
A Note on the Complexity of

Restricted Attribute-Value

Grammars

Leen Torenvliet

1

& Marten Trautwein

2

University of Amsterdam

Department of Mathematics and Computer Science

Plantage Muidergracht 24

1018 TV Amsterdam

Abstract

The recognition problem for attribute-value grammars (AVGs)

was shown to be undecidable by Johnson in 1988. Therefore,

the general form of AVGs is of no practical use. In this pa-

per we study a very restricted form of AVG, for which the

recognition problem is decidable (though still NP -complete),

the R-AVG. We show that the R-AVG formalism captures all

of the context free languages and more, and introduce a varia-

tion on the so-called o�-line parsability constraint , the honest

parsability constraint , which lets di�erent types of R-AVG co-

incide precisely with well-known time complexity classes.

1 Introduction

Although a universal feature theory does not exist, there is a general under-

standing of its objects. The objects of feature theories are abstract linguistic

objects, e.g., an object \sentence," an object \masculine third person singu-

lar," an object \verb," an object \noun phrase." These abstract objects have

properties like \tense," \number," \predicate," \subject." The values of these

properties are either atomic, like \present" and \singular," or abstract ob-

jects, like \verb" and \noun-phrase." The abstract objects are fully described

by their properties and their values. Multiple descriptions for the properties

and values of the abstract linguistic objects are presented in the literature.

Examples are:

1. Feature graphs, which are labeled rooted directed acyclic graphs G =

(V;A), where F is a collection of labels, a sink in the graph represents

1

The author was supported in part by HC&M grant ERB4050PL93-0516.

2

The author was supported by the Foundation for language, speech and logic (TSL),

which is funded by the Netherlands organization for scienti�c research (NWO)

145

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

an atomic value and the labeling function is an injective function f :

V �A 7! F .

2. Attribute-value matrices, which are matrices in which the entries consist

of an attribute and a value or a reentrance symbol. The values are either

atomic or attribute-value matrices.

From a computational point of view, all descriptions that are used in prac-

tical problems are equivalent. Though there exist some theories with a consid-

erably higher expressive power (Blackburn and Spaan 1993). For this paper

we adopt the feature graph description, which we will de�ne somewhat more

formally in the next section. Attribute Value Languages (AVL) (Smolka 1992)

consist of sets of logical formulas that describe classes of feature graphs, by

expressing constraints on the type of paths that can exist within the graphs.

To wit: In a sentence like \a man walks" the edges labeled with \person" that

leave the nodes labeled \a man" and \walks" should both end in a node labeled

\singular." Such a constraint is called a \path equation" in the attribute-value

language.

A rewrite grammar (Chomsky 1956) can be enriched with an AVL to con-

struct an Attribute Value Grammar (AVG), which consists of pairs of rewrite-

rules and logical formulas. The rewrite rule is applicable to a production

(nonterminal) only if the logical formula that expresses the relation between

left- and right-hand side of the rule evaluates to true. The recognition prob-

lem for attribute-value grammars can be stated as: Given a grammar G and a

string w does there exist a derivation in G, that respects the constraints given

by its AVL, and that ends in w. As the intermediate productions correspond

to feature graphs this question can also be formulated as a question about the

existence of a consistent sequence of feature graphs that results in a feature

graph describing w. For the rewrite grammar, any formalism in the Chomsky

hierarchy (from regular to type 0) can be chosen. From a computational point

of view it is of course most desirable to restrict oneself to a formalism that on

the one hand gives enough expressibility to describe a large fragment of the

(natural) language, and on the other hand is restrictive enough to preserve

feasibility. For a discussion on the linguistic signi�cance of such restrictions,

see Perrault (1984).

Johnson (1988) proved that attribute-value grammars that are as restric-

tive as being equipped with a rewrite grammar that is regular can already give

rise to an undecidable recognition problem. Obviously, to be of any practical

use, the rewrite grammar or the attribute-value language must be more re-

strictive. Johnson proposed to add the o�-line parsability constraint , which is

respected if the rewrite grammar has no chain- or �-rules. Then, the number

of applications in a production is linear and the size of the structure corre-

sponding to the partial productions is polynomial. Hence as by a modi�cation

of Smolka's algorithm (Smolka 1992) consistency of intermediate steps can

be checked in quadratic time, the complexity of the recognition problem can

at most be (nondeterministic) polynomial time. This observation was made

146

LEEN TORENVLIET & MARTEN TRAUTWEIN

in (Trautwein 1995), which also has an NP -hardness proof of the recognition

problem.

We further investigate the properties of these restricted AVGs (R-AVGs).

In the next section, we give some more formal de�nitions and notations. In

Section 3 we show that the class of languages generated by an R-AVG (R-

AVGL) includes the class of context free languages (CFL). It follows that

any easily parsable class of languages (like CFL) is a proper subset of R-

AVGL, unless P = NP . Likewise, R-AVGL is a proper subset of the class of

context sensitive languages, unless NP = PSPACE . In Section 4 we propose

a further re�nement on the o�-line parsability constraint, which allows R-

AVGs that respect this constraint to capture precisely complexity classes like

NP or NEXP . That is, for any language L that has an NP -parser, there

exists an R-AVG, say G, such that L = L(G). Though our re�nement, the

honest parsability constraint is probably not a property that can be decided

for arbitrary R-AVGs, we show that R-AVGs can be equipped with restricting

mechanisms that enforce this property. The techniques that prove Theorem 3.1

and Theorem 4.2 result from Johnson's work. Therefore, the proofs of these

theorems are deferred to the appendices.

