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Abstract

SDRT is a sophisticated logical discourse theory for discourse analy-

sis that integrates two traditions: dynamic semantics and discourse

structure theory because it turns out that it is necessary to model the

interaction between the semantic content of texts and their structure

to give an adequate account of several discourse phenomena. The im-

plementation of SDRT is needed to test the validity of the axioms and

rules expressed in that interesting framework. In that paper, we will

focus on the implementation of the logical inference engine.

1 Introduction

Dynamic Semantics (e.g. Kamp's Discourse Representation Theory (1993),

Groenendijk and Stokhof's Dynamic Predicate Logic (1991)), in which the

meaning of a sentence is a function from discourse contexts to discourse

contexts, appeared in the eighties because the Montagovian framework was

not well suited to the analysis of intersentential temporal and pronominal

anaphora. But these formal theories failed to take into account the dis-

course relations (narration, explanation, . . . ) that hold between discourse

segments, and the hierarchical structure that these discourse relations im-

pose on the discourse.

Another tradition of studies on discourse has concentrated on the de-

scription of the hierarchical structure of discourse. But, in general, these the-

ories (Mann and Thompson's Rhetorical Structure Theory (1987), Hobbs's

tacitus (1991), Scha and Polanyi's Linguistic Discourse Model (1988),

Grosz and Sidner's theory (1986)) did not link their accounts of discourse

interpretation to a detailed analysis of intra-sentential semantics.

Because of the interaction between semantics and discourse structure,

none of the approaches mentioned above can give an adequate account of

discourse structure or discourse content on its own. By combining these two
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research areas, Asher's (1993b) Segmented DRT provides a better suited

framework to the analysis of:

� pronominal anaphora since discourse relations impose a hierarchical

discourse structure which plays an important role in determining what

antecedents of a pronoun are available

� truth conditional content of discourse because it is a�ected by dis-

course relations

� some semantic problems, like lexical disambiguation, determination of

the temporal and spatio-temporal structure of discourse as it turned

out that the semantic information that can be derived from the syn-

tax is not su�cient to give an adequate account of those problems.

The solutions given by Dynamic Semantics can be improved upon by

considering those discourse features as semantic e�ects of discourse

relations which are computed from various information sources.

SDRT is expressed in a nonmonotonic logic, Commonsense Entailment

(Asher and Morreau, 1991), which has all the speci�c properties required

by discourse analysis. The implementation of SDRT consists therefore in

implementing the logic but also the axioms and rules expressed in that logical

framework. In this paper, we will focus on the implementation of the logic,

which is the main problem involved. Other aspects of the implementation

can be found in (Daver, 1994).

2 SDRT

2.1 A brief review

SDRT extends Kamp's DRT (1993) to represent the discourse relations (nar-

ration, explanation, . . . ) that hold between discourse segments. The rep-

resentation of a text is not a DRS but rather a complex structure called a

segmented DRS, in which DRSs are related by discourse relations. Some of

the discourse relations are subordinating (e.g. elaboration), which is why the

structure has the form of a tree. Here is a simple example from Lascarides

and Asher (1991):

Example 1

1. John had a fantastic meal.

2. He ate salmon.

3. Then he won a dancing competition.
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DRS

a

DRS

c

DRS

b

elaboration(a; b)

narration(a; c)

The SDRS is built up recursively by adding each new sentence to the

SDRS already built up from the analysis of previous sentences. The inte-

gration of a sentence can be decomposed into four steps: �rst of all, we

compute the DRS which corresponds to that sentence. If the text is co-

herent, that DRS must be related by at least one discourse relation, to at

least one constituent, according to constraints that de�ne what constitutes

an acceptable attachment. We thus determine, in the second step, the set of

constituents which meet the attachment constraints. Then, we must com-

pute the discourse relations that hold between the current sentence and one

of the acceptable constituents. The attachment of a new constituent by

means of a particular discourse relation may have e�ects upon the truth-

conditional content of the constituents. Thus, after attachment, constituents

have to be revised.

