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Abstract

We introduce a memory-based approach to part of speech tagging.

Memory-based learning is a form of supervised learning based on simi-

larity-based reasoning. The part of speech tag of a word in a particular

context is extrapolated from the most similar cases held in memory.

Supervised learning approaches are useful when a tagged corpus is

available as an example of the desired output of the tagger. Based on

such a corpus, the tagger-generator automatically builds a tagger which

is able to tag new text the same way, diminishing development time

for the construction of a tagger considerably. Memory-based tagging

shares this advantage with other statistical or machine learning ap-

proaches. Additional advantages speci�c to a memory-based approach

include (i) the relatively small tagged corpus size su�cient for training,

(ii) incremental learning, (iii) explanation capabilities, (iv) 
exible in-

tegration of information in case representations, (v) its non-parametric

nature, (vi) reasonably good results on unknown words without mor-

phological analysis, and (vii) fast learning and tagging. In this paper

we show that a large-scale application of the memory-based approach

is feasible: we obtain a tagging accuracy that is on a par with that

of known statistical approaches, and with attractive space and time

complexity properties when using IgTree, a tree-based formalism for

indexing and searching huge case bases. The use of IgTree has as

additional advantage that optimal context size for disambiguation is

dynamically computed.

1 Introduction

Part of Speech (POS) tagging is a process in which syntactic categories are

assigned to wordsIt can be seen as a mapping from sentences to strings of
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tags.

Input Output

John will join the board np md vb dt nn

Automatic tagging is useful for a number of applications: as a prepro-

cessing stage to parsing, in information retrieval, in text to speech systems,

in corpus linguistics, etc. The two factors determining the syntactic cate-

gory of a word are its lexical probability (e.g. without context, man is more

probably a noun than a verb), and its contextual probability (e.g. after a

pronoun, man is more probably a verb than a noun, as in they man the

boats). Several approaches have been proposed to construct automatic tag-

gers. Most work on statistical methods has used n-gram models or Hidden

Markov Model-based taggers, e.g. (Church, 1988; DeRose, 1988; Cutting et

al., 1992; Merialdo, 1994). In these approaches, a tag sequence is chosen for

a sentence that maximizes the product of lexical and contextual probabilities

as estimated from a tagged corpus.

In rule-based approaches, words are assigned a tag based on a set of

rules and a lexicon. These rules can either be hand-crafted (Garside, Leech,

and Sampson, 1987; Klein and Simmons, 1963; Greene and Rubin, 1971),

or learned, as in (Hindle, 1989) or the transformation-based error-driven

approach of Brill (1992).

In the memory-based approach, a set of cases is kept in memory. Each

case consists of a word (or a lexical representation for the word) with preced-

ing and following context, and the corresponding category for that word in

that context. A new sentence is tagged by selecting for each word in the sen-

tence and its context the most similar case(s) in memory, and extrapolating

the category of the word from these `nearest neighbors'. A memory-based

approach has features of both learning rule-based taggers (each case can be

regarded as a very speci�c rule, the similarity based reasoning as a form

of con
ict resolution and rule selection mechanism) and of stochastic tag-

gers: it is fundamentally a form of k-nearest neighbors (k-nn) modeling, a

well-known non-parametric statistical pattern recognition technique. The

approach in its basic form is computationally expensive, however; each new

word in context that has to be tagged, has to be compared to each pattern

kept in memory. In this paper we show that a heuristic case base compres-

sion formalism (Daelemans et al., 1996), makes the memory-based approach

computationally attractive.

2 Memory-Based Learning

Memory-based Learning is a form of supervised, inductive learning from

examples. Examples are represented as a vector of feature values with an

associated category label. During training, a set of examples (the training

set) is presented in an incremental fashion to the classi�er, and added to
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memory. During testing, a set of previously unseen feature-value patterns

(the test set) is presented to the system. For each test pattern, its distance

to all examples in memory is computed, and the category of the least dis-

tant instance(s) is used as the predicted category for the test pattern. The

approach is based on the assumption that reasoning is based on direct reuse

of stored experiences rather than on the application of knowledge (such as

rules or decision trees) abstracted from experience.