2 Definitions and Notation

2.1 Attribute-Value Grammars

The de�nitions in this section are in the spirit of (Johnson 1988, Section 3.2)

and (Smolka 1992, Sections 3{4). Consider three sets of pairwise disjoint

symbols.

A, the �nite set of constants, denoted (a; b; c; : : :)

V , the countable set of variables, denoted (x; y; z; : : :)

L, the �nite set of attributes, also called features, denoted (f; g; h; : : :)

De�nition 1: An f -edge from x to s is a triple (x; f; s) such that x is a

variable, f is an attribute, and s is a constant or a variable. A path, p, is a,

possibly empty, sequence of f -edges (x

1

; f

1

; x

2

); (x

2

; f

2

; x

3

); : : : ; (x

n

; f

n

; s)

in which the x

i

are variables and s is either a variable or a constant. Often

a path is denoted by the sequence of its edges' attributes, in reversed order,

e.g., p = f

n

: : : f

1

. Let p be a path, ps denotes the path that starts from s,

where s is a constant only if p is the empty path. If the path is nonempty,

p = f

n

: : : f

1

(n � 1), then s is a variable. For paths ps and qt we write

ps

:

= qt i� p and q start in s and t respectively and end in the same

variable or constant. The expression ps

:

= qt is called a path equation. A

feature graph is either a pair (a; ;), or a pair (x;E) where x is the root

and E a �nite set of f -edges such that:

147

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

1. if (y; f; s) and (y; f; t) are in E, then s = t;

2. if (y; f; s) is in E, then there is a path from x to y in E.

De�nition 2: An attribute-value language A(A; V; L) consists of sets of

logical formulas that describe feature graphs, by expressing constraints

on the type of paths that can exist within the graphs.

� The terms of an attribute-value languageA(A; V; L) are the constants

and the variables s; t 2 A [V .

� The formulas of an attribute-value language A(A; V; L) are path

equations and Boolean combinations of path equations. Thus all

formulas are either ps

:

= qt, where ps and qt are paths, or � ^ ,

� _ , or :�, where � and are formulas.

Assume a �nite set Lex (of lexical forms) and a �nite set Cat (of categories).

Lex will play the role of the set of terminals and Cat will play the role of the

set of nonterminals in the productions.

De�nition 3: A constituent structure tree (CST) is a labeled tree in which

the internal nodes are labeled with elements of Cat and the leaves are

labeled with elements of Lex.

De�nition 4: Let T be a constituent structure tree and F be a set of

formulas in an attribute-value language A(A; V; L). An annotated con-

stituent structure tree is a triple <T; F; h>, where h is a function that

maps internal nodes in T onto variables in F .

De�nition 5: A lexicon is a �nite subset of Lex�Cat�A(A; fx

0

g; L). A

set of syntactic rules is a �nite subset of

S

i�1

Cat�Cat

i

�A(A; fx

0

; : : : ; x

i

g; L).

An attribute-value grammar is a triple <lexicon; rules; start>, where lexi-

con is a lexicon, rules is a set of syntactic rules and start is an element of

Cat.

De�nition 6:

1. (Balc�azar et al. 1988, p .150) A class C of sets is recursively

presentable i� there is an e�ective enumeration M

1

;M

2

; : : : of deter-

ministic Turing machines which halt on all their inputs, and such

that C = fL(M

i

) j i = 1; 2; : : :g.

2. We say that a class of grammars G is recursively presentable i� the

class of sets fL(G) j G 2 Gg is recursively presentable.

2.2 Restricted Attribute-Value Grammars

The only formulas that are allowed in the attribute-value language of restricted

attribute-value grammars (R-AVGs) are path-equations and conjunctions of

148

LEEN TORENVLIET & MARTEN TRAUTWEIN

path-equations (i.e. disjunctions and negations are out). We will denote the

attribute-value language of an R-AVG by A

0

(A; V; L) to make the distinction

clear. The CST of an R-AVG is produced by a chain- and �-rule free regular

grammar. The CST of an R-AVG can be either a left-branching or a right-

branching tree, since the grammar contains at most one nonterminal in each

rule.

De�nition 7: The set of syntactic rules of a restricted attribute-value

grammar is a subset of

S

i�1;k�1

Cat � Lex

i

� Cat

k

� A

0

(A; fx

0

; x

k

g; L).

A restricted attribute-value grammar is a pair <rules; start>, where rules

is a set of syntactic rules and start is an element of Cat.

De�nition 8: An R-AVG<rules; start> generates an annotated constituent

structure tree <T; F; h> i�

1. the root node of T is start, and

2. every internal node of T is licensed by a syntactic rule, and

3. the set F is consistent, i.e., describes a feature graph.

Let �[x=y] stand for the formula � in which variable y is substituted for

variable x. An internal node v of an annotated constituent structure tree

is licensed by a syntactic rule (c

0

; l

1

; : : : ; l

i

; �) i�

1. the node v is labeled with category c

0

, h(v) = n

0

, and

2. all daughters of v are leaves, which are labeled with l

1

: : : l

i

, and

3. �[x

0

=n

0

] is in the set F .

An internal node v of an annotated constituent structure tree is licensed

by a syntactic rule (c

0

; l

1

; : : : ; l

i

; c

1

; �) i�

1. the node v is labeled with category c

0

, h(v) = n

0

, and

2. one of v's daughters is an internal node, v

1

, which is labeled with

category c

1

, and h(v

1

) = n

1

, and

3. the daughters of v that are leaves are labeled with l

1

: : : l

i

, and

4. �[x

0

=n

0

; x

1

=n

1

] is in the set F .