SDRT is expressed in a nonmonotonic logic, Commonsense Entailment

(CE), and in particular discourse relations are computed in that logic. Given

that discourse relations computation is a very important part of SDRT, it

will serve to illustrate calculations in CE.

2.2 Inferring discourse relations nonmonotonically

The presence of clue words sometimes su�ces to compute the appropriate

discourse relation, but not always. Often, we must also exploit information

about the semantic content of the constituents, pragmatic principles and

domain knowledge. But, even with all these information sources, we are still

for the most part making defeasible inferences as to what discourse relation

the author intended. Thus the underlying logic for this computation must

be a nonmonotonic logic.

Lascarides and Asher (1991) show that if we want to characterize dis-

course relations in terms of defeasible rules, we have to use a defeasible

reasoning system which (i) supports the patterns of inference listed below,

(ii) solves the problem of irrelevance and (iii) can reason with embedded

defaults, i.e. default rules where one default rule is embedded in another

(e.g. (a > (b > c))). This is why they choose CE, presented in (Asher and

Morreau, 1991), since Asher and Morreau (1991) proved that CE meets all

these requirements in a satisfactory way.

Defeasible Modus Ponens If birds 
y and Tweety is a bird, then Tweety


ies.
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Nixon Diamond if Nixon is a Quaker and Nixon is a Republican and

Republicans are non-paci�sts and Quakers are paci�sts then no con-

clusion is inferred (neither Nixon is paci�st nor Nixon is non-paci�st).

Penguin Principle If Tweety is a penguin and birds normally 
y and pen-

guins normally don't 
y and penguins are birds then Tweety doesn't


y.

The language of CE is that of �rst order logic, augmented with a non-

monotonic conditional operator >. (A > B) means: if A then normally

B.

The rules introduced below are examples of default rules, used to infer

discourse relations for narrative texts. They also tell us which temporal

relations the discourse relations entail. Let h�; �; �i be the update function,

which means \the representation � of the text so far, of which � is an

acceptable constituent, is to be updated with the representation � of the

current clause via a discourse relation with �".

h�; �; �i > narration(�; �)

h�; �; �i ^D permissible subtype(�; �) > elaboration(�; �)

h�; �; �i ^ cause(�; �) > explanation(�; �)

The entailed temporal e�ects are:

narration(�; �)! e

�

< e

�

elaboration(�; �)! e

�

� e

�

explanation(�; �)! :(e

�

< e

�

)

cause andD permissible subtype above are inferred from various knowledge

sources in the logic.

The rules above mean that if (i) no information is derivable from world

knowledge and lexical knowledge (i.e. if the only axiom applicable is the

one of narration), and if (ii) the constituents � and � are to be attached

in the SDRS � , then narration is inferred by default. As indicated by the

temporal e�ects of narration, the event described in � occurs before the

one in �, so we assume that, by default, the text is orderly, i.e. the events

are described in the right order. But, if the axiom for explanation is also

applicable, then the Penguin Principle forces us to infer only explanation,

since narration and explanation are not compatible, as indicated by the

temporal e�ects. And, if the three axioms are applicable, then no discourse

relation is inferred, because of Nixon Diamond. This is the case when the

discourse is not coherent.

3 Commonsense Entailment

This logic de�nes two notions of consequence: j=, the monotonic one, and

j�, the nonmonotonic one.
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3.1 The monotonic consequence

The semantics of the conditional operator is de�ned in terms of a selection

function � from worlds and propositions to propositions. As described in

(Asher and Morreau, 1991), intuitively, �(w; p) is the set of worlds where

the proposition p holds together with everything else which, in world w, is

normally the case when p holds. So, � encodes assumptions about normality.

