQueen 1995)
list element.

The description of the allowed content of an element is called the content
model, All XML element definitions follow the pattern </ELEMENT Element-
Name ContentModel>. Empty elements have the fixed content EMPTY. The con-
tent model of all elements that have data content is #PCDATA.

Content models of elements that have element content are constructed from el-
ement names combined using unary and binary operators. These operators express
(with X, Y valid content model sub-expressions) linear order (X , Y means X fol-
lowed by Y), alternatives (X | ¥ means X or Y), optionality (X ? means optionally
X), and iteration (the * and + operators with the usual interpretation). Parenthe-
ses can be used in content models for grouping. The list element definition thus
states that list elements may but need not contain an initial head element, and then

XML Mixed Content Grammars 201

consist of either a sequence of pairs of a label element and an item element, or a
sequence of one or more ifem elements.

Tn XML, the definition of elements that have mixed content is fixed to be the
application of the * operator to a single group of #PCDATA and element names
combined using the | operator. #PCDATA is required to be the first item in such a
|-separated list.

Any SGML document instance can be converted to an XML data stream with-
out loss of information (other than encoding information). As a result of this, fo-
cussing on XML rather than SGML means no loss of generality. However, XML
mixed content rules cannot further constrain the relative ordering of subelements
and data content in mixed content. SGML DTDs lack this restriction, instead #PC-
DATA can be used alongside element names in complex content models. SGML
DTDs are thus more expressive than XML DTDs. The motivation for the spe-
cial restriction on mixed content models is beyond the scope of this paper and
unrelated to the topic of integrating XML processing and Natural Language Pro-
cessing. However, we will show that the XML restriction allows us significant
simplifications in section 5.

2.3 Document integrity

The XML standard defines two types of integrity properties that can hold true of a
particular XML data stream, viz. validity and well-formedness.

The XML Document Type Definition mechanism can be used to determine
whether a particular XML data stream is valid, as the content of each element
can be verified against the content model defined in the DTD. This is essentially
parallel to context-free grammar parsing.

A less strict constraint than validity is well-formedness, which requires a tagged
data stream to contain a proper nesting structure of open tags and close tags
(and involves a number of additional constraints not relevant to this paper). Any
document that is valid is well-formed, but not vice versa. The concept of well-
formedness was introduced for applications that do not need to validate the XML
data stream.

Section 5 discusses a number of conditions on grammars that make sure that
the CLarity run-time engine does not produce alternatives for valid XML input
that are not well-formed or turn the XML document invalid.

3 Style guides and Controlled Language
3.1 Authoring support systems

Our interest in processing structured documents is the commercial application of
language technology to support authors to create high-value documents such as
technical documentation for complex industrial or military systems, requirements
specifications, or Service Level Agreements (SLA). These are documents that have
to satisfy high quality requirements such as comprehensibility, consistency, re-
duced ambiguity, improved translatability, and improved machine-processability.

202 Pim van der Eijk and Dennis Janssen

Style manuals and Controlled Language specifications provide (usually rather
informal) information how these requirements can be met. Currently, a number of
research and commercial systems offer interactive or batch functionality to support
authors or editors of CL text. These systems are similar to grammar checkers, ded-
icated to and customized for a specific application domain or customer, and offer
critiques and possibly alternatives for sentences that fail to meet specific criteria.

It can be argued that viewing style guides and Controlled Languages as a kind
of prescriptive sublanguages (van der Eijk et al. 1996) does not do full justice
to these documents. In fact, as the title of MIL-PRF-87268 (Interactive Elec-
tronic Technical Manuals - General Content, Style, Format and User-Interaction
Requirements 1995) shows, these documents typically address not only syntactic
and lexical issues, but also provide guidelines for high-level, rhetorical structure
(how to convey certain types of information), address low-level issues like format-
ting and punctuation, and discuss the proper use of document structure elements,
including multimedia elements.

To illustrate this, we will provide evidence from two case studies.

