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Abstract

We describe a memory-based classification architecture for word sense disambiguation and
our experience with its application to the SENSEVAL evaluation task. In a memory-based
approach, selecting the correct sense of a word in a new context is achieved by finding the
closest match to stored examples of this task. Advantages of the approach include (i) fast
development time for classifiers, (ii) easy and elegant automatic integration of information
sources, (iii) use of all available data, and (iv) relatively high accuracy without language
engineering.

1 Introduction

In this paper we describe a memory-based approach to word sense disambiguation
(WSD) as defined in the SENSEVAL! task: the association of a word in context with
its contextually appropriate sense tag. For this task our WSD method is trained
on POS-tagged corpus examples and selected information from dictionary entries
as provided by SENSEVAL. We believe that this approach is promising because
it is completely automatic — it only relies on the availability of some annotated
examples for each sense, and not on human linguistic or lexicographic intuitions —
and is therefore easily adaptable and portable, as we have seen in its application to
the SENSEVAL task.

Memory-Based Learning (MBL) is a classification-based, supervised learning
approach. To solve the WSD task in this framework, it has to be formulated as a
classification task: given a set of feature values describing the context in which the
word appears and any other relevant information as input, a classifier has to select
the appropriate output class from a finite number of a priori given possibilities. In
our approach we construct a distinct classifier for each word to be disambiguated.
This classifier can be seen as a type of word-expert (Berleant 1995), and might be
constructed with any supervised learning algorithm.

The distinguishing property of memory-based learning as a classification-based
supervised learning method is that it does not abstract from the training data the
way e.g. decision tree leaming, rule induction, or neural network machine learning
methods do. MBL keeps all training data in memory (in an efficient way), and only
abstracts at classification time (i.e. it is a lazy learning method instead of the more
common eager or greedy leamning approaches).

LSENSEVAL is a project set up to evaluate Word Sense Disambiguation systems, for more information
see http://www.itri.brighton.ac.uk/events/senseval/
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Since the early nineties, we have been advocating memory-based learn-
ing as a methodology in language engineering (Daelemans 1995, Daelemans;
Van den Bosch, Zavrel, Veenstra, Buchholz and Busser 1998a). The memory-
based algorithms discussed in this paper have been successfully applied to a
large range of Natural Language Processing tasks: hyphenation and syllabification
(Daelemans and Van den Bosch 1992); assignment of word stress (Daelemans,
Gillis and Duricux 1994); grapheme-to-phoneme conversion (Daelemans and Van
den Bosch 1996); diminutive formation (Daelemans, Berck and Gillis 1997); mor-
phological analysis (Van den Bosch, Daelemans and Weijters 1996); part of speech
tagging (Daclemans, Zavrel, Berck and Gillis 1996); PP-attachment (Zavrel,
Daelemans and Veenstra 1997); NP chunking (partial parsing) (Veenstra 1998);
and subcategorization frame learning (Buchholz 1998).

In the remainder of this paper, we briefly describe memory-based learning,
discuss the setup of our memory-based classification architecture for word sense
disambiguation, and show the figures of generalization accuracy on the SENSEVAL
data both for cross-validation on the training data, and for the final run on the
evaluation data. We will also briefly discuss relations with alternative memory-
based and supervised-learning approaches to word sense disambiguation.

2 Memory-Based Learning

Memory-Based Learning keeps all training data in memory and only abstracts at
classification time by extrapolating a class from the most similar item(s) in mem-
ory (i.e. it is a lazy learing method instead of the more common eager learning
approaches). In recent work (Daelemans, Van den Bosch and Zavrel 1999) we
have shown that for typical natural language processing tasks, this lazy learning
approach is at an advantage because it “remembers” exceptional, low-frequency
cases which are nevertheless useful to extrapolate from. Eager learning method-
s “forget” information, because of their pruning and frequency-based abstraction
methods. Moreover, the automatic feature weighting in the similarity metric of
a memory-based learner makes the approach well-suited for domains with large
numbers of features from heterogeneous sources, as it embodies a smoothing-by-
similarity method when data is sparse (Zavrel and Daelemans 1997). For our ex-
periments we have used TIMBL?, an MBL software package developed in our
group (Daclemans, Zavrel, Van der Sloot and Van den Bosch 1998b). TiMBL
includes the following variants of MBL:

1B1: The distance between a test item and each memory item is defined as the
number of features for which they have a different value (overlap metric).

