
Complexity of Pure Prolog

Programs

Erik Aarts

1

Research Institute for

Language and Speech

Trans 10

3512 JK Utrecht

The Netherlands

Dept. of Mathematics

and Computer Science

PlantageMuidergracht 24

1018 TV Amsterdam

The Netherlands

Abstract

This paper gives a method to estimate the space and time

complexity of algorithms implemented in pure Prolog and ex-

ecuted under the OLDT search strategy (also called Earley

Deduction).

1 Introduction

This article is about the complexity of Prolog programs. The worst case time

complexity of programs written in an imperative language (like Pascal or C)

can be estimated by straightforward means. These programs are deterministic

so we can follow the execution step by step. The number of steps is counted by

estimating the cost of smaller procedures, e.g. multiplying the number of times

that a \while" loop is executed with the number of steps needed in every loop

etcetera. A disadvantage is that the code of larger programs gets incompre-

hensible very soon. This is solved by presenting pseudo-code. In pseudo-code,

however, the reader has to guess the details. In �elds like computational

linguistics and arti�cial intelligence we often see algorithms explained with

\real" Prolog code. This can be done because real Prolog code is easier to

read than e.g. C or Pascal code. An algorithm presented this way, has no

open-ended details. For Prolog programs, however, the complexity analysis is

not so easy. The main problem is that Prolog programs are intended to be

non-deterministic. Computers are deterministic machines, however. Therefore

any Prolog interpreter has to deal with the non-determinism in some deter-

ministic way. Standard interpreters perform a depth-�rst search through the

search space. In case of a choice point the interpreter takes a decision. If that

decision appears to be wrong later, the interpreter reverses the decision and

tries another possibility. This mechanism is called backtracking. Backtracking

1

The author was sponsored by project NF 102/62-356 (`Structural and Semantic Parallels

in Natural Languages and Programming Languages'), funded by the Netherlands Organiza-

tion for the Advancement of Research (NWO).

13

COMPLEXITY OF PURE PROLOG PROGRAMS

is what makes the analysis of Prolog programs so hard. The only attempt to

estimate the runtime of Prolog programs in the context of standard interpreters

is from Lin (1993). This is a fairly complex method however.

This article does not solve the problem of estimating the runtime for stan-

dard interpreters. However, we can give runtime estimates easier than in (Lin

1993) if we use an interpreter called the Earley interpreter. The Earley inter-

preter does not backtrack, but it keeps an administration of what things have

been tried and what the result was. It di�ers in two ways from the standard

interpreter:

� improved proof search. Prolog programs have a very clear meaning from

a logical point of view. Standard interpreters do not behave properly

however. They sometimes don't �nd a proof although there exists one,

because they get stuck in an in�nite loop. One can \program around"

this but then we leave the path of declarative programming. The Earley

interpreter does what it should do. It can only get in a loop if terms can

grow arbitrarily long.

� longer runtime. Because the interpreter has to do a lot of bookkeeping

the runtime will be longer in general. This is the major disadvantage

of the method presented here: in order to estimate the runtime we use

an interpreter that increases the runtime. Lin (1993) does not have this

disadvantage. There are two arguments in favor of this method. First

the bookkeeping can speed up algorithms too. It can even speed up an

exponential time algorithm to a polynomial time algorithm. Second, the

overhead is small, usually linear in the size of the input. This means that

we stay in the same complexity class in most cases.

The main reason to switch from the standard interpreter to the Earley

interpreter is the possibility to prove runtime bounds for Earley interpreters

in a pretty straightforward way. We will describe a simple method to deduce

the runtime of an algorithm from two sources: the length of the instantiations

of the variables in the program and the number of possible instantiations. If

a Prolog programmer knows how the variables in his program behave, he can

deduce the runtime in a simple manner.

The main idea behind our approach is the following. The Earley interpreter

stores all attempts to prove something (i.e. it stores all \procedure" calls). Fur-

thermore it stores all solutions (and all partial solutions). Because of this we

are sure that every procedure is executed only once for every assignment to

the variables. When the procedure is called a second time the answer can be

looked up and this costs only very little time. This is called memoization or

tabulation or tabling. The search strategy is called Earley Deduction. The Ear-

ley Deduction proof procedure is due to Warren (1975). It was �rst published

in (Pereira and Warren 1983). A good introduction is (Pereira and Shieber

1987, pp. 196-210). Similar ideas can be found in (Warren 1992), (Tamaki

and Sato 1986) (OLDT resolution) and (Vieille 1989) (SLD-AL resolution).

14

ERIK AARTS

The fact that all problems are solved once makes it much easier to estimate

the time complexity: we only have to count the number of procedure calls

multiplied with the amount of time spent in the procedure for each call.

The structure of this article will be as follows. First we give a short intro-

duction to Prolog. We describe the language and show what the logical (or

declarative) meaning is. Then we describe a non-deterministic interpreter that

does exactly what should be done according to the declarative meaning. Then

we show two methods to make the interpreters deterministic. The �rst one

leads to the standard interpreter. The second method to get a deterministic

interpreter leads to the Earley interpreter.

When it is clear how the Earley interpreter works we start our complexity

analysis. The result of the counting will be a complexity formula in which one

has to �ll in the length and the number of all possible instantiations for the

variables. After this we describe shortly a speed up of the interpreter. We will

sketch some ideas about further research. Finally we will say something about

existing implementations of Prolog interpreters which are able to follow the

search strategy we describe here.