3 Weak Generative Capacity

In (Trautwein 1995), it is shown that the recognition problem for R-AVGs

is NP -complete. This seems to indicate that although the mechanism for

generating CSTs in R-AVGs is extremely simple, the generative capacity of R-

AVGs is di�erent from the generative capacity of e.g., context free languages

(CFLs), which have a polynomial time parsing algorithm (Earley 1970). Yet,

a priori, there may exist CFLs that do not have an R-AVG.

149

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

Theorem 3.1 Let L be a context free language. There exists an R-AVG G

such that L = L(G).

Proof. If L is a context free language, then there exists a context free grammar

G

0

in Greibach normal form such that L = L(G

0

). From this grammar G

0

, we

can construct a pushdown store M that accepts exactly the words in L(G

0

) =

L. Such a pushdown store M is actually a �nite state automaton M

0

with

a stack S. The �nite state automaton M

0

may be simulated by a chain- and

�-rule free regular grammar. Furthermore, we can construct an attribute-value

language A

0

(A; V; L) that simulates the stack S. Thus it should be clear that

there exists an R-AVG G that produces word w i� w 2 L(G

0

). Details of this

construction are deferred to Appendix A. 2

From this we can draw the conclusion that the class of context free lan-

guages is indeed a proper subset of the class of R-AVG languages, unless

P = NP .

Theorem 3.2 Let C be a recursively presentable class of grammars such that:

1. G 2 C can be decided in time polynomial in jGj

2. G

�

) w can be decided in time polynomial in jGj+ jwj.

If every R-AVG G has a grammar in C then P = NP. In fact, for every

language L in NP there is an explicit deterministic polynomial time algorithm.

Proof. Let L be a language in NP and w 2 f0; 1g

�

. Trautwein (Trautwein

1995) provided an R-AVG G and a reduction that maps any formula F onto

a string w

F

s.t. G

�

) w

F

i� F 2 SAT . It was also shown that any R-AVG

has a nondeterministic polynomial time, hence deterministic exponential time,

recognition algorithm. Suppose every R-AVG G has a grammar in C. Then

there exists a G

0

2 C with L(G

0

) = L(G). We can decide in polynomial time

whether w

F

2 L(G) for any w

F

. So, P = NP .

If every R-AVGG has a grammar in C, then the algorithm for deciding \w 2

L?" consists of: use Cook's reduction to produce a formula F that is satis�able

i� w 2 L; use Trautwein's reduction to produce w

F

and R-AVG G; enumerate

grammars in C for the �rst grammar G

0

that has a description of length less

than log logjwj for which L(G) \ f0; 1g

�log log jwj

= L(G

0

) \ f0; 1g

�log log jwj

accept i� w 2 L(G

0

). This gives a polynomial time algorithm that erroneously

accepts or rejects w for only a �nite number of strings w. The theorem now

follows from the fact that both P and NP are closed under �nite variation. 2

Corollary 3.3 If R-AVGs generate only context free languages then P = NP.

In fact it can be shown directly that R-AVGs also produce non-context free

languages.

150

LEEN TORENVLIET & MARTEN TRAUTWEIN

Theorem 3.4 The context sensitive language fa

n

b

n

c

n

g is generated by an R-

AVG.

Proof.(Sketch) Typically, the R-AVG that generates the language fa

n

b

n

c

n

g

�rst generates an amount of a's then an amount of b's and �nally an amount

of c's. Let us assume that the grammar generates i a's. During the derivation,

the feature graph can be used to store the amount of a's that is produced. Once

the grammar starts to produce b's , the feature graph will force the grammar

to generate exactly i b's and next to generate exactly i c's as well. 2

4 The Honest Parsability Constraint and Conse-

quences

According to Theorem 3.2, it is unlikely that the languages generated by R-

AVGs can be limited to those languages with a polynomial time recognition

algorithm. Trautwein (Trautwein 1995) showed that all R-AVGs have non-

deterministic polynomial time algorithms. Is it perhaps the case that any

language that has a nondeterministic polynomial time recognition algorithm

can be generated by an R-AVG. Does there exist a tight relation between time

bounded machines and R-AVGs as e.g., between LBAs and CSLs? The an-

swer is that the o�-line parsability constraint that forces the R-AVG to have no

chain- or �-rules is just too restrictive to allow such a connection. The following

trick to alleviate this problem has been observed earlier in complexity theory.

The o�-line parsability constraint(OLP) (Johnson 1988) relates the amount of

\work" done by the grammar to produce a string linearly to the number of

terminal symbols produced. It is therefore a sort of honesty constraint that

is also demanded of functions that are used in e.g., cryptography. There the

deal is, for each polynomial amount of work done to compute the function

at least one bit of output must be produced. In such a way, for polynomial

time computable functions one can guarantee that the inverse of the function

is computable in nondeterministic polynomial time.

As a more liberal constraint on R-AVGs we propose an analogous variation

on the OLP

De�nition 9: A grammarG satis�es the Honest Parsability Constraint(HPC)

i� there exists a polynomial p s.t. for each w in L(G) there exists a deriva-

tion with at most p(jwj) steps.