1B 1-1G: In most cases, not all features are equally relevant for solving the task;
this variant uses information gain (an information-theoretic notion measuring the
reduction of uncertainty about the class to be predicted when knowing the value of
a feature) to weight the cost of a feature value mismatch during comparison.

1B1-MVDM: For typical symbolic (nominal) features, values are not ordered.
In the previous variants, mismatches between values are all interpreted as equal-

2TiMBL is available from: http://ilk.kub.nl/.
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ly important, regardless of how similar (in terms of classification behaviour) the
values are. We adopted the modified value difference metric to assign a different
distance between each pair of values of the same feature.

MVDM-IG: MVDM with 1G weighting.

IGTREE: In this variant, an oblivious decision tree is created with features as
tests, and ordered according to information gain of features, as a heuristic approx-
imation of the computationally more expensive pure MBL variants,

For more references and information about these algorithms we refer to Daele-
mans et al. (1998b) and Daelemans et al. (1999).

3 System Architecture and Experiments

For the WSD task, we train classifiers for each word to be sense-tagged (or in
those cases where the SENSEVAL task requires it, for a word/POS-tag combina-
tion). To settle on an optimal memory-based learning algorithm variant (i.e. 1B1,
IB1-IG, IB1-MVDM, or IGTREE) and the number of nearest neighbours (the & pa-
rameter), as well as different possible feature construction settings (see below),
ten-fold cross-validation is used: the training data is split into ten equal parts, and
each part in turn is used as a test set, with the remaining nine parts as training
set. All sensible parameter settings, algorithm variants, and feature construction
settings are tested, and those settings giving the best results in the cross-validation
are used to construct the final classifier, this time based on all available training
data. This classifier is then later tested on the SENSEVAL test cases for that word
or word/POS-tag combination.

3.1 Feature Extraction

The architecture should be suited for WSD in general, and this can include various
types of distinctions ranging from rough senses that correspond to a particular
POS tag, to very fine distinctions for which semantic inferences need to be drawn
from the surrounding text. The 36 words (or rather word/POS-tag pairs) and their
senses in the SENSEVAL task supposedly embody many such different types of
disambiguations. Since we do not know beforehand what features will be useful
for each particular word and its senses, and because we believe to have a classifier
which can automatically assess feature relevance, we have chosen to include a
number of different information sources in the representation for each case. All
information is taken from the dictionary entries in the HECTOR dictionary (Atkins
1993), and the corpus files, both of which have been labeled with Part of Speech
from the Penn Treebank tag set (Marcus, Santorini and Marcinkiewicz 1993) using
MBT, our own Memory-Based Tagger (Daclemans and Van den Bosch 1996). We
did not use any further information such as external lexicons or thesauri.

The sentences in the corpus files contain sense-tagged examples of the word in
context. For example:
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800002 An image of earnest Greenery is almost tangible.
Eighteen years ago she lost one of her six children in an
<tag_"532675">accident</> on Stratford Reoad, a tragedy which
has become a pawn in the pitiless point-scoring of small-
town vindictiveness.

The dictionary contains a number of fields for each sense, some of which
(i.e. the ’ex’ (example) and ’idi’ (idiom) fields) are similar to the corpus exam-
ples. These underwent the same treatment as the corpus examples: these cases
were used to extract both context features (directly neighboring words and POS-
tags, as described in section 3.1.1), and keyword features (informative words from
a wide neighborhood; see section 3.1.2). The only other field from the dictionary
that we used is the *def’ field, which gives a definition for a sense. As the *def’
field often does not contain the word of interest at all, these were only used to help
the selection of keywords for the cases which did contain the word in a contex-
t. During the cross-validation, the examples which originated from the dictionary
were always kept in the training portion of the data to have a better estimate of the
generalization error, because the system is unlikely ever to be tested on data that
resemble dictionary data. Note that for both dictionary and corpus examples, we
took the sense-tag that it was labeled with as a literal atom, and did not take into
account the hierarchical sense/sub-sense structure of the category labels. All cases
that were labeled as errors or omissions (i.e. the 999997 and 999998 tags) were
discarded. Disjunctions were split into (two) separate cases.