2 Pure Prolog

2.1 Introduction

Prolog stands for programming in logic. Although it has its roots in mathemat-

ical logic we will introduce it here as a programming language and neglect the

mathematical foundations. The introduction given here is based on (Bratko

1990). Conventional programming languages are procedurally oriented. Prolog

introduces a declarative view on programming. One has to give a description

of the problem one wants to solve. Once this description has been given an

interpreter will solve the problem. Ideally, the programmer should not bother

about the way the interpreter solves the problem. This is the procedural part

of the problem and it should be \hidden". However, in real life it is not always

possible to separate the description of the problem and the search for solutions.

The reason for this is that that the declarative meaning and the procedural

meaning of Prolog programs often di�er. A Prolog program consists of a set of

axioms (or unit clauses) and a set of rules. The declarative meaning is de�ned

as follows. Some expression is true if it can be derived from the axioms via

the rules. When the expression is not derivable it is false. The declarative

meaning is what the interpreter should do. The procedural meaning is what

the interpreter in fact does. I.e., something is true if the interpreter can �nd

a derivation, and it is false if it can not �nd a derivation (and terminates).

It should be clear that the procedural and declarative meaning of Prolog

programs coincide. If we want to implement an Earley interpreter we face two

choices. We have to decide whether we want to follow a breadth-�rst strategy

or a depth-�rst strategy. Furthermore, we can choose between an exhaustive

15

COMPLEXITY OF PURE PROLOG PROGRAMS

search, that generates all solutions, or a non-exhaustive search, which generates

only one solution. The interpreter that performs a breadth-�rst non-exhaustive

search is complete, i.e., it will �nd a proof if there is one.

The Earley interpreter has more advantages than the improved proof search.

It is much easier to give estimates for the complexity of problems. The solution

of a problem is given by a declarative description plus some interpreter that

�nds proofs. The complexity of the problem is the number of steps that the

interpreter takes in �nding proofs (or in �nding out that there are no proofs).

2.2 De�nitions

In this section we will give de�nitions of the syntax of programs and of the

declarative (non-procedural) meaning. In the next section we will discuss the

procedural meaning.

The language has a countable in�nite set of variables, and countable sets

of function and predicate symbols. Each function symbol f and each predicate

symbol p is associated with a natural number n, the arity of the symbol.

A function symbol with arity 0 is referred to as a constant. A term in the

language is a variable, a constant or a compound term f(t

1

; : : : ; t

n

), where f is

a function symbol with arity n, and t

1

through t

n

are terms. A term is ground

if it contains no variable.

We use the convention that variables are written with an uppercase-letter.

Constants, predicate and function symbols start with a lower-case letter. Terms

represent complex data structures. E.g. the date \May 1 1993" can be repre-

sented as date(1,may,1993). Any date in that same month can be represented

as date(Day,may,1993).

An atom p(t

1

; : : : ; t

n

) consists of an n-ary predicate symbol p and n terms

t

i

as the arguments of p. An atom is ground if all its arguments are ground

terms. There are three types of Horn clauses: facts, rules and queries.

� Rules declare things that are true depending on some conditions. They

are written as p :- q

1

; : : : ; q

n

, where p; q

i

are atoms. Read this as: p if

q

1

and . . . and q

n

. The atom p is called the head, and q

1

; : : : ; q

n

is the

body.

� Facts declare things that are always, unconditionally, true, i.e. they are

rules with an empty body. They are written as p:, where p is an atom.

� By means of queries the program can be asked what things are true. A

query is of the form ?- q

1

; : : : ; q

n

, where all q

i

are atoms.

A de�nite clause is a rule or a fact. A predicate de�nition consists of a �nite

number of de�nite clauses, all with the same predicate symbol in the head. A

logic program consists of a �nite number of predicate de�nitions.

Compound terms and atoms are sometimes written in the in�x notation

instead of the pre�x notation. A function symbol often used that is not pre�x

16

ERIK AARTS

is the list constructor [H|T]. When we try to prove an atom, we sometimes

say that we try to prove a goal. A function symbol is also called a functor.

With a de�nition of facts and rules we can de�ne truth values for queries.

This is called the declarative meaning of Prolog programs.

A substitution is a mapping from variables to terms that is the identity

mapping at all but �nitely many points.

De�nition 2.1 A query ?- Q

1

; Q

2

; : : : ; Q

n

is true i� there is a substitution

�

1

such that the atoms �

1

(Q

1

) and . . . and �

1

(Q

n

) are true.

An atom G is true if and only if there is a clause C :- B

1

; B

2

; : : : ; B

n

in

the program (B

1

; : : : ; B

n

can be empty, then C is a fact) and a substitution �

2

such that �

2

(C) is identical to G and the atoms �

2

(B

1

) and . . . and �

2

(B

n

)

are true.

Often there are in�nitely many substitutions that make a query true. Then

we are interested in the most general substitutions. A substitution �

1

is more

general than a substitution �

2

if there is a substitution �

3

, not the identity,

such that �

2

= �

3

� �

1

, where � is the function composition operator. A

substitution � is a solution for a query if the substitution makes the query

true and there is no more general substitution that makes the query true. But

even then a query can have in�nitely many solutions. If there is no solution

the query is false.

3 Earley Provers

When we have the declarative meaning as de�ned in De�nition 2.1 in mind,

a non-deterministic prover can be given that follows the declarative meaning

precisely. The prover answers yes if there is a proof (but not vice versa). Before

the introduction of the prover we �rst de�ne uni�cation.