In AI, the concept has appeared in several disciplines (from computer

vision to robotics), using terminology such as similarity-based, example-

based, memory-based, exemplar-based, case-based, analogical, lazy, nearest-

neighbour, and instance-based (Stan�ll and Waltz, 1986; Kolodner, 1993;

Aha, Kibler, and Albert, 1991; Salzberg, 1990). Ideas about this type of

analogical reasoning can be found also in non-mainstream linguistics and

pyscholinguistics (Skousen, 1989; Derwing and Skousen, 1989; Chandler,

1992; Scha, 1992). In computational linguistics (apart from incidental com-

putational work of the linguists referred to earlier), the general approach

has only recently gained some popularity: e.g. Cardie (1994): syntactic and

semantic disambiguation; Daelemans (1995): an overview of work in the

early nineties on memory-based computational phonology and morphology;

Jones (1996): an overview of example-based machine translation research;

Federici and Pirrelli (forthcoming).

2.1 Similarity Metric

Performance of a memory-based system (accuracy on the test set) cru-

cially depends on the distance metric (or similarity metric) used. The most

straightforward distance metric would be the one in Equation 1, where X

and Y are the patterns to be compared, and �(x

i

; y

i

) is the distance between

the values of the i-th feature in a pattern with n features.

�(X;Y ) =

n

X

i=1

�(x

i

; y

i

) (1)

Distance between two values is measured using Equation 2, an overlap met-

ric, for symbolic features (we will have no numeric features in the tagging

application).

�(x

i

; y

i

) =

(

0 if x

i

= y

i

1 otherwise

(2)

We will refer to this approach as Ib1 (Aha, Kibler, and Albert, 1991). We

extended the algorithm described there in the following way: in case a pat-

tern is associated with more than one category in the training set (i.e. the

pattern is ambiguous), the distribution of patterns over the di�erent cate-

gories is kept, and the most frequently occurring category is selected when

the ambiguous pattern is used to extrapolate from.
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2.2 Feature Relevance Weighting

In this distance metric, all features describing an example are interpreted as

being equally important in solving the classi�cation problem, but this is not

necessarily the case. In tagging, the focus word to be assigned a category is

obviously more relevant than any of the words in its context. We therefore

weigh each feature with its information gain; a number expressing the aver-

age amount of reduction of training set information entropy when knowing

the value of the feature (Daelemans and van den Bosch, 1992; Quinlan, 1993;

Hunt, Marin, and Stone, 1966) (Equation 6). We will call this algorithm

Ib-Ig. Many other methods to weigh the relative importance of features

have been designed, both in statistical pattern recognition and in machine

learning (see (Wettschereck, Aha, and Mohri, 1996) for an overview).

The main idea of information gain weighting is to interpret the training

set as an information source capable of generating a number of messages

(the di�erent category labels) with a certain probability. The information

entropy of such an information source can be compared in turn for each

feature to the average information entropy of the information source when

the value of that feature is known. Database information entropy is equal

to the number of bits of information needed to know the category given a

pattern. It is computed by Equation 3, where p

i

(the probability of category

i) is estimated by its relative frequency in the training set.

H(D) = �

X

i

p

i

log

2

p

i

(3)

For each feature, it is now computed what the information gain is of knowing

its value. To do this, we compute the average information entropy for this

feature and subtract it from the information entropy of the database. To

compute the average information entropy for a feature (Equation 4), we take

the average information entropy of the database restricted to each possible

value for the feature. The expression D

[f=v]

refers to those patterns in the

database that have value v for feature f , V is the set of possible values for

feature f . Finally, jDj is the number of patterns in a (sub)database.

H(D

[f ]

) =

X

v

i

2V

H(D

[f=v

i

]

)

jD

[f=v

i

]

j

jDj

(4)

A well-known disadvantageous property of information gain is that it tends

to favour features with many values. This bias can be recti�ed, as suggested

in (Quinlan, 1993), by normalizing the information gain of a feature by

dividing it by the number of bits required to determine the feature (which

depends on its number of values).

split-info(f) = �

X

v

i

2V

jD

[f=v

i

]

j

jDj

log

2

jD

[f=v

i

]

j

jDj

(5)
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Information gain is then obtained by Equation 6, and scaled to be used as

a weight for the feature during distance computation.

G(f) = H(D)�

H(D

[f ]

)

split-info(f)

(6)

Finally, the distance metric in Equation 1 is modi�ed to take into account

the information gain weight associated with each feature.