From Smolka's algorithm and Trautwein's observation it trivially follows

that any attribute-value grammar that satis�es the HPC (HP-AVG) has an NP

recognition algorithm. The problem with the HPC is of course that it is not a

syntactic property of grammars. The question whether a given AVG satis�es

the HPC (or the OLP for that matter) may well be undecidable. Nonetheless,

we can produce a set of rules that, when added to an attribute-value grammar

151

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

enforces the HPC. The newly produced language is then a subset of the old

produced language with an NP recognition algorithm. Because of the fact that

our addition may simulate any polynomial restriction, we regain the full class

of AVG's that satisfy the HPC. In fact

Theorem 4.1 The class, P-AVGL, of languages produced by the HP-AVGs is

recursively presentable.

We will give a detailed construction of such a set of rules in Appendix B.

The existence of such a set of rules and the work of Johnson now gives the

following theorem.

Theorem 4.2 For any language L that has an NP recognition algorithm, there

exists a restricted attribute-value grammar G that respects the HPC and such

that L = L(G).

Proof.(Sketch) Let M be the Turing machine that decides w 2 L. Use a vari-

ation of Johnson's construction of a Turing machine to create an R-AVG that

can produce any string w that is recognized by M . Add the set of rules that

guarantee that only strings that can be produced with a polynomial number

of rules can be produced by the grammar. 2

5 Veer out the HPC

Instead of creating a counter of logarithmic size as we do in Appendix B, it is

quite straightforward to construct a counter of linear size (or exponential size

if there is enough time). In fact, for well-behaved functions, the construction of

a counter gives a method to enforce any desired time bound constraint on the

recognition problem for attribute-value grammars. For instance, for nonde-

terministic exponential time we could de�ne the Linear Dishonest Parsability

Constraint (LDP) (allowing a linear exponential number of steps) which would

give.

Theorem 5.1 The class of languages generated by R-AVGs obeying the LDP

condition is exactly NEXP.

Acknowledgements

We are indebted to E. Aarts and W.C. Rounds for their valuable suggestions

on an early presentation of this work.

References

Balc�azar, J., D��az, J., and Gabarr�o, J. (1988). Structural Complexity I. New

York: Springer-Verlag.

152

LEEN TORENVLIET & MARTEN TRAUTWEIN

Blackburn, P., and Spaan, E. (1993). A modal perspective on the computa-

tional complexity of attribute value grammar. Journal of Logic, Language

and Information, 2(2):129{169.

Chomsky, N. (1956). Three models for the description of language. IRE

Transactions on Information Theory, 2(3):113{124.

Earley, J. (1970). An e�cient context-free parsing algorithm. Communications

of the Association for Computing Machinery, 13(2):94{102.

Hopcroft, J., and Ullman, J. (1979). Introduction to Automata Theory, Lan-

guages, and Computation. Reading, MA: Addison Wesley.

Johnson, M. (1988). Attribute-Value Logic and the Theory of Grammar, vol. 16

of CSLI Lecture Notes. Stanford: CSLI.

Perrault, C. (1984). On the mathematical properties of linguistic theories.

Computational Linguistics, 10(3{4):165{176.

Smolka, G. (1992). Feature-constraint logics for uni�cation grammars. Journal

of Logic Programming, 12(1):51{87.

Sudkamp, T. (1988). Languages and Machines: An introduction to the Theory

of Computer Science. Reading, MA: Addison Wesley.

Trautwein, M. (1995). Assessing complexity results in feature theories. ILLC

Research Report and Technical Notes Series LP-95-01, University of Am-

sterdam.

153

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

A Simulating a Context Free Grammar in GNF

A context free grammar (CFG) is a quadruple hN;�; P; Si, where N is a set

of nonterminals, � is a set of terminals, P is a set of productions, and S 2 N

is the start nonterminal. A CFG is in Greibach normal form (GNF) if, and

only if, the productions are of one of the following forms, where a 2 �; A 2

N;A

1

: : :A

n

2 N n fSg and � the empty string (c.f., (Hopcroft and Ullman

1979), (Sudkamp 1988)):

A ! aA

1

: : :A

n

A ! a

S ! �

Given a GNF G = hN;�; P; Si, we can construct a restricted attribute-

value grammar (R-AVG) G

0

that simulates grammar G. R-AVG G

0

consists

of the same set of nonterminals and terminals as GNF G. The productions of

R-AVG G

0

are described by Table 1. The only two attributes of R-AVG G

0

are

top and rest. R-AVG G

0

contains jN j + 1 atomic values, one atomic value

for each nonterminal and the special atomic value $. The R-AVG G

0

uses the

feature graph to encode a push-down stack, similar to the encoding of a list.

The stack will be used to store the nonterminals that still have to be rewritten.

The three syntactic abbreviations below are used to clarify the simulation.

We use represent a stack by a Greek letter, or a string of symbols; the top of

the stack is the leftmost symbol of the string. Let x

0

encode a stack
, then

the formulas in the abbreviation push(A

0

: : :A

n

) express that x

1

encodes a

stack A

0

: : :A

n

. Likewise, the formulas in the abbreviation pop(A) express

that x

0

encodes a stack A
, and x

1

encodes the stack
. The abbreviation

empty-stack expresses that x

0

encodes an empty stack.

push(A

0

: : :A

n

) stands for top(x

1

)

:

= A

0

^

top rest(x

1

)

:

= A

1

^

.

.

.

top rest

n

(x

1

)

:

= A

n

^

rest

n+1

(x

1

)

:

= x

0

pop(A) stands for top(x

0

)

:

= A ^

rest(x

0

)

:

= x

1

empty-stack stands for x

0

:

= $

We have to prove that GNF G and its simulation by R-AVG G

0

generate

(almost) the same language. Obviously, R-AVG G

0

cannot generate the empty

string. However, for all non-empty strings the following theorem holds.