3.1.1 Context Features

We used the word form and the Part-of-Speech (POS) tag of the word of interest
(which we shall further refer to as the focus word) and the surrounding positions
as features, After some initial experiments, the size of the window was set to two
words to both the left and the right. These features were always recorded, even
when they had very low frequency values. This gives the following representation
for the example given above:

800002, in, IN, an, DT, accident, NN, on, IN, Stratford

3.1.2 Keyword Features

Often the direct context cannot distinguish between two senses, either because it
is too generic, or because it has not been seen before in the training data. In such
cases it is useful to look at a larger context (e.g. the whole text snippet that comes
with the example) to guess the semantics from its content words. As there is a large
number of possible content words, and each sentence contains a different number
of them, it is somewhat difficult to represent all of them in the fixed-length feature-
value vector that is required by the learning algorithm. Hence we choose to use
only a limited set of “informative” words, which we will call the keywords. The
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method is essentially the same as in the work of Ng and lee ( 1996), and extracts a
number of keywords per sense. These keywords are then used as binary features,
which take the value 1 if the word is present in the example, and the value 0 if it is
not. A word is a keyword for a sense if it obeys the following three properties:

M1 the word occurs in more than M1 percent of the cases with the sense; a high
value of M1 thus restricts the keywords to those that are very specific for a
particular sense.

M2 the word occurs at least M2 times in the corpus; a high value of M2 thus
eliminates low-frequent keywords.

M3 only the M3 most frequently occurring keywords for a sense are extracted,
this restricts somewhat the number of keywords that are extracted for very
frequent senses.

The above statistics for the keywords are computed based on i) sentences in the
corpus file and ii) the *ex’ and ’idi’ sentences in the dictionary file. The parameters
can be manipulated from no keywords at all to including almost all words as
keywords. We have also tried to use a simpler criterion, i.e. the Information Gain
of a word, but Ng and Lee’s scheme was found to give better results, For M1=0.8,
M2=5 and M3=5 (a rather restrictive setting), the following keywords were found
in one of the train/test splits of the dataset for for the different senses of the word
*accident’:

538889 plaintiffs
538889 operate
538889 refusing
532675 west
532675 Howard
538895 sickness

3.1.3 Definition Features

In addition to the keywords that passed the above selection, we use all the open
class words (nouns, adjectives, adverbs and verbs) in the ’def” field in the dic-
tionary entry as features. Comparable to the keyword feature the definition word
feature has the value *1 if it occurs in the test sentence else it has the value °0’.
The ’def’ field is only used for this purpose, and is not converted to a training case.

After the addition of both types of keywords, a complete case for the continu-
ing example will look as follows:

800002, in, IN, an, DT, accident, NN, on, IN, Stratford,NNP,0,0, ...
...0,0,0,0,0,0,0,1,0,0,...,0,0,532675
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4 Post-processing

Some senses are restricted to specific multi-word expressions. A good example are
the multi-word expressions like “elastic band” or “brass band”. If we ever have to
disambiguate “band” in a sentence where the previous word is “elastic” or “brass”,
we can be quite sure that the correct sense tag is the one given in the dictionary for
the multi-word entry. Although the classifier has access to this type of information
by looking at the direct context and the form of the focus word, it can still make
errors on this type of pattern.

We have therefore implemented an additional component, acting as a postpro-
cessor to the memory-based learner. To this end, we first extracted a list of simple
patterns from various parts of the dictionary entries. For example:

band dance-band 532782
band dance band 532782
bet in the betting 520894
shake handshake 516772
shake shake off 504585

These patterns are then used to re-consider the sense-tags assigned by the clas-
sifier, If the multi-word expression occurs in the test data, the according sense tag
is assigned to the test case. The patterns were extracted from the dictionary en-
tries automatically and underwent some manual editing (based only on the cross-
validation results on the training data). For example, the phrasal verb pattern “seize
on or upon” is split into two pattern “seize on” and “seize upon”.