�(X;Y ) =

n

X

i=1

G(f

i

)�(x

i

; y

i

) (7)

3 Memory-Based Language Processing

Memory-Based Learning is a classi�cation paradigm. Given a description

of a `case' in terms of feature-value pairs, a category label is produced. In

tagging, a case description is a focus word to be disambiguated and its

context, and the category label is a syntactic tag, drawn from a �nite tag

set known beforehand.

A method often necessary to arrive at the context information needed in

a classi�cation approach is the windowing approach (as used in (Sejnowski

and Rosenberg, 1987) for grapheme to phoneme conversion with neural net-

works), in which an imaginary window is moved one item at a time over an

input string where one item in the window (usually the middle item or the

last item) acts as a focus item, and the rest as the context. We will apply

this approach for tagging as well.

The mapping from sentences to a series of tags will then be approxi-

mated by a function from a focus word and its �xed-width context to the

disambiguated tag belonging to the focus word. By doing this, the mapping

becomes a classi�cation task amenable to Memory-Based Learning (see Ta-

ble 1).

Input Output

Left Context Focus Right Context Target

= = John will join np

= John will join the md

John will join the board vb

will join the board = dt

join the board = = nn

Table 1: Tagging as a classi�cation task.

The tree-based indexing of the case-base, which will be described in

the next section, will restrict an initially large context to only the relevant

features.
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4 IGTrees

Memory-based learning is an expensive algorithm: of each test item, all

feature values must be compared to the corresponding feature values of

all training items. Without optimisation, it has an asymptotic retrieval

complexity of O(NF ), where N is the number of items in memory, and F

the number of features. The same asymptotic complexity is of course found

for memory storage in this approach. We use IgTrees (Daelemans et al.,

1996) to compress the memory. IgTree is a heuristic approximation of the

Ib-Ig algorithm.

Hardware solutions to the complexity problem have also been proposed:

massively parallel computing (Stan�ll and Waltz, 1986) or even wafer-scale

integration (Kitano, 1993). For numeric features kd-trees have been pro-

posed (Friedman, Bentley, and Finkel, 1977) as a solution on single-processor

machines. The advantages of this approach do not generalize easily to sym-

bolic features, however.

4.1 The IGTree Algorithms

IgTree combines two algorithms: one for compressing a case base into a

trees, and one for retrieving classi�cation information from these trees. Dur-

ing the construction of IgTree decision trees, cases are stored as paths of

connected nodes. All nodes contain a test (based on one of the features)

and a class label (representing the default class at that node). Nodes are

connected via arcs denoting the outcomes for the test (feature values). A

feature relevance ordering technique (in this case information gain, see Sec-

tion 2.1) is used to determine the order in which features are used as tests

in the tree. This order is �xed in advance, so the maximal depth of the

tree is always equal to the number of features, and at the same level of the

tree, all nodes have the same test (they are an instance of oblivious decision

trees, cf. (Langley and Sage, 1994). The reasoning behind this reorganisa-

tion (which is in fact a compression) is that when the computation of feature

relevance points to one feature clearly being the most important in classi�-

cation, search can be restricted to matching a test case to those stored cases

that have the same feature value at that feature. Besides restricting search

to those memory cases that match only on this feature, the case memory

can be optimised by further restricting search to the second most important

feature, followed by the third most important feature, etc. A considerable

compression is obtained as similar cases share partial paths.

Instead of converting the case base to a tree in which all cases are fully

represented as paths, storing all feature values, we compress the tree even

more by restricting the paths to those input feature values that disambiguate

the classi�cation from all other cases in the training material. The idea is

that it is not necessary to fully store a case as a path when only a few feature
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values of the case make its classi�cation unique. This implies that feature

values that do not contribute to the disambiguation of the case classi�cation

(i.e. the values of the features with lower feature relevance values than the

the lowest value of the disambiguating features) are not stored in the tree.

In our tagging application, this means that only context feature values that

actually contribute to disambiguation are used in the construction of the

tree.

Leaf nodes contain the unique class label corresponding to a path in the

tree. Non-terminal nodes contain information about the most probable or

default classi�cation given the path thus far, according to the bookkeep-

ing information on class occurrences maintained by the tree construction

algorithm. This extra information is essential when using the tree for classi-

�cation. Finding the classi�cation of a new case involves traversing the tree

(i.e. matching all feature values of the test case with arcs in the order of the

overall feature information gain), and either retrieving a classi�cation when

a leaf is reached, or using the default classi�cation on the last matching

non-terminal node if a feature-value match fails.