We say that a term Z is a uni�er for the terms X and Y if there is a

substitution � such that Z = �(X) and Z = �(Y). We say that term X is

more general than term Y if there is a substitution �

0

such that Y = �

0

(X)

and Y 6= X. A term Z is the most general uni�er (mgu) of X and Y if it is

a uni�er of X and Y and there is no uni�er that is more general. The most

general uni�er is unique modulo variable renaming. Two terms T

1

and T

2

are

alphabetic variants, if there are substitutions �

1

and �

2

such that T

1

= �

1

(T

2

)

and T

2

= �

2

(T

1

). All these notions can be de�ned on atoms instead of terms

too. There exist e�cient uni�cation algorithms, that are linear in the size of

the terms (Paterson and Wegman 1978).

The non-deterministic prover is in Figure 1.

The only non-determinism in this prover is the guessing of a clause. In

standard provers this non-determinism is eliminated by performing a depth-

�rst search. Every time the prover has to guess a clause it takes the �rst one

available. If it turns out later that this choice was wrong, i.e. that no proof

can be found, we try the second possibility and so on.

17

COMPLEXITY OF PURE PROLOG PROGRAMS

'

&

$

%

Prove list of goals:

Given a list of goals Q

1

; : : : ; Q

n

(n > 1), prove Q

1

. The result

will be a substitution �

1

such that �

1

(Q

1

) is derivable. Then

prove the list of goals �

1

(Q

2

); : : : ; �

1

(Q

n

). The result of proving

�

1

(Q

2

); : : : ; �

1

(Q

n

) is a substitution �

n

� : : : � �

2

. The result of

proving Q

1

; : : : ; Q

n

is �

n

� : : : � �

2

� �

1

.

Prove goal:

Given a goal G, guess a clause C :- B

1

; B

2

; : : : ; B

n

in the program

and compute mgu(G;C). Suppose mgu(G;C) = f(C) = g(G).

Prove the list of goals f(B

1

); f(B

2

); : : : f(B

n

). The result is the

substitution h. The result of proving goal G is the substitution

h � g.

Figure 1: Non-deterministic prover

This strategy often leads to problems. Consider the following program. It

computes the reexive transitive closure of a graph.

% Sample program PATH

path(X,Z) :-

path(X,Y),

edge(Y,Z).

path(X,X).

edge(a,b).

edge(b,c).

edge(c,a).

edge(c,d).

Suppose we have a query ?- path(a,d). A depth-�rst searching Pro-

log prover will try to prove the following goals: path(a,d), path(a,Var1),

path(a,Var2), path(a,Var3), path(a,Var4) etc. The prover will never get

out of this loop.

Earley interpreters are de�ned as follows. The basic data structure we

use is called the item. Items have the same form as atoms: they are pairs

of heads and bodies. The head of the item is the head of some clause after

some substitution. The body of the item is a (possibly empty) remainder of

the same clause after the same substitution. Items are used to store partial

results when proving a query. This is done as follows. Consider the prover

18

ERIK AARTS

in Figure 1. We have to prove some goal, and therefore we take an arbi-

trary clause from the program. After computing the mgu of the goal and

the head of the clause, we obtain the item hf(C); [f(B

1

); f(B

2

); : : : ; f(B

n

)]i.

Now we try to prove f(B

1

). This gives us the substitution �

1

and the new

item h�

1

(f(C)); [�

1

(f(B

2

)); : : : ; �

1

(f(B

n

))]i. We prove �

1

(f(B

2

)), �nd �

2

, and

obtain h�

2

(�

1

(f(C))); [�

2

(�

1

(f(B

3

))); : : : ; �

2

(�

1

(f(B

n

)))]i. In every step the

body becomes shorter. Finally, the body is empty. The �nal item

h�

n

(: : : (�

1

(f(C))); []i is a solution for the goal we tried to prove.

The data structure the Earley interpreter uses has been described now.

The control structure is as follows. We keep an agenda of items that wait to

be processed and a table of items that have been processed. When we process

an item from the agenda we �rst look whether it occurs in the table. If it

does, we can simply discard it. If it does not occur in the table there are two

possibilities:

� the body is empty. That means that the item is a solution. We combine

the solution with the items in the table that are waiting for that solution.

This gives us new items which are placed on the agenda again. This

operation is called completion.

� The body is not empty. Two operations are executed:

{ prediction. The �rst element of the body is uni�ed with the head

of clauses in the program. New items are put on the agenda again.

{ completion. The �rst element of the body is combined with solu-

tions in the table.

We will implement two provers: one that generates all solutions and one

that stops after it has found the �rst solution. If we want to generate all

solutions, then we stop when the agenda is empty. When we want only one

solution, we can stop when the �rst solution appears in the table.

The algorithms sketched above can be implemented in Prolog as follows.

The main predicate for the one-solution prover is prove one. It is called

with the goal we want to prove as argument. For the all-solutions prover

the main predicate is prove all. This predicate is called with the goal and

with a variable that will be instantiated to the list of all solutions. We can

change between depth-�rst and breadth-�rst behaviour simply by swapping

two arguments in some append predicate.

The program clauses are of the form Goal ::- Body in order to separate

them from the clauses of the prover. The program is given as a whole �rst and

in little parts with comment later.

19

COMPLEXITY OF PURE PROLOG PROGRAMS

% Earley prover.

% needs: findall, member, append, numbervars.