3.2 Microsoft Manual of Style for Technical Publications

The Microsoft Manual of Style for Technical Publications (Microsoft 1995) is a
style guide for software documentation. Four rules specified in this document are
presented here:

Do not add punctuation at the end of the heading,.
Avoid beginning a heading with an article (a, an, the).

In end-user task-oriented documentation, generally use a present par-
ticiple (ing form) rather than an infinitive to begin headings, except
for procedure headings, which should begin with an infinitive phrase.

As a general rule, tell the user where the action should take place be-
fore you describe the action to take. This prevents the user from doing
the right thing in the wrong place. [..] For example, the following
phrase is typical: On the View menu, click Zoom.

The first three of these rules illustrate a number of interdependencies of linguis-
tic structure (use of articles, verb form, capitalization, punctuation) and document
structure. A support system needs to determine document context to provide accu-
rate author feedback in these cases. The fourth rule is an example of a rhetorical
rule.

33 Simplified English

The Simplified English (SE) standard is a controlled language for the acrospace
industry (AECMA 1995). It contains a controlled vocabulary and a set of writing
rules. Companies in this industry are interested in computer support to help them
check compliance to this standard. Some examples are given here:

XML Mixed Content Grammars 203

RULE 2.3 When appropriate, use an article (the, a, an) or a demon-
strative article (this, these) before a noun.

RULE 4.3 Use a tabular layout (vertical layout) for complex texts.

WRITE:
the controls of the main panel, from top to bottom, are:

e An OFF/ON main switch
e A START push button
e A STOP/O.S. TEST push button

NOT:
From top to bottom, the controls on the main panel consist of an
OFF/ON main switch, a START push button, and a STOP/O.S. TEST

push button.

To implement SE rule 2.3, it is possible to write a grammar correction rule that
inserts an article in Noun Phrases that lack an article. This rule needs to account
for the fact that appropriateness of a context for article insertion not only depends
on linguistic criteria (such as the count/mass noun distinction, generic/specific in-
terpretation of plurals etc.), but also on document contexts. For instance, articles
are generally inappropriate in headings and table cells.”

In the discussion of rule 4.3, an example is given where fext content (a com-
plex NP enumeration) is replaced by insertion of a list element. The functionality
described in section 4 shows how such a transformation can be implemented in
an authoring support tool like CLarity. This functionality thus generalizes CLar-
ity from a Controlled Language tool into a controlled content tool. This rule is
discussed in more detail in section 4 and 5.

4 Mixed Content Grammars

The discussion in section 3 shows the need to process markup at a syntactic level.
A controlled content system should be able to manipulate (recognize, delete and
insert) markup as it manipulates textual content to produce alternatives for input
that violates one or several Controlled Language rules. This means there is a need
for a unified data model for document structure and linguistic structure, and a
unified language for modelling the set of valid document structures and linguistic
constructions.

The linguistic coverage of CLarity is defined using an extended context-free
grammar formalism augmented with an attribute unification constraint language.
The formalism also supports annotations on grammar rules that are interpreted as

2The absence of articles in specific document contexts also showed up in a prototype Dutch-to-French
Machine Translation system developed at Cap Gemini in 1995. Whereas article omission in French is
less common than in Dutch, articles are generally omitted in table cells and headings in French.

204 Pim van der Eijk and Dennis Janssen

instructions to transform input expressions to output expressions. These annota-
tions to grammar rules express reordering, insertion and deletion operations on
parse trees.

Well-formed XML documents can also be represented as labelled trees with
attribute specifications. The XML DTD language for document structure can be
viewed as a variant of the context-free grammar formalism,

Therefore, there is no essential difference between the XML and CLarity rep-
resentations and modelling languages. In practice, the level of (linguistic) analysis
performed by NLP systems is (much) more fine-grained than the document struc-
ture hierarchy. Theoretically, CLarity could be used as an XML validator by pro-
viding it with a grammar that mirrors the DTD hierarchy, with an additional rule
for #PCDATA (which accepts any lexical item). The DTD can then be considered
to express a (database) view on a more complex structure definition.