A �nal compression is obtained by pruning the derived tree. All leaf-

node daughters of a mother node that have the same class as that node are

removed from the tree, as their class information does not contradict the

default class information already present at the mother node. Again, this

compression does not a�ect IgTree's generalisation performance.

The recursive algorithms for tree construction (except the �nal pruning)

and retrieval are given in Figures 1 and 2. For a detailed discussion, see

(Daelemans et al., 1996).

4.2 IGTree Complexity

The asymptotic complexity of IgTree (i.e. in the worst case) is extremely

favorable. Complexity of searching a query pattern in the tree is propor-

tional to F �log(V ), where F is the number of features (equal to the maximal

depth of the tree), and V is the average number of values per feature (i.e. the

average branching factor in the tree). In Ib1, search complexity is O(N �F )

(with N the number of stored cases). Retrieval by search in the tree is inde-

pendent from the number of training cases, and therefore especially useful

for large case bases. Storage requirements are proportional to N (compare

O(N �F ) for Ib1). Finally, the cost of building the tree on the basis of a set

of cases is proportional to N � log(V ) � F in the worst case (compare O(N)

for training in Ib1).

In practice, for our part-of-speech tagging experiments, IgTree retrieval

is 100 to 200 times faster than normal memory-based retrieval, and uses over

95% less memory.
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Procedure BUILD-IG-TREE:

Input:

� A training set T of cases with their classes (start value: a full

case base),

� an information-gain-ordered list of features (tests) F

i

:::F

n

(start

value: F

1

:::F

n

).

Output: A (sub)tree.

1. If T is unambiguous (all cases in T have the same class c), create

a leaf node with class label c.

2. Else if i = (n + 1), create a leaf node with as label the class

occurring most frequently in T .

3. Otherwise, until i = n (the number of features)

� Select the �rst feature (test) F

i

in F

i

:::F

n

, and construct a

new node N for feature F

i

, and as default class c (the class

occurring most frequently in T ).

� Partition T into subsets T

1

:::T

m

according to the values

v

1

:::v

m

which occur for F

i

in T (cases with the same value

for this feature in the same subset).

� For each j�f1; :::;mg: BUILD-IG-TREE (T

j

; F

i+1

:::F

n

),

connect the root of this subtree to N and label the arc with

v

j

.

Figure 1: Algorithm for building IGTrees (`BUILD-IG-TREE').

5 Architecture of the Tagger

The architecture takes the form of a tagger generator : given a corpus tagged

with the desired tag set, a POS tagger is generated which maps the words

of new text to tags in this tag set according to the same systematicity. The

construction of a POS tagger for a speci�c corpus is achieved in the following

way. Given an annotated corpus, three datastructures are automatically

extracted: a lexicon, a case base for known words (words occurring in the

lexicon), and a case base for unknown words. Case Bases are indexed using

IgTree. During tagging, each word in the text to be tagged is looked

up in the lexicon. If it is found, its lexical representation is retrieved and

its context is determined, and the resulting pattern is looked up in the

known words case base. When a word is not found in the lexicon, its lexical

representation is computed on the basis of its form, its context is determined,

and the resulting pattern is looked up in the unknown words case base. In
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Procedure SEARCH-IG-TREE:

Input:

� The root node N of a subtree (start value: top node of a complete

IGTree),

� an unlabeled case I with information-gain-ordered feature values

f

i

:::f

n

(start value: f

1

:::f

n

).

Output: A class label.

1. If N is a leaf node, output default class c associated with this

node.

2. Otherwise, if test F

i

of the current node does not originate an arc

labeled with f

i

, output default class c associated with N .

3. Otherwise,

� new node M is the end node of the arc originating from N

with as label f

i

.

� SEARCH-IG-TREE (M;f

i+1

:::f

n

)

Figure 2: Algorithm for searching IgTrees (`SEARCH-IG-TREE').

each case, output is a best guess of the category for the word in its current

context. In the remainder of this section, we will describe each step in more

detail. We start from a training set of tagged sentences T .

5.1 Lexicon Construction

A lexicon is extracted from T by computing for each word in T the number

of times it occurs with each category. When using e.g. the �rst 2 million

words of the Wall Street Journal corpus

1

as T , the word once would get

the lexical de�nition RB: 330; IN: 77, i.e. once was tagged 330 times as an

adverb, and 77 times as a preposition/subordinating conjunction.