Theorem A.1 Start nonterminal S of GNF G derives string � (� 2 �

+

) if,

and only if, start nonterminal S of R-AVG G

0

derives string � with the empty

stack.

154

LEEN TORENVLIET & MARTEN TRAUTWEIN

Productions of GNF G Productions of R-AVG G

0

S ! aA

1

: : : A

n

; S ! aA

1

push(A

2

: : : A

n

) ^ empty-stack

A! aA

1

: : :A

n

; A! aA

1

push(A

2

: : : A

n

) (A 6= S)

S ! a ; S ! aB 8B 2 N n fSg

pop(B) ^ empty-stack

S ! a ; S ! a

empty-stack

A! a ; A! aB 8B 2 N n fSg

pop(B) (A 6= S)

A! a ; A! a

empty-stack

S ! � neglected

Table 1: Simulating productions of GNF G by R-AVG G

0

Proof. There are two cases to consider. First, S derives string � in one step.

Second, S derives string � in more than one step. The lemma below is needed

in the proof of the second case.

Case I Let start nonterminal S derive string � in one step. GNF G contains

a production S ! � i� R-AVG G

0

contains a production S ! � with

the equation empty-stack. So, S derives � in a derivation of GNF G

i� S derives � with an empty stack in the derivation of R-AVG G

0

.

Case II Initial nonterminal S of GNF G derives string � = ��

0

in more than

one step i� there is a left-most derivation S

�

) �A) ��

0

. GNF G

contains production A ! �

0

i� R-AVG G

0

contains production A ! �

0

with the equation empty-stack. By the next lemma: S

�

) �A i�

S

�

) �A with the empty stack. Hence S derives � for GNF G i� S

derives � with empty stack for R-AVG G

0

.

2

Lemma A.2 Start nonterminal S derives �A
 (� 2 �

+

; A
 2 (N n fSg)

+

)

in a left-most derivation of GNF G if, and only if, nonterminal S derives �A

with stack
$ ($ is the bottom-of-stack symbol) in the derivation of R-AVG G

0

.

Proof. The lemma is proven by induction on the length of the derivation.

Basis If S derives �A
 in one step, then GNF G contains production S !

�A
 and R-AVG G

0

contains production S ! �A with stack
$. If S

derives �A with stack
$ in one step, then R-AVG G

0

contains production

S ! �A with stack
$ and GNF G contains production S ! �A
.

Induction The induction hypotheses states that S

n

) �A
 in GNF G i�

S

n

) �A with stack
$ in R-AVG G

0

. Next, we distinguish three cases.

155

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

1. GNF G contains a production A ! aA

1

A

2

: : :A

n

. Hence there is

a left-most derivation S

n+1

) �aA

1

A

2

: : :A

n

. GNF G contains the

production A! aA

1

A

2

: : :A

n

i� R-AVG G

0

contains a production

A ! aA

1

with equation push(A

2

: : :A

n

). Since the induction hy-

potheses states that there is a derivation S

n

) �A with stack
$,

there is a derivation S

n+1

) �aA

1

with stack A

2

: : :A

n

$.

2. GNFG contains a production A! a and
 = B

0

0

. Hence there is a

left-most derivation S

n+1

) �aB

0

0

. GNF G contains the production

A ! a i� R-AVG G

0

contains productions A ! aB with equation

pop(B), for all B 2 N n fSg. Hence by the induction hypotheses,

there is a derivation S

n+1

) �aB

0

with stack

0

$.

3. GNF G contains a production A ! a and
 = �. Then there

is a left-most derivation S

n+1

) �a. GNF G contains the produc-

tion A ! a i� R-AVG G

0

contains production A ! a with equa-

tion empty-stack. Hence by the induction hypotheses, there is a

derivation S

n+1

) �a with stack $.

2

Because every context free language is generated by some GNF G, every

context free language is generated by some R-AVG G

0

.

B Constructing an Honestly Parsable Attribute-Value

Grammar

In this section we show how to add a binary counter to an attribute-value gram-

mar (AVG). This counter enforces the Honest-Parsability Constraint (HPC)

upon the AVG. To keep this section legible we sometimes use the attribute-

value matrices (AVMs) as descriptions. In Section B.2, we show how to create

a counter for the AVG. In Section B.3 we show how to extend the syntactic

rules and the lexicon of the AVG.

B.1 Arithmetic by AVGs

We start with a little bit of arithmetic.

Natural numbers. The AVMs below encode natural numbers in binary

notation. The sequences of attributes 0 and 1 in these AVMs encode natural

numbers, from least- to most-signi�cant bit. The attribute v has value 1 (or

0) if, and only if, it has a sister attribute 1 (or 0).

1. The AVMs

h

v 0

0 +

i

and

h

v 1

1 +

i

encode the natural numbers zero and

one.

156

LEEN TORENVLIET & MARTEN TRAUTWEIN

2. The AVMs

h

v 0

0 [F]

i

and

h

v 1

1 [F]

i

encode natural numbers i� the

AVM [F] encodes a natural number.

Syntactic rules that tests two numbers for equality. Assume a non-

terminal A with some AVM

h

n [F]

m [H]

i

, where [F] and [H] encode natural

number x and y, respectively. We present one syntactic rule that derives from

this nonterminal A a nonterminal B with AVM

h

n [F]

m [H]

i

if x = y.