In practice, CLarity and similar Controlled Language authoring tools are in-
tended to be called as plug-ins to existing authoring systems, such as SGML/XML
editors. Therefore, the document fragments that need to be passed to the CLarity
system are the substructures contained within mixed content and data content el-
ements. As implemented, XML data streams (rather than tree data structures of
the host XML editor) are passed between engine and plug-in. These streams thus
consist of mixed markup and text.

The set of fragments that are to be passed to the linguistic engine can either
be application-dependent, or derived from the content model of the element as
specified in the DTD. When a mixed content element or data content element is
contained within another mixed content element, the larger fragment needs to be
processed if the content of the embedded element is constrained linguistically by
the content of the larger fragment, or vice versa. In that case, either the document
element has mixed or data content and its full content is passed to CLarity for
processing, or the document is divided in a number of fragments, where each frag-
ment corresponds to the content of a mixed or data content element, any ancestors
of which up to the document clement are element content elements.

CLarity has been extended to support syntactic processing of XML streams.
The specific approach adopted aimed at achieving maximum flexibility for linguis-
tic developers with minimal changes to existing software. The software changes
are made in the text analysis and lexical analysis modules. The linguistic changes
affect the Controlled English grammar and lexicon and are specific to a particular
XML application. Both grammar and lexicon need to be augmented with, for each
non-empty XML element E, two additional terminal categories XML_E _start and
XML_E_end, and lexical entries <E> and </E> that have these categories, and
analogously for empty elements. The adapted lexical analyzer maps XML markup
to these lexical entries. Attributes on XML elements can be mapped to attributes
on the corresponding grammar categories.

An example rule that transforms

<Heading>The generator.< /Heading>

to

XML Mixed Content Grammars 205
<Heading>Generator</Heading>

consists of a rule that recognizes an XML_Heading._start, an NP, an optional period
and an XML_Heading end. The rule has an annotation that deletes the period,
if present. Using an attribute, information is passed into the NP to signal that
any article, if present, is to be deleted. This information is passed from NP, via
intermediate grammar rules for determiner phrases, down to the article rule, which
deletes (or inserts) the article depending on the particular value for the attribute that
passes the correction information. This rule is an example of a structure-sensitive
rule. From the XML point of view, there is only a minor #PCDATA change, the
markup tree structure is essentially preserved without changes.

A more interesting rule is concerned with AECMA rule 4.3. This rule can be
implemented by modifying the rule that recognizes enumerations of NPs to insert
list and item XML open and close tags. The following instruction (taken directly
from the XLA 115 Special Purpose Generator manual shipped with the HyMID
IETM system (Anderson 1996)) is an example of a sentence that would match this
rule.

To clean carburetor ports, clean, /, channels and discharge,, /, ports

The part of speech subscripts indicate that this sentence is at least three
times ambiguous. This may potentially cause misinterpretations. Application of
AECMA rules 2.3 and 4.3 will yield a number of unambiguous alternatives, one
of which is the following:*

To clean the carburetor ports: <List><Item>Clean the channels</
Item> <Item>Discharge the ports< /Item>< /List>

The user only needs to select the intended interpretation and paste it into the
document. 5

Note that the ability to process XML-encoded data in CLarity is not dependent
on an integration with an SGML/XML editor. In fact, some of this functionality is
currently used in a Controlled English editor embedded in Microsoft Word (van der
Eijk 1997), where the (limited) structural information that is available in Microsoft
Word (heading styles, lists, cells) is encoded in XML for communication with the
underlying CLarity engine.

4.1 Other XML auto-tagging applications

Other applications of inserted markup include XML tags to mark content for fur-
ther processing. For instance, if on the basis of lexical and grammatical informa-
tion it can be determined that auxiliary power unit is a term to be indexed in:

Switch on the auxiliary power unit

3Note that the specific set of tags used to encode lists is DTD-specific.