2

Using these lexical de�nitions, a new, possibly ambiguous, tag is pro-

duced for each word type. E.g. once would get a new tag, representing the

category of words which can be both adverbs and prepositions/conjunctions

(RB-IN). Frequency order is taken into account in this process: if there

would be words which, like once, can be RB or IN, but more frequently IN

1

ACL Data Collection Initiative CD-ROM 1, September 1991.

2

We disregarded a category associated with a word when less than 10% of the word

tokens were tagged with that category. This way, noise in the training material is �ltered

out. The value for this parameter will have to be adapted for other training sets, and was

chosen here to maximise generalization accuracy (accuracy on tagging unseen text).
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than RB (e.g. the word below), then a di�erent tag (IN-RB) is assigned to

these words. The original tag set, consisting of 44 morphosyntactic tags, was

expanded this way to 419 (possibly ambiguous) tags. In the WSJ example,

the resulting lexicon contains 57962 word types, 7464 (13%) of which are

ambiguous. On the same training set, 76% of word tokens are ambiguous.

When tagging a new sentence, words are looked up in the lexicon. De-

pending on whether or not they can be found there, a case representation is

constructed for them, and they are retrieved from either the known words

case base or the unknown words case base.

5.2 Known Words

A case consists of information about a focus word to be tagged, its left and

right context, and an associated category (tag) valid for the focus word in

that context.

There are several types of information which can be stored in the case

base for each word, ranging from the words themselves to intricate lexical

representations. In the preliminary experiments described in this paper, we

limited this information to the possibly ambiguous tags of words (retrieved

from the lexicon) for the focus word and its context to the right, and the

disambiguated tags of words for the left context (as the result of earlier tag-

ging decisions). Table 2 is a sample of the case base for the �rst sentence of

the corpus (Pierre Vinken, 61 years old, will join the board as a nonexecu-

tive director nov. 29 ) when using this case representation. The �nal column

shows the target category; the disambiguated tag for the focus word. We

will refer to this case representation as ddfat (d for disambiguated, f for

focus, a for ambiguous, and t for target). The information gain values are

given as well.

A search among a selection of di�erent context sizes suggested ddfat

as a suitable case representation for tagging known words. An interesting

property of memory-based learning is that case representations can be easily

extended with di�erent sources of information if available (e.g. feedback from

a parser in which the tagger operates, semantic types, the words themselves,

lexical representations of words obtained from a di�erent source than the

corpus, etc.). The information gain feature relevance ordering technique

achieves a delicate relevance weighting of di�erent information sources when

they are fused in a single case representation. The window size used by

the algorithm will also dynamically change depending on the information

present in the context for the disambiguation of a particular focus symbol

(see (Sch�utze and Singer, 1994; Pereira, Singer, and Tishby, 1995) for similar

approaches).
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word case representation target

d d f a

IG .06 .22 .82 .23

Pierre = = np np np

Vinken = np np , np

, np np , cd ,

61 np , cd nns cd

years , cd nns jj-np nns

old cd nns jj-np , jj

, nns jj , md ,

will jj , md vb md

join , md vb dt vb

the md vb dt nn-np dt

board vb dt nn-np in-rb nn

as dt nn in-rb dt in

a nn in dt jj dt

nonexecutive in dt jj nn-np jj

director dt jj nn-np np nn

nov. jj nn np cd np

29 nn np cd . cd

. np cd . = .

Table 2: Case representation and information gain pattern for known words.

5.3 Unknown Words

If a word is not present in the lexicon, its ambiguous category cannot be

retrieved. In that case, a category can be guessed only on the basis of the

form or the context of the word. Again, we take advantage of the data fusion

capabilities of a memory-based approach by combining these two sources of

information in the case representation, and having the information gain

feature relevance weighting technique �gure out their relative relevance (see

(Schmid, 1994; Samuelsson, 1994) for similar solutions).