?- op(1150,xfx,::-).

prove_all(Goal,Solutions) :-

findall(item(Goal,Goals),(Goal ::- Goals),Agenda),

extend_items_all(Agenda,[],Table),

findall(Goal,member(item(Goal,[]),Table),Solutions).

extend_items_all([],Table,Table).

extend_items_all([Item|Agenda1],Table1,Table2) :-

memberv(Item,Table1),

extend_items_all(Agenda1,Table1,Table2).

extend_items_all([Item|Agenda1],Table1,Table3) :-

\+ memberv(Item,Table1),

Table2 = [Item|Table1],

new_items(Item,Table1,Items),

append(Items,Agenda1,Agenda2), % depth-first search

% append(Agenda1,Items,Agenda2), % breadth-first search

extend_items_all(Agenda2,Table2,Table3).

prove_one(Goal,YN) :-

findall(item(Goal,Goals),(Goal ::- Goals),Agenda),

extend_items_one(Agenda,[],Goal,YN).

extend_items_one(_,Table,Goal,yes) :-

member(item(Goal,[]),Table).

extend_items_one([],Table,Goal,no) :-

\+ member(item(Goal,[]),Table).

extend_items_one([Item|Agenda1],Table,Goal,YN) :-

\+ member(item(Goal,[]),Table),

memberv(Item,Table),

extend_items_one(Agenda1,Table,Goal,YN).

extend_items_one([Item|Agenda1],Table1,Goal,YN) :-

\+ member(item(Goal,[]),Table1),

\+ memberv(Item,Table1),

Table2 = [Item|Table1],

new_items(Item,Table1,Items),

append(Agenda1,Items,Agenda2), % breadth-first search

extend_items_one(Agenda2,Table2,Goal,YN).

20

ERIK AARTS

new_items(item(Goal1,[]),Table,Items) :-

findall(item(Goal2,Goals),

member(item(Goal2,[Goal1|Goals]),Table),

Items).

new_items(item(Goal1,[Goal2|Goals1]),Table,Items) :-

findall(item(Goal2,Goals2),(Goal2 ::- Goals2),Items1),

findall(item(Goal1,Goals1),

member(item(Goal2,[]),Table),

Items2),

append(Items1,Items2,Items).

memberv(Item,Table) :-

member(Item2,Table),

variant(Item,Item2).

variant(X,Y) :-

\+ (\+ (numbervars(X,0,_),numbervars(Y,0,_),X == Y)).

The de�nition of the predicates append, member, findall and numbervars

follows the standard conventions. append is a predicate for the concatena-

tion of two lists. member is a predicate for membership of a list. When

findall(X,condition(X),Solutions) has been proved, Solutions = fX j

condition(X)g. numbervars replaces all variables in a term by special con-

stants. This operation makes two terms identical when they are alphabetic

variants. Two sample programs are (facts are rules with an empty body):

% Sample program PATH

path(X,Z) ::-

[path(X,Y),

edge(Y,Z)].

path(X,X) ::- [].

edge(a,b) ::- [].

edge(b,c) ::- [].

edge(c,a) ::- [].

edge(c,d) ::- [].

The predicates just given are repeated here with a little comment.

prove_all(Goal,Solutions) :-

findall(item(Goal,Goals),(Goal ::- Goals),Agenda),

extend_items_all(Agenda,[],Table),

findall(Goal,member(item(Goal,[]),Table),Solutions).

21

COMPLEXITY OF PURE PROLOG PROGRAMS

The main goal is used to predict items. These items are put in the agenda.

The prover is started with extend items all. When extend items all is

�nished we search in the table for all solutions.

extend_items_all([],Table,Table).

If the agenda is empty we are �nished.

extend_items_all([Item|Agenda1],Table1,Table2) :-

memberv(Item,Table1),

extend_items_all(Agenda1,Table1,Table2).

If an item from the agenda is in the table, it can be discarded.

extend_items_all([Item|Agenda1],Table1,Table3) :-

\+ memberv(Item,Table1),

Table2 = [Item|Table1],

new_items(Item,Table1,Items),

append(Items,Agenda1,Agenda2), % depth-first

% append(Agenda1,Items,Agenda2), % breadth-first

extend_items_all(Agenda2,Table2,Table3).

If an item is not in the table as yet, it is added and new items are generated.

These new items are put in front or behind the agenda, corresponding with

depth-�rst and breadth-�rst behaviour respectively.

new_items(item(Goal1,[]),Table,Items) :-

findall(item(Goal2,Goals),

member(item(Goal2,[Goal1|Goals]),Table),

Items).

If the item is a solution, it is combined with items in the table that wait for

that solution (completion).

new_items(item(Goal1,[Goal2|Goals1]),Table,Items) :-

findall(item(Goal2,Goals2),(Goal2 ::- Goals2),Items1),

findall(item(Goal1,Goals1),

member(item(Goal2,[]),Table),

Items2),

append(Items1,Items2,Items).

First we predict and then we complete.

memberv(Item,Table) :-

member(Item2,Table),

variant(Item,Item2).

variant(X,Y) :-

\+ (\+ (numbervars(X,0,_),numbervars(Y,0,_),X == Y)).

22

ERIK AARTS

Here we check whether there is an alphabetic variant in the table. Observe

that two items never share any variables. Variables are only shared within an

item.

The one-solution prover only di�ers from the all-solutions prover in the fact

that the �rst stops when the �rst solution is found, whereas the latter goes on

until the agenda is empty.

The one-solution interpreter has two advantages over the standard Pro-

log interpreter with a depth �rst strategy. The �rst is that for these simple

programs the declarative meaning and the procedural meaning coincide: if

the interpreter answers \yes" to a query then the query is indeed derivable

from the facts. On the other hand, if an atom is derivable then the inter-

preter will answer \yes". Standard interpreters get in an in�nite loop in our

example program PATH. The second advantage is that \a problem is never

solved twice". The reuse of results of subcomputations in Prolog interpreters is

called memoing or tabling. The technique is also known in general as dynamic

programming.