206 Pim van der Eijk and Dennis Janssen

Then tags could be inserted around the phrase 5o that the index generator can
record this occurrence of the term. This is an example of XML auto-tagging. This
type of auto-tagging is based on a fairly sophisticated natural language analysis,
and thus is potentially more precise (though obviously less robust) than the con-
ventional pattern matching techniques used in the SGML/XML community.

Switch on the <Term> Auxiliary Power Unit</Term>

Other uses of inserted tags include the use of tags to record user-supplied word
sense disambiguation information, as done in the Controlled Language project at
Caterpillar (Kamprath, Adolphson, Mitamura and Nyberg 1998).

5 Document Integrity
5.1 Introduction

As discussed in section 2.3, XML distinguishes two types of integrity constraints:
well-formedness and validity. The incorporation of XML processing within gen-
eral Controlled Language processing described in section 4 offers the grammar
writer the possibility to specify arbitrary reordering, deletion and insertion of XML
markup.

Nothing inherent in the formalism prevents a linguist from specifying a gram-
mar that accepts XML input or generates XML output that violates one or both
of these constraints. As the system is designed to be called from a validating
SGML/XML editor (which ensures that the user cannot enter invalid content), we
are especially interested in preventing rules that accept valid XML input but pro-
duce invalid, or even non-wellformed XML output. Note that validity is a special
case of well-formedness.

In this section, we will focus on the extended context-free core, and the mech-
anism to produce corrected output. The proof sketched in this section carries over
to the actual, significantly more complex formalism used to specify the CLarity
Controlled English grammar.

5.2 A grammar formalism for correction

The CLarity formalism is a context-free grammar formalism extended for optional,
alternative and repeated right-hand side symbols, attribute constraint evaluation,
and morpho-syntactic and word order correction. This grammar specifies a set of
pairs of input language expressions and associated corrected output expressions.
The association is expressed at the level of context-free grammar rules using addi-
tional annotations. These annotations can perform the following operations:

Reorder asubnode
Delete a subnode

Insert alexical item.

XML Mixed Content Grammars 207

Note that reordering and deletion operate at the order of complete subnodes,
and that an inserted lexical item is inserted at the same level as the other subnodes
of arule. A subnode is reordered including all of its content. An inserted lexical
item can be a textual item (such as an inserted article), or markup (such as the close
tag of item, the lexical item < /item>).*

5.3 Well-formedness

The requirement of well-formedness, for the purpose of this discussion, will be
limited to the following requirements:

1. Open and close tags of non-empty elements must be in that order (Properly
Sequenced)

2. Open and close tags of non-empty elements are allowed within other pairs
of open and close tags but with no crossing dependencies. (Properly Nested)

We will show that when a grammar satisfies the following conditions, CLarity
will generate well-formed (possibly corrected) XML output, if the XML input was
valid to begin with:

A Pairs of Open and Close tags must be used in the same rule

B Pairs of Open and Close tags may not be reordered within a rule in such a way
that the close tag precedes the open tag.

C Pairs of Open and Close tags can be inserted or deleted in pairs.

D Pairs of Open and Close tags are properly nested w.r.t. other pairs of open and
close tags in that rule.

These conditions can be interpreted as either guidelines for grammar writers or
verified using a static analysis of the grammar.

Theorem Let I be a Language (a set of XML input strings) that is XML well-
formed. A Clarity grammar G that complies with conditions A, B, C, and
D and accepts Language I produces a Language O (Corrected Output Sen-
tences) that is XML well-formed.

The proof is based on induction on the number of rule applications in a parse tree.
The base case is concerned with parse trees that consist of a single rule application.
These parse trees only have leaf nodes. These nodes can be any (mixture) of the
following:

“In the extended formalism, lexical choice of inserted elements can be further constrained using at-
tribute unification. At the level of terminal nodes, there are other types of correction (e.g. agreement
correction, lexical preference relations) that are irrelevant to the discussion. These corrections do not
change the category of the terminal node, and thus preserve well-formedness and validity.

208 Pim van der Eijk and Dennis Janssen

Non-markup terminal nodes These terminal nodes correspond to #PCDATA
data content. Data content does not interfere with XML well-formedness.