In most taggers, some form of morphological analysis is performed on

unknown words, in an attempt to relate the unknown word to a known

combination of known morphemes, thereby allowing its association with

one or more possible categories. After determining this ambiguous cate-

gory, the word is disambiguated using context knowledge, the same way as

known words. Morphological analysis presupposes the availability of highly

language-speci�c resources such as a morpheme lexicon, spelling rules, mor-

phological rules, and heuristics to prioritise possible analyses of a word ac-

cording to their plausibility. This is a serious knowledge engineering bot-

tleneck when the goal is to develop a language and annotation-independent

tagger generator.
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In our memory-based approach, we provide morphological information

(especially about su�xes) indirectly to the tagger by encoding the three

last letters of the word as separate features in the case representation. The

�rst letter is encoded as well because it contains information about pre�x

and capitalization of the word. Context information is added to the case

representation in a similar way as with known words. It turned out that

in combination with the `morphological' features, a context of one disam-

biguated tag of the word to the left of the unknown word and one ambiguous

category of the word to the right, gives good results. We will call this case

representation pdassst:

3

three su�x letters (s), one pre�x letter (p), one

left disambiguated context words (d), and one ambiguous right context word

(a). As the chance of an unknown word being a function word is small, and

cases representing function words may interfere with correct classi�cation of

open-class words, only open-class words are used during construction of the

unknown words case base.

Table 3 shows part of the case base for unknown words.

word case representation target

p d a s s s

IG .21 .21 .14 .15 .20 .32

Pierre P = np r r e np

Vinken V np , k e n np

61 6 , nns = 6 1 cd

years y cd jj-np a r s nns

old o nns , o l d jj

join j md dt o i n vb

board b dt in-rb a r d nn

nonexecutive n dt nn-np i v e jj

director d jj np t o r nn

nov. n nn cd o v . np

29 2 np . = 2 9 cd

Table 3: Case representation and information gain pattern for unknown

words.

5.4 Control

Figure 3 shows the architecture of the tagger-generator: a tagger is produced

by extracting a lexicon and two case-bases from the tagged example corpus.

During tagging, the control is the following: words are looked up in the

lexicon and separated into known and unknown words. They are retrieved

3

These parameters (optimal context size and number of su�x features) were again

optimised for generalization accuracy.
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TAGGER GENERATION                                                                                        TAGGING

Tagged Corpus LEXICON

KNOWN WORDS
CASE BASE

UNKNOWN WORDS
CASE BASE

TAGGER

New Text

Tagged Text

word −> a

ddfa −> t

ddfassss −> t

Figure 3: Architecture of the tagger-generator: 
ow of control.

from the known words case base and the unknown words case base, respec-

tively. In both cases, context is used, in the case of unknown words, the

�rst and three last letters of the word are used instead of the ambiguous tag

for the focus word. As far as disambiguated tags for left context words are

used, these are of course not obtained by retrieval from the lexicon (which

provides ambiguous categories), but by using the previous decisions of the

tagger.

5.5 IGTrees for Tagging

As explained earlier, both case bases are implemented as IgTrees. For the

known words case base, paths in the tree represent variable size context

widths. The �rst feature (the expansion of the root node of the tree) is

the focus word, then context features are added as further expansions of

the tree until the context disambiguates the focus word completely. Further

expansion is halted at that point. In some cases, short context sizes (e.g.

corresponding to bigrams) are su�cient to disambiguate a focus word, in

other cases, more context is needed. IgTrees provide an elegant way of

automatic determination of optimal context size. In the unknown words

case base, the tree representation provides an automatic integration of in-

formation about the form and the context of a focus word not encountered

before. In general, the top levels of the tree represent the morphological

information (the three su�x letter features and the pre�x letter), while the

deeper levels contribute contextual disambiguation.
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6 Experiments

In this section, we report �rst results on our memory-based tagging ap-

proach. In a �rst set of experiments, we compared our IgTree implemen-

tation of memory-based learning to more traditional implementations of the

approach. In further experiments we studied the performance of our system

on predicting the category of both known and unknown words.

Experimental Set-up

The experimental methodology was taken from Machine Learning practice

(e.g. (Weiss and Kulikowski, 1991): independent training and test sets were

selected from the original corpus, the system was trained on the training set,

and the generalization accuracy (percentage of correct category assignments)

was computed on the independent test set. Storage and time requirements

were computed as well. Where possible, we used a 10-fold cross-validation

approach. In this experimental method, a data set is partitioned ten times

into 90% training material, and 10% testing material. Average accuracy

provides a reliable estimate of the generalization accuracy.