Memoing can save us a lot of time. Consider the program in Figure 2. It

can be made arbitrarily long by adding x4, x5,

s :- x1a,c.

s :- x1b.

x1a :- x2a.

x1a :- x2b.

x1b :- x2a.

x1b :- x2b.

x2a :- x3a.

x2a :- x3b.

x2b :- x3a.

x2b :- x3b.

x3a.

x3b.

Figure 2: Exponential versus quadratic.

When we use standard proof search the time needed to �nd the �rst proof

is exponential in the size of the program. When we use Earley Deduction the

time needed is quadratic in the length of the program (this will be explained

later).

4 Space Complexity

Because it is much easier to reason about space complexity than about time

complexity of the prover we gave in the previous section we start with a space

complexity analysis. This analysis is also a good stepping stone towards the

23

COMPLEXITY OF PURE PROLOG PROGRAMS

time complexity analysis in the next section. We will de�ne three ways to look

at decidability problems in Prolog theorem proving. The �rst is:

PROLOG THEOREM PROVING

INSTANCE: A query Q and a program P .

QUESTION: Is there a substitution f such that f(Q) follows from P?

This problem is undecidable in general. It is semi-decidable: if the answer

is yes we can give an algorithm that �nds a proof in �nitely many steps. An

algorithm with this property is the one-solution prover. This prover searches

its proofs under a breadth-�rst regime and is therefore guaranteed to stop if

there exists a proof. The following problems are decidable for many programs

P:

PROLOG THEOREM PROVING FOR PROGRAM P

INSTANCE: A query Q.

QUESTION: Is there a substitution f such that f(Q) follows from P?

PROLOG THEOREM PROVING FOR A CLASS OF PROGRAMS

INSTANCE: A query Q and a program P , which is of the following form

QUESTION: Is there a substitution f such that f(Q) follows from P?

In the rest of this paper we will only consider programs for which these

problems are decidable. PROLOG THEOREM PROVING FOR PROGRAM

P is interesting when the program is �xed. E.g. if our program sorts a list,

and the list is in the query, then the program does not vary. The second

kind of problems is relevant when the program can vary. Suppose we have a

parsing problem where the input string is in the query and the lexicon is in

the program, Both the input string and the lexicon can vary. If we want to

express the complexity both in the length of the input string and in the length

of the lexicon, we need PROLOG THEOREM PROVING FOR A CLASS OF

PROGRAMS.

The space complexity both of PROLOG THEOREM PROVING FOR

PROGRAM P and of PROLOG THEOREM PROVING FOR A CLASS OF

PROGRAMS is the size of the table when the computation of the one-solution

prover has �nished.

This is not quite true because there can be many duplicates in the agenda.

We have to modify the prover a bit. We have to make sure that items neither

occur in the agenda nor in the table before we put them in the agenda. Then

we know that the size of the agenda plus the size of the table is smaller than

the size of the �nal table at any point in the computation. This can be imple-

mented as follows in Prolog (for a depth-�rst behaviour the new items must

be appended at the back of the agenda):

24

ERIK AARTS

extend_items_all([],Table,Table).

extend_items_all([Item|Agenda1],Table1,Table3) :-

Table2 = [Item|Table1],

new_items(Item,Table1,Items),

add_items_df(Items,Agenda1,Table2,Agenda2),

extend_items_all(Agenda2,Table2,Table3).

add_items_df([],Ag,_,Ag).

add_items_df([H|T],Ag,Table,Ag2) :-

memberv(H,Ag),

add_items_df(T,Ag,Table,Ag2).

add_items_df([H|T],Ag,Table,Ag2) :-

memberv(H,Table),

add_items_df(T,Ag,Table,Ag2).

add_items_df([H|T],Ag,Table,Ag2) :-

\+ memberv(H,Ag),

\+ memberv(H,Table),

add_items_df(T,[H|Ag],Table,Ag2).

Because we can not predict when the �rst solution is found by the one-

solution prover, we will assume the worst scenario, where the computation

ends because the agenda is empty. In fact we estimate the complexity of the

one-solution prover and the all-solutions provers simultaneously.

In order to estimate the size of the �nal table we have to count

� the number of items in the table, and

� the length of the items.

We will index our clauses from now on. The function l(i) denotes the num-

ber of atoms in the body of clause i. For every clause C

i

:- B

i1

; B

i2

; : : : ; B

in

(i is the index, n replaces l(i) for readability), the items in the table are of the

following form:

hf(C

i

); [f(B

i1

); f(B

i2

); : : : ; f(B

in

)]i.

h�

1

(f(C

i

)); [�

1

(f(B

i2

)); : : : ; �

1

(f(B

in

))]i.

h�

2

(�

1

(f(C

i

))); [�

2

(�

1

(f(B

i3

))); : : : ; �

2

(�

1

(f(B

in

)))]i.

.

.

.

h�

n

(: : : (�

1

(f(C

i

))); []i

If we want to know the number of items we have to estimate the number

of possible substitutions f , �

1

� f , �

2

� �

1

� f , . . . , �

n

� : : : � f , for every clause

i in the program. In general the number of substitutions is in�nite but we

count here the number of substitutions for a given query and program under

the proof procedure speci�ed in the one-solution and all-solutions provers.