Empty elements As these elements by definition are represented using a special
tag, proper sequencing and nesting of open and close tags is not affected.
There are therefore no restrictions on reordering of empty element tags.

Content elements These elements come in pairs of an Open tag and a Close tag,
which will be properly nested and sequenced, because:

by condition A, for an open (close) tag there is a corresponding close
(open) tag,

by condition B, these are Properly Sequenced,

by condition C, if one of the tags is deleted (inserted) both will be

by condition D, if there are other pairs of open-close-tags these are
Properly Nested.

The induction part of the proof is based on the assumption that the theorem is
proven for parse trees containing less then n rule-applications. We then have to
prove it for parse trees with m > n rule-applications.

The general scheme for a syntactic rule = that produces a parse tree with top
node P out of parse nodes P; ... P,, with 1 < i < j < 2 has the following form:

P=P...P,...P;...P,

Each of the subtrees P; can be annotated with annotations for deletion, re-
ordering to a position j different from ¢, or insertion at a location i. Assume all P;
contain less then n rule-applications. We need to distinguish the following cases:

Node reordering We need to distinguish two cases:

1. Complex subtrees P; can be reordered without affecting well-formedness.
This operation does not affect pairs of open/close tags within the subtree,
which thus remain Properly Sequenced and Properly Nested.

2. Leaf nodes P; are either non-markup leaf nodes (XML #PCDATA), a node
representing an empty element tag, or an open (resp. close) tag for a content
element. The first two of these cases have no impact on well-formedness.
As the grammar complies with conditions A, B and C, for each open tag P;
(or close tag P;) there is a corresponding close tag P; (respectively, open
tag P;) such that i < j, and such that P; and P; are also Properly Nested in
the output XML structure.

Node insertion Only leaf nodes can be inserted. Insertion of non-markup leaf
nodes or an empty element tag leaf node does not affect XML well-
formedness. For an open tag leaf node P; (respectively, a close tag leaf
node P;) that is inserted, by condition C there is a close tag leaf node P;
(respectively, an open tag leaf node P;), where ¢ < j.

XML Mixed Content Grammars 209

Node deletion Here we need to distinguish deletion of leaf nodes from deletion
of complex subtrees. The proof that deletion of leaf nodes preserves well-
formedness is analogous to the case of node insertion. By condition A, there
will remain a corresponding close tag P; for each open tag P; (and vice
versa), where condition B ensures that j > ¢ (Properly Sequenced), and
condition D ensures these are Properly Nested w.r.t. other pairs of open and
close tags in the rule.

This proof for context-free grammars carries over to extended context-free
grammars containing operators for optionality, iteration and or-expressions, by.
requiring that conditions A to D apply to each rule sub-expression in the scope of
such an operator.

5.4 Validity

As discussed in section 4, the CLarity engine is invoked by an authoring plug-in
to process the content of an XML element that has either mixed or data content.

In section 5.3, we have provided a number of conditions on grammars that
make sure the generated output will always be well-formed. Our longer term ob-
jective is to establish a set of additional conditions on grammars that ensures that
all generated XML output satisfies XML validity as specified in the XML Doc-
ument Type Definition. Analogously to the discussion of well-formedness, this
would obviate the need to dynamically validate generated XML output fragments.
For the moment, we sketch an interim result which covers the special case where
all elements contained within the fragments passed to CLarity have either mixed
or data content, but not element content. This property may hold true of a specific
DTD. The corrected XML data stream will then still need to be validated using
an external XML validator if some element contained in the input data stream is
declared in the DTD to have element content.

Analogously to the discussion of well-formedness, we will distinguish the three
operations of node reordering, node deletion and node insertion, and only consider
manipulation that follows conditions A,B, C and D of section 5.3 and thus main-
tains well-formedness, Note that XML elements that have mixed content or data
content can only specify which subelements (if any) can occur as content of ele-
ments in addition to #PCDATA , but cannot specify additional order or occurrence
constraints.