A! B

n(x

0

)

:

= m(x

0

)

^ x

0

:

= x

1

Table 2: The rule to test two numbers for equality.

Clearly, this simple test takes one step. A more sophisticated test, which

also tests for inequality, would compare [F] and [H] bit-by-bit. Such a test

would take O(min(log(x); log(y))) = O(min(j[F]j; j[H]j)) derivation steps.

Syntactic rules that multiply by two. Assume a nonterminal A with

some AVM

�

n [F]

�

, where [F] encodes natural number x. We present one

syntactic rule that derives from this nonterminal A a nonterminal B with the

AVM

�

n [H]

�

, where [H] encodes natural number 2x.

The number n in [H] equals two times n in [F] if, and only if, the least-

signi�cant bit of n in [H] is 0, and the remaining bits form the same sequence

as the number n in [F]. Multiplication by two takes one derivation step.

A! B

v n(x

1

)

:

= 0

^ n(x

0

)

:

= 0 n(x

1

)

Table 3: The rule to multiply by two.

Syntactic rules that increments by one. Assume a nonterminal A with

some AVM

�

n [F]

�

, where [F] encodes natural number x. We present �ve

syntactic rules that derive from this nonterminal A a nonterminal C with AVM

�

n [H]

�

, where [H] encodes natural number x+ 1.

The increment of n requires two additional pointers in the AVM of A:

attribute p points to the next bit that has to be incremented; attribute q

points to the most-signi�cant bit of the (intermediate) result. These additional

pointers are hidden from the AVMs of the nonterminals A and C.

The �ve rules from Table 4 increment n by one. Nonterminal A rewrites,

in one or more steps, to nonterminal C, potentially through a number of non-

terminals B.

157

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

A

0

! C

0

v n(x

0

)

:

= 0

^ 0 n(x

0

)

:

= 1 n(x

1

)

^v n(x

1

)

:

= 1

A

0

! B

v n(x

0

)

:

= 1

^ 1 n(x

0

)

:

= p(x

1

)

^ 0 n(x

1

)

:

= q(x

1

)

^v n(x

1

)

:

= 0

B! B

v p(x

0

)

:

= 1

^ 1 p(x

0

)

:

= p(x

1

)

^ n(x

0

)

:

= n(x

1

)

^ v q(x

0

)

:

= 0

^ 0 q(x

0

)

:

= q(x

1

)

B! C

0

v p(x

0

)

:

= 0

^ v q(x

0

)

:

= 1

^ 0 p(x

0

)

:

= 1 q(x

0

)

^ n(x

0

)

:

= n(x

1

)

B! C

0

v p(x

0

)

:

= 1

^ 1 p(x

0

)

:

= +

^ n(x

0

)

:

= n(x

1

)

^ v q(x

0

)

:

= 0

^ v 0 q(x

0

)

:

= 1

^ 1 0 q(x

0

)

:

= +

Table 4: Five rules to increment n by one.

The �rst and fourth rule of Table 4 state that adding one to a zero bit

sets this bit to one and ends the increment. The second and third rule state

that adding one to a one bit sets this bit to zero and the increment continues.

The �fth rule states that adding one to the most-signi�cant bit sets this bit

to zero and yields a new most-signi�cant one bit. We claim that A

�

) C takes

O(log(x)) = O(j[F]j) derivation steps.

Rules, similar to the ones above, can be given that decrement the attribute

n by one. We only have to take a little extra care that the number 0 cannot

be decremented.

Syntactic rules that sum two numbers. In this section we use the pre-

vious test and increment rules (indicated by =). Assume a nonterminal A

with some AVM

h

n [F]

m [H]

i

, where [F] and [H] encode natural number x and

y, respectively. We present syntactic rules (Table 5{8) that derive from this

nonterminal A a nonterminal C with AVM

h

n [F

0

]

m [H]

i

, where [F

0

] encodes the

natural number x+ y.

A! A

0

m(x

0

)

:

= m(x

1

)

^ n(x

0

)

:

= p(x

1

)

^m(x

1

)

:

= q(x

1

)

^ r(x

1

)

:

= n(x

1

)

C

0

! C

n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

Table 5: Two rules to hide the auxiliary pointers.

The increment of n by m is similar to the increment by one. Here, three

additional pointers are required: the attributes p and q point to the bits in

n and m respectively that have to be summed next; attribute r points to the

most-signi�cant bit of the (intermediate) result. In the addition two states are

158

LEEN TORENVLIET & MARTEN TRAUTWEIN

A

0

! A

0

v p(x

0

)

:

= 0

^v q(x

0

)

:

= 0

^v r(x

0

)

:

= 0

^ 0 p(x

0

)

:

= p(x

1

)

^ 0 q(x

0

)

:

= q(x

1

)

^ 0 r(x

0

)

:

= r(x

1

)

^n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

A

0

! A

0

v p(x

0

)

:

= 1

^ v q(x

0

)

:

= 0

^ v r(x

0

)

:

= 1

^ 1 p(x

0

)

:

= p(x

1

)

^ 0 q(x

0

)

:

= q(x

1

)

^ 1 r(x

0

)

:

= r(x

1

)

^ n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

A

0

! A

0

v p(x

0

)

:

= 0

^ v q(x

0

)

:

= 1

^ v r(x

0

)

:

= 1

^ 0 p(x

0

)

:

= p(x

1

)

^ 1 q(x

0

)

:

= q(x

1

)

^ 1 r(x

0

)