6.1 Experiment 1: Comparison of Algorithms

Our goal is to adhere to the concept of memory-based learning with full

memory while at the same time keeping memory and processing speed within

attractive bounds. To this end, we applied the IgTree formalism to the

task. In order to prove that IgTree is a suitable candidate for practi-

cal memory-based tagging, we compared three memory-based learning al-

gorithms: (i) Ib1, a slight extension (to cope with symbolic values and

ambiguous training items) of the well-known k-nn algorithm in statistical

pattern recognition (see (Aha, Kibler, and Albert, 1991)), (ii) Ib1-Ig, an

extension of Ib1 which uses feature relevance weighting (described in Sec-

tion 2), and (iii) IgTree, a memory- and processing time saving heuristic

implementation of Ib1-Ig (see Section 3). Table 4 lists the results in gener-

alization accuracy, storage requirements and speed for the three algorithms

using a ddfat pattern, a 100,000 word training set, and a 10,000 word test

set. In this experiment, accuracy was tested on known words only.

Algorithm Accuracy Time Memory (Kb)

IB1 92.5 0:43:34 977

IB1-IG 96.0 0:49:45 977

IGTree 96.0 0:00:29 35

Table 4: Comparison of three memory-based learning techniques.

The IgTree version turns out to be better or equally good in terms of
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Figure 4: Learning curve for tagging

generalization accuracy, but also is more than 100 times faster for tagging

of new words

4

, and compresses the original case base to 4% of the size of

the original case base. This experiment shows that for this problem, we can

use IgTree as a time and memory saving approximation of memory-based

learning (Ib-Ig version), without loss in generalization accuracy. The time

and speed advantage of IgTree grows with larger training sets.

6.2 Experiment 2: Learning Curve

A ten-fold cross-validation experiment on the �rst two million words of the

WSJ corpus shows an average generalization performance of IgTree (on

known words only) of 96.3%. We did 10-fold cross-validation experiments

for several sizes of datasets (in steps of 100,000 memory items), revealing the

learning curve in Figure 4. Training set size is on the X-axis, generalization

performance as measured in a 10-fold cross-validation experiment is on the

Y -axis. the `error' range indicate averages plus and minus one standard

deviation on each 10-fold cross-validation experiment.

5

Already at small data set sizes, performance is relatively high. With

increasingly larger data sets, the performance becomes more stable (witness

the error ranges). It should be noted that in this experiment, we assumed

correctly disambiguated tags in the left context. In practice, when using

our tagger, this is of course not the case because the disambiguated tags in

the left context of the current word to be tagged are the result of a previous

4

In training, i.e. building the case base, Ib1 and Ib1-Ig (4 seconds) are faster than

IgTree (26 seconds) because the latter has to build a tree instead of just storing the

patterns.

5

We are not convinced that variation in the results of the experiments in a 10-fold-cv

set-up is statistically meaningful (the 10 experiments are not independent), but follow

common practice here.
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decision of the tagger, which may be a mistake. To test the in
uence of this

e�ect we performed a third experiment.

6.3 Experiment 3: Overall Accuracy

We performed the complete tagger generation process on a 2 million words

training set (lexicon construction and known and unknown words case-base

construction), and tested on 200,000 test words. Performance on known

words, unknown words, and total are given in Table 5. In this experiment,

numbers were not stored in the known words case base; they are looked up

in the unknown words case base.

Accuracy Percentage

Known 96.7 94.5

Unknown 90.6 5.5

Total 96.4 100.0

Table 5: Accuracy of IgTree tagging on known and unknown words

7 Related Research

A case-based approach, similar to our memory-based approach, was also

proposed by Cardie (1993a; Cardie (1994) for sentence analysis in limited

domains (not only POS tagging but also semantic tagging and structural

disambiguation). We will discuss only the reported POS tagging results

here. Using a fairly complex case representation based on output from the

Circus conceptual sentence analyzer (22 local context features describing

syntactic and semantic information about a �ve-word window centered on

the word to be tagged, including the words themselves, and 11 global con-

text features providing information about the major constituents parsed

already), and with a tag set of 18 tags (7 open-class, 11 closed class), she

reports a 95% tagging accuracy. A decision-tree learning approach to fea-

ture selection is used in this experiment (Cardie, 1993b; Cardie, 1994) to

discard irrelevant features. Results are based on experiments with 120 ran-

domly chosen sentences from the TIPSTER JV corpus (representing 2056

cases). Cardie (p.c.) reports 89.1% correct tagging for unknown words.