Node reordering might rearrange some input string <Z> <X/>...<Y/> </
Z> into <Z> <Y/>...<X/> </Z>.If Zis declared as having mixed content,
the XML constraint on mixed content models (discussed in section 2.2) ensures the
result will not just be well-formed, but also valid. Similarly, as XML DTDs cannot
enforce presence of certain subelements, node deletion cannot have any effect on
validity. The only special case to be considered is insertion of markup leaf nodes.
The specific element that is inserted may or may not be allowed according to the
DTD.

One approach to checking a grammar against a DTD uses the following proce-
dure. First, we determine for each element E the set of allowed subelements C M.,

210 Pim van der Eijk and Dennis Janssen

This set is § if the element has data content and is { Sy ... Sy } if the element has
a mixed content model </ELEMENT E (#PCDATA | S1]...| Sn)x>.

For each grammar rule where an XML subelement is inserted, the insertion
context can be determined. If the nearest containing element C is specified directly
in the rule, the validity can be determined locally, at the level of the individual rule.

P=P...<C>...<E/>...<[/C>...P,

If the grammar rule does not itself specify an enclosing element, a static anal-
ysis of the grammar must be performed to determine, not a container for <E/>,
but rather a containing element for P (possibly even for an ancestor of P). Since
there may may be several such containing elements, to check whether element E is
allowed in all such contexts, it should be a member of the intersection of all C M
sets of these elements.

As an example, the rule that implements SE rule 4.3 is a modified rule for
enumerations of NPs. This rule does not explicitly mention an enclosing XML el-
ement, but is used in sentences that occur inside a Para element or within a Head-
ing. Assume the DTD allows sublists inside paragraphs but not in headings. In
that case, the List element is not included in the intersection of CM sets, meaning
the rule as stated overgenerates.’

Note that this approach only applies to inserted subelements. It does not help
the grammar writer detect cases of incorrrect reference to tags that are used contex-
tually. The approach also cannot easily be extended to element content elements or
SGML mixed content, where the relation between document structure and linguis-
tic structure is more complex. That type of functionality would require a more ex-
plicitly algebraic approach to modelling the relations between linguistic structure
and document structure. One potential approach would be based on the HyTime
concept of architectures (Goldfarb, Newcomb, Kimber and Newcomb 1997).

6 Related work

Controlled Languages are typically used in technical publication departments of
(large) companies, which are also major users of SGML-based authoring and pub-
lication systems. Several companies currently offering commercial Controlled
Language products and/or services have developed interfaces with SGML editors.
Approaches similar to the one discussed in this paper have therefore been devel-
oped independently in a number of projects. Some of these projects have been
discussed in the literature, including SECC (Adriaens 1996), the KANT appli-
cation at Caterpillar (Kamprath et al. 1998) and Siemens-Dokumentationsdeutch
(SDD), a Controlled German project (Schachtl 1996). The SECC and SDD papers
discuss processing #PCDATA sensitive to the encompassing data content element.
In section 4.1, we discussed the use in the Caterpillar KANT application of markup
to encode disambiguation information.

5 A grammar writer can then create different rules for the two contexts. In practice, the grammar writer
would distinguish the two cases using attributes that encode contextual restrictions.

XML Mixed Content Grammars 211

Research at Aerospatiale points at the need to be able to modularize Controlled
Language design for specific document classes (Lalaude, Lux and Regnier-Prost
1998). A system like the one presented in this paper would seem to be a useful
implementation framework for these ideas.

To our knowledge, this article is the first published discussion of the importance
of document integrity in relation to NLP, and of conditions on grammars and DTDs
that ensure XML document integrity is maintained during linguistic processing.

7 Conclusion

In this paper we have argued that style checkers and Controlled Language tools
need to go beyond syntactic checking and generation of critiques and alternatives
and need to evolve into controlled content processing. XML is a generic content
representation language which is rapidly becoming popular for both document and
data representation. In this paper, we discussed a simple and effective approach
of extending an existing Controlled Language tool, CLarity, to process XML en-
coded documents. This approach involves mapping XML DTDs to a constraint-
based grammar formalism. With minimal changes to the existing Controlled En-
glish grammar, the resulting system is now able to support a number of AECMA
Simplified English rules that hitherto could not be implemented correctly. The
proposal can be generalized to support arbitrary DTDs.