:

= r(x

1

)

^ n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

B! B

v p(x

0

)

:

= 1

^ v q(x

0

)

:

= 0

^ v r(x

0

)

:

= 0

^ 1 p(x

0

)

:

= p(x

1

)

^ 0 q(x

0

)

:

= q(x

1

)

^ 0 r(x

0

)

:

= r(x

1

)

^ n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

B! B

v p(x

0

)

:

= 0

^ v q(x

0

)

:

= 1

^ v r(x

0

)

:

= 0

^ 0 p(x

0

)

:

= p(x

1

)

^ 1 q(x

0

)

:

= q(x

1

)

^ 0 r(x

0

)

:

= r(x

1

)

^ n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

B! B

v p(x

0

)

:

= 1

^v q(x

0

)

:

= 1

^v r(x

0

)

:

= 1

^ 1 p(x

0

)

:

= p(x

1

)

^ 1 q(x

0

)

:

= q(x

1

)

^ 1 r(x

0

)

:

= r(x

1

)

^n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

Table 6: Rules when the carry bit is not changed.

A

0

! B

v p(x

0

)

:

= 1

^ v q(x

0

)

:

= 1

^ v r(x

0

)

:

= 0

^ 1 p(x

0

)

:

= p(x

1

)

^ 1 q(x

0

)

:

= q(x

1

)

^ 0 r(x

0

)

:

= r(x

1

)

^ n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

B! A

0

v p(x

0

)

:

= 0

^ v q(x

0

)

:

= 0

^ v r(x

0

)

:

= 1

^ 0 p(x

0

)

:

= p(x

1

)

^ 0 q(x

0

)

:

= q(x

1

)

^ 1 r(x

0

)

:

= r(x

1

)

^ n(x

0

)

:

= n(x

1

)

^m(x

0

)

:

= m(x

1

)

Table 7: Rules when the carry bit is changed.

distinguished. In the one state, the carry bit is zero, indicated by nonterminal

A

0

. In the other state, the carry bit is one, indicated by nonterminal B.

We claim that A

�

) C takes O(max(log(x); log(y))) = O(max(j[F]j; j[H]j))

derivation steps.

Syntactic rules that sum a sequence of numbers. In this section we

use the previous summation rules (indicated by =). Assume a nonterminal A

with some AVM

�

l [F

0

]

�

, where [F

0

] encodes a list of numbers. To wit

[F

0

] =

2

4

f [G

1

]

r

"

f [G

2

]

r : : :

h

f [G

n

]

r +

i

#

3

5

where [G

i

] encodes natural number x

i

. We present syntactic rules (Table 9)

that derive from this nonterminal A a nonterminal B with AVM

h

suml [F]

l [F

0

]

i

,

159

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

A

0

! C

0

p(x

0

)

:

= +

^q(x

0

) = i

^r(x

0

) = j

^ i = j

^x

0

:

= x

1

A

0

! C

0

p(x

0

) = i

^q(x

0

)

:

= +

^r(x

0

) = j

^ i = j

^x

0

:

= x

1

A

0

! C

0

p(x

0

)

:

= +

^q(x

0

)

:

= +

^ r(x

0

)

:

= +

^ x

0

:

= x

1

B! C

0

p(x

0

)

:

= +

^q(x

0

) = z

^ r(x

0

) = z + 1

^ x

0

:

= x

1

B! C

0

p(x

0

) = z

^q(x

0

)

:

= +

^ r(x

0

) = z + 1

^ x

0

:

= x

1

B! C

0

p(x

0

)

:

= +

^q(x

0

)

:

= +

^v r(x

0

)

:

= 1

^ 1 r(x

0

)

:

= +

^x

0

:

= x

1

Table 8: Rules that stop the summation.

where [F] encodes the natural number �

i

x

i

.

The summation requires an additional pointer in the AVM [F

0

]: attribute

p points to the next element in the list that has to be summed. We claim that

A

�

) B takes O(�

i

log(x

i

)) = O(j[F

0

]j) derivation steps.

A! A

0

v n(x

1

)

:

= 0

^ 0 n(x

1

)

:

= +

^ l(x

0

)

:

= l(x

1

)

^ l(x

0

)

:

= p(x

1

)

A

0

! A

0

suml(x

0

) = y

^ f p(x

0

) = z

^ suml(x

1

) = y + z

^r p(x

0

)

:

= p(x

1

)

^ l(x

0

)

:

= l(x

1

)

A

0

! B

p(x

0

)

:

= +

^ suml(x

0

)

:

= suml(x

1

)

^ l(x

0

)

:

= l(x

1

)

Table 9: Three rules that sum a list of numbers.

B.2 Creating a Counter of Logarithmic Size

Create an AVM of the following form:

2

6

6

6

6

6

6

6

6

4

counter

2

6

6

6

6

6

6

6

6

4

size

�

1 [0 : : : [1 +]

�

n

"

v 1 [0

1 [0

h

v 1 [0

: : : [1 +]

i

#

m

"

v 1 [0

1 [0

h

v 1 [0

: : : [1 +]

i

#

poly

�

1 [0 : : : [1 +]

�

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

Attribute counter is used to distinguish the AVMs that encodes the

counter from those in the original attribute-value grammar. We will neglect

the attribute counter in the remainder of this section, because it is not es-

sential here. The attributes size, n, m and poly encode natural numbers. The

attribute size records the size of the string that will be generated. The at-

160

LEEN TORENVLIET & MARTEN TRAUTWEIN

tribute poly records the maximum number of derivation steps that is allowed

for a string of size size. The attributes n and m are auxiliary numbers.