25

COMPLEXITY OF PURE PROLOG PROGRAMS

We �rst have to see which variables occur in the substitutions (or, for

which variables the substitution is not the identity mapping). We will call

these variables the relevant variables. Suppose we want to count the items of

the following form:

h�

j

(: : : �

1

(f(C

i

))); [�

j

(: : : �

1

(f(B

i(j+1)

))); : : : ; �

j

(: : : �

1

(f(B

in

)))]i:

Then the following variables are not relevant:

� Variables that occur in B

i1

; : : : ; B

ij

, but neither in B

i(j+1)

; : : : ; B

in

nor

in C

i

. These variables are not relevant, simply because they do not occur

in the item.

� Variables that occur in B

i(j+1)

; : : : ; B

in

, but neither in B

i1

; : : : ; B

ij

nor

in C

i

. These variables are not relevant, because they are uninstantiated.

The other variables are relevant. These can be divided in two groups:

� The variables in C

i

. These are called the head variables HV (i).

� Variables that occur both in B

i1

; : : : ; B

ij

and in B

i(j+1)

; : : : ; B

in

but not

in C

i

. These variables are called the relevant body variables RV (i; j).

We introduce a notation for the number of possible substitutions for a set

of variables.

For a given i, the function #(varset; j) (varset is a set of variables, j is a

number) returns the number of possible substitutions of the variables in varset

after proving B

i1

through B

ij

.

The number of items in the �nal table is:

k

X

i=1

l(i)

X

j=0

#(HV (i) [RV (i; j); j)

We will apply this formula in the example program PATH.

% Sample program PATH

path(X,Z) ::-

[path(X,Y),

edge(Y,Z)].

path(W,W) ::- [].

edge(a,b) ::- [].

edge(b,c) ::- [].

edge(c,a) ::- [].

edge(c,d) ::- [].

26

ERIK AARTS

The number of items is:

#(fX;Zg [;; 0) + #(fX;Zg [fY g; 1) + #(fX;Zg [;; 2)+

#(fWg [;; 0)+

#(; [;; 0)+

#(; [;; 0)+

#(; [;; 0)+

#(; [;; 0)

We know that the variables in this programs can only be substituted by a

vertex in the graph (a, b, c or d). We denote the number of vertices in the

graph as jV j and the number of edges as jEj, and �ll in the formula:

jV j

2

+ jV j

3

+ jV j

2

+ jV j+ jEj

Because jEj � jV j

2

, this equals O(jV j

3

).

The space complexity does not depend on the number of items only, but

also on the length of the items. We introduce the function ## that does not

count the number of substitutions, but the number of symbols needed to write

down all substitutions. The number of instantiations and the length of the

instantiations behave di�erent if they are estimated for a set of variables. Sup-

pose we have two variables, A1 and A2. The number of possible substitutions

for A1 is n

1

. The number of possible substitutions for A2 is n

2

. The average

length of the substitutions for A1 and A2 is l

1

and l

2

respectively. Then the

number of possible substitutions for #(fA;Bg) is n

1

�n

2

. The average length

of all substitutions is l

1

+ l

2

, and #(fA;Bg) is (n

1

� n

2

)� (l

1

+ l

2

). We have

to multiply the possibilities and add the lengths.

We assume that the length of clauses in the program is bounded by a

constant. The space complexity of PROLOG THEOREM PROVING FOR

PROGRAM P is now:

k

X

i=1

l(i)

X

j=0

##(HV (i) [RV (i; j); j)

In the example, we assume that the number of symbols needed to write

down a vertex is bounded by a constant. In that case, the space complexity of

the problem is O(jV j

3

).

5 Time Complexity

In the previous section we saw how the space complexity of a problem can

be estimated. In this section we will consider the time complexity. Observe

that the Earley interpreter is deterministic. Therefore it can be converted to a

program in an imperative language in a straightforward way. We will assume

that this has been done. We will describe the time complexity of PROLOG

THEOREM PROVING FOR PROGRAM P in terms of this imperative prover.

27

COMPLEXITY OF PURE PROLOG PROGRAMS

We count the number of steps of the all-solutions prover because we can not

predict when the �rst solution of a problem has been found. Therefore we

assume that the algorithm terminates when the agenda is empty.

We know that all items in the table and the agenda are di�erent. Therefore

the procedure extend items all will be executed as many times as there are

items in the �nal table:

P

k

i=1

P

l(i)

j=0

#(HV (i)[RV (i; j); j). Within this proce-

dure, we have to execute the procedures new items and add items df. Within

the procedure new items we perform prediction and completion. We can divide

the table in two parts. First, we have items of the form

item(Goal1,[Goal2|Goals]). The number of items of this form is

P

k

i=1

P

l(i)�1

j=0

#(HV (i) [RV (i; j); j). Secondly, we have items of the form

item(Goal,[]). There are

P

k

i=1

#(HV (i); l(i)) such items in the �nal table

(observe that RV (i; l(i)) = ;). If we sum all completion steps, we see that ev-

ery item of the form item(Goal1,[Goal2|Goals]) is compared exactly once

with every item of the form item(Goal,[]) to check whether the second is a

solution for the �rst. Therefore the total number of completion steps is

k

X

i=1

l(i)�1

X

j=0

#(HV (i) [RV (i; j); j)�

k

X

i=1

#(HV (i); l(i))

In a completion step, we have to unify two atoms. The time needed is the sum

of the length of the two atoms. If the length of the atoms in the program, i.e.

without variables substitutions, is bounded by a constant, then the total time

needed for all completion steps is (## is the sum of the length of all possible

substitutions):

(

k

X

i=1

l(i)�1

X

j=0

##(HV (i) [RV (i; j); j)�

k

X

i=1

#(HV (i); l(i))) +

(

k

X

i=1

l(i)�1

X

j=0

#(HV (i) [RV (i; j); j)�

k

X

i=1

##(HV (i); l(i)))

The number of prediction steps is estimated as follows. We do a prediction

step once for every item of the form item(Goal1,[Goal2|Goals]), thus

P

k

i=1

P

l(i)�1

j=0

#(HV (i) [RV (i; j); j) times. We have to compare Goal2 with

every clause in the program. Say the number of clauses in the program is jP j.