The truth conditions of defeasible rules are de�ned as follows:

M;w j= � >  if and only if � (w; [�]) � [ ] (1)

In words, the above says that if �, then normally  is true with respect to

the model M at the possible world w, if the set of worlds that de�nes what

is normally the case when � is true in w, contains the information that  is

true.

To get the right nonmonotonic patterns of inference (Defeasible Modus

Ponens, Penguin Principle and Nixon Diamond), the selection function has

to be constrained in the following way

1

:

C1: facticity : �(w; b) � b

Facticity captures the intuition that one of the properties of a normal

bird is that he is a bird.

C2: speci�city : if �(w; b) � f and �(w; p)\�(w; b) = ; and �(w; p) 6= ; then

�(w; b) \ p = ;

Speci�city encodes the constraint that normal birds are not penguins

because penguins don't 
y.

As far as the derivability notion is concerned, the axioms corresponding to

facticity and speci�city are the following:

A1: facticity : (b > b)

A2: speci�city : ((p! b) ^ (b > f) ^ (p > :f))! (b > :p)

Example 2

If

M;w j= penguin(x)! bird(x)

M;w j= bird(x) > fly(x)

M;w j= penguin(x) > :fly(x)

1

In (Lascarides and Asher, 1991), speci�city has been replaced with dudley : �(w; p [

q) � �(w; p) [ �(w; q) Accordingly, in addition to Defeasible Modus Ponens, Penguin

Principle and Nixon Diamond, their logic also supports the following pattern of inference:

Dudley Doorite If Quakers are paci�sts and Republicans are paci�sts then Quakers or

Republicans are paci�sts.

The problems raised by the implementation of such a logic have led us to build a theorem

prover for the version of CE presented in (Asher and Morreau, 1991) where the selection

function is constrained by facticity and speci�city.
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then �(w; bird(x)) veri�es the formulas:

fly(x) because of the truth conditions of (bird(x) > fly(x)))

bird(x) because of facticity and the truth conditions of

(bird(x) > bird(x)))

:penguin(x) (because of speci�city and the truth conditions of

(bird(x) > : penguin(x)))

and also all the formulas that hold when the formulas fly(x), bird(x),

:penguin(x) are veri�ed (e.g. fly(x) ^ bird(x), a! fly(x) . . . ).

3.2 The nonmonotonic consequence

A dynamic semantics, built on top of the truth conditional semantics, de�nes

a nonmonotonic consequence relation, j�, which encodes plausible but de-

feasible inferences, that is, j� de�nes inferences that are plausible given that

one knows only what is in the premises plus the laws of logic. The de�nition

of j� exploits the canonical model M for L

>

, its set of worlds W

can

and

also four concepts: information states, the informationally minimal state,

updating, normalisation. As de�ned in (Asher and Morreau, 1991), the in-

formationaly minimal state is a set of worlds which supports only the laws

of logic. Information states are sets of possible worlds obtained by updat-

ing the informationally minimal state with a set of premises: thereby, we

identify the set of worlds that characterizes believing only the premises and

the laws of logic. The normalisation function encodes in the semantics the

notion of assuming everyone and everything as normal as possible.

Definition 1 (Normalisation)

Let � be an element of the domain D

M

.

[�] denotes the set of worlds in which � has the property of being a �.

�(S; [�]) :=

S

w2S

�(w; [�])

[�]n � (S; [�]) is the set of worlds, where according to all of the worlds in S,

� is thought a �, not a normal �.

Normalisation(S; �) :=

(

fw 2 Sjw 62 ([�]n � (S; [�]))g if S \ �(S; [�]) 6= ;

S otherwise

In words, the normalisation function isolates those worlds in the set of

informational states, S, where � is a normal �, if it is possible to assume �

to be a normal �. This is the case in which S \ �(S; [�]) 6= ;.

Example 3

If S contains the premises: bird(tweety) and bird(x) > fly(x), then
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1. �(S; [bird(tweety)]) veri�es the formulas bird(tweety) and fly(tweety).