The pattern matcher in the form just described is already able to correct some
of the misclassifications of the memory-based learner. However, it might also in-
troduce new errors, as we discovered when testing it on part of the labeled training
data. These errors are often due to over-generalizations of the patterns. A nice
example is “band saw” which is supposed to be a pattern for a multi-word noun,
but which also matches if “band” is the subject of the verb “saw”. At the momen-
t, we try to minimize the errors by the pattern matcher by removing all patterns
that introduce new errors when applied to the output that the memory-based leam-
er produced in 10-fold cross-validation experiments on the SENSEVAL training
data.

Table 1 shows the improvement in the score that the post-processor has on the
words it affects. This is measured on the 10-fold cross-validation on the training
set.

5 Results

In this section we present the results we obtained with the optimal choice of met-
rics and feature construction parameters found with 10-fold cross validation on the
training data, and the results on the evaluation data, as measured by the SENSEVAL
coordination team. For comparison we also provide the baseline results (on the
training data), obtained by always choosing the most frequent sense. Our submis-
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band 0.45
bet-n 091
bet-v 1.49
bitter 347
bother 1.02
brilliant 0.45
excess 0.40
float-a 476
knee 0.23
modest 0.29
promise-n | 0.17
scrap-n 11.11

Table 1: Effect (gain in % accuracy) of the post-processor.

sion was one of the four submissions to SENSEVAL that scored above this baseline,
all four were statictical systems.

Table 2 shows the results per word. The applied algorithm and metric are in-
dicated in the metric column; the value of k in the third column; the values of
M1, M2 and M3 in the next column; the accuracy with the optimal settings can
be found in the ’tr.opt’ column; and the accuracy obtained with the default setting
(M1=0.8, M2=5, M3=5; the default suggested by Ng and Lee (1996) and algo-
rithm (1B1-MVDM, k=1, no weighting) is given in the column ’tr.def’. The three
rightmost columns give the scores on the evaluation data, measured by the fine-
grained, medium, and coarse standard respectively. As we can see from Table 2
the optimization yields a much higher score than the default for some words, the
average improvement being 14.8%.

For a general overview of SENSEVAL, and a description of the other partici-
pating systems we would like to refer to the special issue of Computers and the
Humanities on SENSEVAL (Kilgarriff forthcoming).

6 Conclusion

We have presented a Memory-Based architecture for word sense disambiguation
that does not require any hand-crafted linguistic knowledge, but only annotated
training examples. Because for the present SENSEVAL task, dictionary information
was present, we made use of this as well, and it was easily accommodated in the
learning algorithm. In future work we would like to determine what requirements
our method has with respect to the amount of training data, and whether it could
also feed on dictionary information only, when there should not be an abundant
source of labeled training examples.