Then we have to execute

P

k

i=1

P

l(i)�1

j=0

#(HV (i) [RV (i; j); j) � jP j uni�ca-

tions. Under the assumption that the length of the atoms in the program is

bounded by a constant, the total time needed in the prediction steps amounts

to

P

k

i=1

P

l(i)�1

j=0

##(HV (i) [RV (i; j); j)� jP j.

Remains to be counted the number of steps in add items df. Suppose we

try to add new items immediately after every completion and prediction step.

We organize our agenda and table in such a way that the time needed to look

28

ERIK AARTS

up and insert in the agenda and table is linear in the size of the item we want

to insert. The length of the term that results after uni�cation of two terms is

at most the sum of the length of those two terms. After every completion step,

which costs time proportional to the sum of the length of two items, we have

to do a lookup and an insert which are also proportional in the sum of the

length. Thus, we can multiply the number of completion steps by two. The

same holds for the prediction steps. E�cient organisation of the agenda and

the table implies that the movement from the agenda to the table gets a little

more complicated. The time complexity of moving all items from the agenda

to the table equals precisely the space complexity that we saw in the previous

section. The total time needed for all operations together is:

k

X

i=1

l(i)�1

X

j=0

##(HV (i) [RV (i; j); j)�

k

X

i=1

#(HV (i); l(i)) +

k

X

i=1

l(i)�1

X

j=0

#(HV (i) [RV (i; j); j)�

k

X

i=1

##(HV (i); l(i)) +

k

X

i=1

l(i)�1

X

j=0

##(HV (i) [RV (i; j); j)� jP j +

k

X

i=1

l(i)

X

j=0

##(HV (i) [RV (i; j); j)

This can be simpli�ed to:

(

k

X

i=1

l(i)�1

X

j=0

##(HV (i) [RV (i; j); j)� (

k

X

i=1

#(HV (i); l(i)) + jP j)) +

(

k

X

i=1

l(i)�1

X

j=0

#(HV (i) [RV (i; j); j)�

k

X

i=1

##(HV (i); l(i)))

We can use this formula to estimate the time complexity of the sample pro-

gram PATH in the previous section:

P

k

i=1

P

l(i)�1

j=0

##(HV (i)[RV (i; j); j) =

P

k

i=1

P

l(i)�1

j=0

#(HV (i) [RV (i; j); j) = O(jV j

3

)

P

k

i=1

##(HV (i); l(i)) =

P

k

i=1

#(HV (i); l(i)) = O(jV j

2

+ jEj)

jP j = jEj.

The time complexity is O(jV j

3

� (jV j

2

+ jEj)) = O(jV j

5

), because jEj �

jV j

2

.

29

COMPLEXITY OF PURE PROLOG PROGRAMS

The upper bound on the time complexity is high, merely because we use a

very simple interpreter. It is possible to write an interpreter that is much more

e�cient. This has been done in Aarts (1995). It is e.g. possible to eliminate

the uni�cation in the completer step. This can be done as follows. Every item

with a non-empty body is associated with two keys. The �rst key tells how

the clause was \called". When we have proved the rest of the body, this key

can be used to �nd all items that are waiting for this solution. The second key

tells what items can be a solution for the �rst atom in the body. The keys are

computed in the prediction step. With this usage of keys we can immediately

see whether a given solution \�ts" a waiting item. A disadvantage is that the

number of items grows a little bit: we not only store the substitutions for the

head variables after some part of the body has been proven, but we also store

the substitutions when nothing has been proved yet (the \call").

With this more e�cient interpreter we get the following formula for the

time complexity. BV (i; j) is the set of all variables of B

ij

. The number mc(j)

denotes the number of clauses whose predicate name matches the predicate

name of B

i(j+1)

.

k

X

i=1

l(i)�1

X

j=0

mc(j)�##([hHV (i); 0i; hHV (i) [RV (i; j); ji; hBV (i; j + 1); j + 1i)

For most Prolog programs we can reduce this formula. It is almost always

the case that after uni�cation with the head of a clause (at the moment of

\calling"), the head variables are either ground, or not instantiated at all.

De�nite programs are programs in which all solutions (items with an empty

body) are ground. If a program is de�nite and we have a query in which all

argument positions are either ground or uninstantiated, we know that head

variables are either ground, or not instantiated at all right after the \call". If

a head variable X is not instantiated after the call, then ##([hX; 0i]) = 1. If

a variable X is ground after the call, then ##([hX; 0i]) = ##([hX; ji]) for all

j. Thus, we can leave out all head variables [HV (i); 0] from the formula, if

our program is de�nite and our query satis�es the condition just given. This

leads to the formula:

k

X

i=1

l(i)�1

X

j=0

mc(j)�##([hHV (i) [RV (i; j); ji; hBV (i; j + 1); j + 1i):

If we are not interested in the length of the program we can also leave out

mc(j) and get:

k

X

i=1

l(i)�1

X

j=0

##([hHV (i) [RV (i; j); ji; hBV (i; j + 1); j + 1i):

30

ERIK AARTS

6 Improved Earley Deduction

We can improve the Earley prover further as follows. Suppose we have a clause

s(A,E) :- det(A,B), n(B,C), v(C,D), np(D,E).