The construction of the counter starts with an initiation-step. The further

construction of the counter consists of cycles of two phases. Each cycle starts

in nonterminal A.

Initiation step and �rst phase. The initiation-step sets the numbers size

and n to 0, and the numbers m and poly to 1. In the �rst phase of each cycle,

the numbers size and n are incremented by 1.

S! A

v size(x

1

)

:

= 0

^ 0 size(x

1

)

:

= +

^ v n(x

1

)

:

= 0

^ 0 n(x

1

)

:

= +

^ v m(x

1

)

:

= 1

^ 1 m(x

1

)

:

= +

^ 1 poly(x

1

)

:

= +

A! B

size(x

0

) = x

^ size(x

1

) = x+ 1

^n(x

0

) = y

^n(x

1

) = y + 1

^m(x

0

)

:

= m(x

1

)

^ poly(x

0

)

:

= poly(x

1

)

Table 10: Initiation-step and �rst phase.

The second phase of the cycle. In this phase the numbers n and m are

compared. If n is twice m, then (i) number poly is extended by k bits, (ii)

number m is doubled, and (iii) number n is set to 0. If n is less than twice m,

nothing happens.

The left rule of the second phase doubles the number m in the second and

the third equation. The test \Is n equal to 2m?" therefore reduces to one (the

�rst) equation. The fourth equation extend the number poly with k bits. The

�fth and sixth equations set the number n to 0.

The right rule is always applicable. If the right rule is used where the left

rule was applicable, then the number n will never be equal to 2m in the rest

of the derivation. Thus poly will not be extended any more.

B! A

n(x

0

) = m(x

1

)

^m(x

0

) = x

^m(x

1

) = 2x

^poly(x

0

)

:

= 0

k

poly(x

1

)

^v n(x

1

)

:

= 0

^0 n(x

1

)

:

= +

B! A

x

0

:

= x

1

Table 11: The second phase.

We claim that the left rule appears log(n) times and the right rule O(n)

times in a derivation for input of size n. Obviously, the number poly is

161

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

O(2

k log i

) = O(i

k

) when the number size is i.

B.3 From AVG to HP-AVG

In this section we show how to transform an AVG into an AVG that satis-

�es the HPC (HP-AVG). Since all computation steps of the HP-AVG only

require a linear amount of derivation steps, total derivations of HP-AVGs have

polynomial length.

We can divide the attributes of the HP-AVG into two groups. The at-

tributes that encode the counters, and the attributes of the original AVG. The

former will be embedded under the attribute counter, the latter under the

attribute grammar. In the sequel, we mean by �jgrammar the formula �

embedded under the attribute grammar, i.e., the formula obtained from � by

substituting the variables x

i

by grammar(x

i

).

The HP-AVG is obtained from the AVG in three steps: change the start

nonterminal, the lexicon and the syntactic rules. First, the HP-AVG contains

the rules of the previous section, which construct the counter. The nonterminal

S from Table 10 is the start nonterminal of the HP-AVG. For the nonterminal

A the start nonterminal of the AVG is taken. Nonterminal B from Table 11 is

a fresh nonterminal, not occurring in the AVG.

Second, the HP-AVG contains an extension of the lexicon of the AVG. The

entries of the lexicon are extended in the following way. The size of the lexical

form is set to one, and the amount of derivation steps is zero. Thus, if (w;X; �)

is the lexicon of the AVG, then (w;X;) is the lexicon of the HP-AVG, where

 = �jgrammar

^ v size counter(x

0

)

:

= 1

^ 1 size counter(x

0

)

:

= +

^ poly counter(x

0

)

:

= +

Third, the HP-AVG contains extensions of the syntactic rules of the AVG.

The syntactic rules are extended in the following way. The numbers poly and

size of the daughter nonterminals are collected in the lists plist and slist.

Both lists are summed. The number size of the mother nonterminal is equal

to the sum of size's, and the number poly of the mother nonterminal is one

more than the sum of poly's. Thus, if (X

0

; X

1

; : : : ; X

n

; �) is a syntactic rule

of the AVG, then (X

0

; X

1

; : : : ; X

n

;) is a syntactic rule of the HP-AVG, where

 = �jgrammar

^ sums counter(x

0

) = � slist counter(x

0

)

^ size counter(x

0

) = sums counter(x

0

)

^ sump counter(x

0

) = � plist counter(x

0

)

^ sump counter(x

0

) = y

^ poly counter(x

0

) = y + 1

162

LEEN TORENVLIET & MARTEN TRAUTWEIN

^ f r

i

slist counter(x

0

)

:

= size counter(x

i

) (0 � i < n)

^ r

n

slist counter(x

0

)

:

= +

^ f r

i

plist counter(x

0

)

:

= poly counter(x

i

) (0 � i < n)

^ r

n

plist counter(x

0

)

:

= +

Now, a derivation for the HP-AVG starts with a nondeterministic construc-

tion of a counter size with value n and a counter poly with value O(n

k

). Then,

the derivation of the original AVG is simulated, such that (i) the mother non-

terminal produces a string of size n if, and only if the daughter nonterminals

together produce a string of size n, and (ii) the mother nonterminal makes

n

k

+1 derivation steps if, and only if the daughter nonterminals together make

n

k

derivation steps.

163

A NOTE ON THE COMPLEXITY OF RESTRICTED ATTRIBUTE-VALUE GRAMMARS

164