A drawback of the approach is that modularity of grammar and DTD is lost, and
that grammar developers need to be both competent in computational linguistics
and in document technology. In practice, the modularity issue can be worked
around using software engineering techniques like conditional compilation, but
maintenance may become an issue if several complex, different DTDs are to be
supported.

Since the level of linguistic analysis performed by systems like CLarity is typ-
ically much more fine-grained than XML document modelling, our approach has
been based on embedding XML document structure processing within the syntac-
tic analysis of an existing Controlled English grammar (see section 4). This raises
the issue of making sure that the manipulation of content (text and markup) by
the CL system maintains XML document integrity constraints. We have shown
in section 5 that this requirement can be expressed as a number of conditions on
grammars. These conditions can be interpreted both as guidelines for grammar
writers and implemented as a verification procedure that operates as a static check
on a grammar and DTD. Note that these conditions completely obviate the need
for dynamic validation of the output of the CL system at run-time,

References

Adriaens, G.(1996), SECC: using text structure information to improve checker
quality and coverage, Proceedings of the first international workshop on
controlled language applications (CLAW96),

Adriaens, G., Havenith, R., Wojcik, R. and Tersago, B. (eds)(1996), Proceed-

212 Pim van der Eijk and Dennis Janssen

ings of the first international workshop on controlled language applications
(CLAW96), Katholieke Universiteit Leuven,

AECMA(1995), A Guide for the preparation of aircraft maintenance documenta-
tion in the international aerospace maintenance language, European Asso-
ciation of Aerospace Industries, Brussels. PSC-85-16598.

Anderson, M. (ed.)(1996), The Metafile for Interactive Documents. Application
Guide and Draft Performance Specification for the Encoding of Interactive
Documents, Naval Surface Warfare Center, Carderock Division, Maryland.

Bray, T. and Paoli, J. (eds)(1998), Extensible Markup Language, World Wide Web
Consortium. W3C Recommendation.

Burnard, L. and Sperberg-McQueen, C.(1995), TEI lite: An introduction to text
encoding for interchange, http://www-tei.uic.edu/orgs/tei/intros/teiu5.html.

Goldfarb, C., Newcomb, S., Kimber, E. and Newcomb, P. (eds)(1997), ISO/IEC
10744:1997 Hypermedia and Time-based Structuring Language, Interna-
tional Standardization Organization.

Interactive Electronic Technical Manuals - General Content, Style, Format and
User-Interaction Requirements(1995), Department of Defence. Perfor-
mance Specification MIL-PRF-87268A.

Kamprath, C., Adolphson, E., Mitamura, T. and Nyberg, E.(1998), Controlled lan-
guage for multilingual document production: Experience with Caterpillar
Technical English, Proceedings of the second international workshop on
controlled language applications (CLAW9S8).

Lalaude, M., Lux, V. and Regnier-Prost, S.(1998), Modular controlled language
design, Proceedings of the second international workshop on controlled
language applications (CLAW9S).

Microsoft(1994), Rich Text Format (RTF) Specification, Microsoft,

Microsoft(1995), Microsoft Manual of Style for Technical Publications, Microsoft
Press.

Mitamura, T. and Nyberg, E. (eds)(1998), Proceedings of the second international
workshop on controlled language applications (CLAW98), Carnegie Mel-
lon University.

Schachtl, S.(1996), Requirements for Controlled German in industrial applica-
tions, Proceedings of the first international workshop on controlled lan-
guage applications (CLAWY6).

van der Eijk, P.(1997), Controlled languages in technical documentation, Compu-
tational linguistics in the Netherlands 1997.

van der Eijk, P., de Koning, M. and van der Steen, G.(1996), Controlled language
correction and translation, Proceedings of the first international workshop
on controlled language applications (CLAWY6).