Percentage unknown words was 20.6% of the test words, and overall tagging

accuracy (known and unknown) 95%. Notice that her algorithm gives no

initial preference to training cases that match the test word during its ini-

tial case retrieval. On the other hand, after retrieving the top k cases, the

algorithm does prefer those cases that match the test word when making its

�nal predictions. So, it is understandable that the algorithm is doing better

on words that it has seen during training as opposed to unknown words.
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In our memory-based approach, feature weighting (rather than feature

selection) for determining the relevance of features is integrated much more

smoothly with the similarity metric, and our results are based on experi-

ments with a larger corpus (3 million cases). Our case representation is (at

this point) simpler: only the (ambiguous) tags, not the words themselves

or any other information are used. The most important improvement is the

use of IgTree to index and search the case base, solving the computational

complexity problems a case-based approach would run into when using large

case bases.

An approach based on k-nn methods (such as memory-based and case-

based methods) is a statistical approach, but it uses a di�erent kind of

statistics than Markov model-based approaches. k-nn is a non-parametric

technique; it assumes no �xed type of distribution of the data. The most

important advantages compared to current stochastic approaches are that

(i) few training items (a small tagged corpus) are needed for relatively good

performance, (ii) the approach is incremental: adding new cases does not

require any recomputation of probabilities, and (iii) it provides explanation

capabilities, and (iv) it requires no additional smoothing techniques to avoid

zero-probabilities; the IgTree takes care of that.

Compared to hand-crafted rule-based approaches, our approach provides

a solution to the knowledge-acquisition and reusability bottlenecks, and to

robustness and coverage problems (similar advantages motivated Markov

model-based statistical approaches). Compared to learning rule-based ap-

proaches such as the one by Brill (1992), a k-nn approach provides a uniform

approach for all disambiguation tasks, more 
exibility in the engineering of

case representations, and a more elegant approach to handling of unknown

words (see e.g. (Cardie, 1994)).

8 Conclusion

We have shown that a memory-based approach to large-scale tagging is fea-

sible both in terms of accuracy (comparable to other statistical approaches),

and also in terms of computational e�ciency (time and space requirements)

when using IgTree to compress and index the case base. The approach

combines some of the best features of learned rule-based and statistical sys-

tems (small training corpora needed, incremental learning, understandable

and explainable behavior of the system). More speci�cally, memory-based

tagging with IgTrees has the following advantages.

� Accurate generalization from small tagged corpora. Already at small

corpus size (300{400 K tagged words), performance is good. These

corpus sizes can be easily handled by our system.
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� Incremental learning. New `cases' (e.g. interactively corrected output

of the tagger) can be incrementally added to the case bases, continually

improving the performance of the overall system.

� Explanation capabilities. To explain the classi�cation behavior of the

system, a path in the IgTree (with associated defaults) can be pro-

vided as an explanation, as well as nearest neighbors from which the

decision was extrapolated.

� Flexible integration of information sources. The feature weighting

method takes care of the optimal fusing of di�erent sources of in-

formation (e.g. word form and context), automatically.

� Automatic selection of optimal context. The IgTree mechanism

(when applied to the known words case base) automatically decides

on the optimal context size for disambiguation of focus words.

� Non-parametric estimation. The IgTree formalism provides auto-

matic, nonparametric estimation of classi�cations for low-frequency

contexts (it is similar in this respect to backed-o� training), but avoids

non-optimal estimation due to false intuitions or non-convergence of

the gradient-descent procedure used in some versions of backed-o�

training.

� Reasonably good results on unknown words without morphological

analysis. On the WSJ corpus, unknown words can be predicted (using

context and word form information) for more than 90%.

� Fast learning and tagging. Due to the favorable complexity properties

of IgTrees (lookup time in IgTrees does not depend on the num-

ber of cases), both tagger generation and tagging are extremely fast.

Tagging speed in our current implementation is about 1000 words per

second.

We have barely begun to optimise the approach: a more intelligent sim-

ilarity metric would also take into account the di�erences in similarity be-

tween di�erent values of the same feature. E.g. the similarity between the

tags rb-in-nn and rb-in should be bigger than the similarity between rb-in

and vb-nn. Apart from linguistic engineering re�nements of the similarity

metric, we are currently experimenting with statistical measures to compute

such more �ne-grained similarities (e.g. (Stan�ll and Waltz, 1986; Cost and

Salzberg, 1993)).
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