A simple observation is that the value of the variable E is unimportant until

we have to prove np(D,E). If we have two goals say s(0,3) and s(0,6) a lot

of work will be done twice. Therefore we introduce the notion relevant head

variable. Relevant head variables are variables occurring both in the head and

before the point we have reached in the body. We will not describe in detail

how this can be implemented in the interpreter.

The result of this improvement is that we only count the relevant head

variables and not all head variables. Formally, we de�ne the following set:

� RHV (i; j) is the set of all the relevant head variables of clause i at

position j, i.e. the set of variables occurring in B

i1

through B

i(j�1)

and

in the head.

RV (i; j) is the set of all relevant body variables and BV (i; j) is the set of

all variables of Bij.

The complexity of a program is now:

k

X

i=1

l(i)�1

X

j=0

mc(j)�##([hRHV (i; j) [RV (i; j); ji; hBV (i; j + 1); j + 1i):

7 Further Research

As said in the introduction, the approach taken in this article is modest. We

have proven an upper bound for the time complexity of Prolog programs in a

pretty straightforward way. The bad thing is that the bound is often higher

than one would desire. In order to get the right semantics we have to do the

so-called occur check in every uni�cation. Arguing against the occur check,

Pereira (1993, p. 547) states:

\it was felt that the cost of a procedure call in a reasonable pro-

gramming language should not depend on the sizes of the actual

parameters"

In the previous we saw that the complexity does depend on the size of the

parameters. There are two sources for this. First we perform the occur check.

Secondly, we make copies of the parameters when we store them in the tables

and we have to compare parameters all the time. This comparison is often

not necessary. E.g. if we have a DCG there will be many copies of tails of the

input sentence. Instead of copying this list we would like to copy pointers to

positions in this list. If we want to compare two terms in this case, we only

have to see whether two pointers point to the same address. And we do not

31

COMPLEXITY OF PURE PROLOG PROGRAMS

have to compare the two lists. In a practical system we could do the following.

We �rst look whether two pointers point to the same address. If they do, then

we are sure they are identical and we don't have to compare or copy anything.

If they point to di�erent addresses we have to compare them. It is still possible

that they are the same.

firstpart([a,b]).

firstpart([a]).

secondpart([c]).

secondpart([b,c]).

pred1 :-

firstpart(X),

secondpart(Y),

append(X,Y,Z),

pred2(Z).

We have to compute twice whether pred2([a,b,c]), but the two terms

[a,b,c] will be represented internally in a di�erent way. Theoretically the

\trick" does not help us much, but in practice it can be an improvement. In

practice the size of the parameters will often be eliminated.

8 Existing Implementations of Earley Interpreters

Currently there are (at least) three implementations of the Earley interpreter.

The �rst is a very experimental implementation by the author. This imple-

mentation can be found at "http://www.fwi.uva.nl/~aarts/prolog.html".

The interpreter has been written in Prolog and runs under Quintus, Sicstus

and SWI Prolog. A nice feature, absent in other interpreters, is the possi-

bility to inspect proof trees. This replaces the tracing facilities of standard

Prolog in which inspects the proof search. The proof tree debugger stimu-

lates a declarative programming style. The second implementation is SLG.

This is also a Prolog in Prolog. It supports the third truth value for non-

strati�ed programs. It has been developed by Chen and Warren. The third

implementation is the successor of SLG, XSB. XSB has been developed at the

University of New York at Stony Brook by Warren et al. This interpreters

allows both Earley and standard deduction. The idea is that one can use the

standard interpreter for simple, deterministic, predicates where tabling is a

useless overhead. Complex non-deterministic predicates can be tabled. XSB

has been written in C and should be competitive with other Prolog inter-

preters. The home page of the XSB Group is (at the moment of writing):

"http://www.cs.sunysb.edu/~sbprolog/".

32

ERIK AARTS

References

Aarts, E. (1995). Title tba. PhD thesis, Research Institute for Language and

Speech, Utrecht University.

Bratko, I. (1990). PROLOG programming for arti�cial intelligence. Woking-

ham, England: Addison-Wesley.

Lin, N.-W. (1993). Automatic Complexity Analysis of Logic Programs. PhD

thesis, Department of Computer Science, University of Arizona. Available

as ftp://cs.arizona.edu/caslog/naiwei93.tar.Z.

Paterson, M. S., and Wegman, M. N. (1978). Linear uni�cation. Journal of

Computer and System Sciences, 16:158{167.

Pereira, F. (1993). Review of \The logic of typed feature structures" (Bob

Carpenter). Computational Linguistics, 19(3):544{552.

Pereira, F., and Warren, D. H. (1983). Parsing as deduction. In Proceedings

of the 21

st

Ann. Meeting of the ACL. Cambridge, Mass.: MIT Press.

Pereira, F. C., and Shieber, S. M. (1987). Prolog and Natural Language Anal-

ysis, vol. 10 of CSLI Lecture Notes. Stanford.

Tamaki, H., and Sato, T. (1986). OLDT resolution with tabulation. In Proc.

of 3

rd

Int. Conf. on Logic Programming, 84{98. Berlin: Springer-Verlag.

Vieille, L. (1989). Recursive query processing: the power of logic. Theoretical

Computer Science, 69:1{53.

Warren, D. H. D. (1975). Earley deduction, unpublished note.

Warren, D. S. (1992). Memoing for logic programs. Communications of the

ACM, 35(3):94{111.

33

COMPLEXITY OF PURE PROLOG PROGRAMS

34