We believe that Memory-based learning is well-suited to domains such as WS-
D, where large numbers of features and sparseness of data interact to make life
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word metric k MI-M2-M3 | basel. | trdef tropt [ evf evm evc
accident MVDM 3 0.3-3-3 67.0 814 90.2 929 954 98.1
amaze BL-IG 1 1.0-500-0 579 99.7 100 97.1 971 97.1
band IGTREE - 0.5-7-4 73.0 854 888 88.6 886  B8.6
behaviour | MVDM-IG 9 0.3-5-5 959 94.9 96.7 96.4 964 96.4
bet-n MVDM-GR L 0.0-5-100 255 56.7 1.1 65.7 720 75.5
bet-v BL-IG 3 0.7-33 373 64.3 886 | 769 778 812
bitter MVDM-IG  § 0.5-5-100 30.6 576  59.1 65.8 664 664
bother MVDM-IG 3 0.2-5-100 45.6 72.8 83.6 852 87.1 87.1
bnlliant MVDM-IG 1 0.6-2-100 413 57.5 58.8 546 620 62.0
bury MVDM-IG 3 0.5-5-100 324 359 462 | 502 510 5.7
calculate BL-13 7 0.7-3-3 720 79.2 83.2 904 90.8 90.8
consume IGTREE - 0.7-5-5 315 32.9 58.8 373 438 49.7
derive MVDM 5 0.0-2-100 429 639 67.3 65.0 66.1 0608
excess MVDM-IG 5 0.5-1-1 29.1 82.6 89.3 844 863 882
float-a IGTREE . 0.3-3-3 61.9 57.0 7.5 574 574 57.4
float-n MVDM-IG L 0.8-5-5 41.3 50.8 70.2 640 653 68.0
float-v IGTREE - 0.4-2-100 210 34.2 44.0 354 406 44,1
generous MVDM 15  0.6-5-100 325 44.8 493 S5L5  5L5 515
giant-a IGTREE - 1.0-500-0 93.1 928 %41 97.9 995 100
giant-n MVDM-IG 5 0.2-5-100 49.4 772 8.6 | 788 856 975
invade MBL-IG 3 0.1-10-1 37.5 480 627 | 527 592 623
knee MVDM-IG 5 0.0-5-100 42.8 70.3 8L.4 79.3 3L.8 84.1
modest MVDM-IG 9 0.0-5-100 58.8 61.1 67.1 70.7 728 75.2
onion Bl L 0.8-5-5 92.3 90.0 96.7 804 804 80.4
promise-n | MVDM-IG 5 0.2-5-100 59.2 63.6 753 710 832 91.2
promise-v | IBL-IG 3 0.5-5-10 67.4 85.6 89.8 862 87.1 87.9
sack-n MVDM-IG 1 0.3-3-3 443 75.0 90.3 841 841 84.1
sack-v Bl 9 1.0-500-0 98.9 97.8 98.9 978 978 97.8
sanction MVDM-IG 1 0.5-3-3 55.2 74.9 874 86.3 863 86.3
scrap-n Bl 1 0.4-5-100 370 583 68.3 68.6 833 86.5
scrap-v IGTREE - 0.7-3-3 90.0 883  9L7 855 978 97.8
seize IGTREE - 0.5-5-100 270 57.1 68.0 | 59.1 59.1 637
shake MVDM-IG 7 0.2-5-100 2417 TL.8 733 68.0 68.5 69.4
shirt IGTREE - 0.7-5-5 56.9 837 912 | 844 918 967
slight Bl-1G 1 03-3-3 66.8 92.7 93.0 93.1 933 93.6
wooden IGTREE - 0.5-1-1 95.3 97.3 984 | 944 949 949

Table 2: The best scoring metrics and parameter settings found after 10-fold cross-
validation on the training set (see text). The scores are the baseline, the default and optimal
settings on the training set (average of 10-fold cross-validation), and the fine-grained, medi-
um and coarse scores on the evaluation set respectively. The scores on the evaluation set
were computed by the SENSEVAL coordinators.

difficult for many other (e.g. probabilistic) machine-learning methods, and where
nonetheless even very infrequent or exceptional information may prove to be es-
sential for good performance. To determine whether this belief is well-founded,
however, we must conduct an extensive error-analysis, since, together with Ng and
Lee (1996), this work presents the first excursion of MBL techniques into WSD
territory.

In particular, it seems that combining different kinds of information sources
in one case-representation may have the effect that the relevance of redundant
or highly correlated features is overestimated in the metric, because the feature-
weights are determined independently of one another. An interesting alternative
seems to be to train a number of different classifiers (one per information source)
and combine these using a second level classifier (Wilks and Stevenson 1998).
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Although the work presented here is similar to many other supervised learning
approaches, and in particular to the Exemplar-based method used by Ng and Lee
(1996) (which is essentially 1B 1-MVDM with k=1), the original aspect of the work
presented in this paper, lies in the fact that we have used a cross-validation step
per word to determine the optimal paramelter-setting, yielding an estimated perfor-
mance improvement of 14.8 % over their default setting. Moreover, we have used
a representation for the direct context that is more simple than that used by Ng and
Lee (1996).

Concluding, we can say that the method presented in this paper achieves a
relatively high accuracy (see Table 2) with very simple means, and in very fast
development time (approximately 2 person months were used to develop the entire
architecture, train it and test it, given the availability of TIMBL, the MBL software
package).
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