2. S \ �(S; [bird(tweety)]) 6= ;

Assuming Tweety to be a normal bird is possible in this case, so the nor-

malisation function will isolate all worlds from S where Tweety is a normal

bird and return those worlds where bird(tweety) and fly(tweety) hold.

If S contains the premises: bird(tweety);:fly(tweety) and bird(x) >

fly(x), then

1. �(S; [bird(tweety)]) veri�es the formulas bird(tweety) and fly(tweety).

2. S \ �(S; [bird(tweety)]) = ;

Assuming Tweety to be a normal bird is in this case hopeless, so the nor-

malisation function simply returns the original state S.

In normalising with respect to many individuals and many properties,

the normalisation function has to be iterated. The ordering in which the

normalisations are performed a�ects the result, which is why all di�erent

orderings of the iterations are taken into account. For a theory � which does

not contain any embedded default rules, the nonmonotonic consequence can

be de�ned in the following way:

Definition 2

Let ANT (�) = f : ( > �) 2 �g. Suppose that j ANT (�) j= n.

The �-Normalisation sequence for a given ordering � on ANT (�)) is de�ned

as:

�

0

(�) = S \ �

�

i+1

(�) = Normalisation(�

i

(�); p); for �(p) = i+ 1

Definition 3 (Non-monotonic consequence)

� j� �i�8�;�

n

(�) j= �

4 Implementation of the logical inference engine

The semantic notion of nonmonotonic consequence is hard to work with,

which is why we have chosen to exploit the proof theoretic equivalent for j�,

de�ned in (Asher, 1993a) by using the notion of extension. The �rst version

of the implementation of CE, presented below, does not allow the use of

embedded default rules. For the sake of concreteness, we will look at three

examples.
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Example 4

D

penguin(x)! bird(x)

bird(tweety)

C

bird(x) > fly(x)

bird(x) > legs(x)

penguin(x) > :fly(x)

Suppose that the theory � contains the set D of default rules and the

set C of classical rules, listed above. Recall that, according to the normal-

isation process, Tweety is assumed to be a normal bird if possible. There-

fore, in the extension calculus, bird(tweety)! bird(tweety)^fly(tweety)^

:penguin(tweety) is added to C, that is, Tweety is assumed to be a normal

bird if everything which is normally the case when Tweety is a normal bird

(i.e. bird(tweety), fly(tweety), :penguin(tweety)), is consistent with C (i.e.

if it is possible to assume Tweety to be a normal bird). The issue that arises

in the consistency test involves determining what has to be tested.

Let NB be the set of all the formulas that hold in the worlds where

Tweety is a normal bird. And let  be the conjunction of all those formulas.

We will obviously not test whether  is consistent with C, because, on the

one hand, NB is in�nite, and, on the other hand, we don't need to test

the consistency of each formula of NB with C to be sure that they are all

consistent with C. It su�ces to �nd a subset NB

0

of NB which is such

that the conjunction � of the formulas of NB

0

implies each formula of NB.

Thereby, if �, called the prime implicate, is consistent with C, then we are

sure that  is consistent with C. More formally:

NB = �(w; [bird(x)]) =

^

f;8f 2 NB

NB

0

� NB is such that

� =

^

f;8f 2 NB

0

8f 2 NB;` �! f

fact if � is consistent with C then  is consistent with C

The nonmonotonic theorem prover is thus divided into two parts. In

the �rst part, we compute the prime implicates, and, in the second part, we

perform the consistency tests.

4.1 Prime implicates computation

In the �rst part of the theorem prover, from our set of default rules D, we

build up an other set of default rules D

0

as follows: we �rst compute the

set ANT (D) of the antecedents of the default rules, in such a way that, if

two rules have the same antecedent, then this antecedent occurs only once

in the set ANT (D).
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Definition 4

ANT (D) = f : ( > �) 2 Dg

8a; b 2 ANT (D) : a 6= b

In Example 4, ANT (D) = fbird(x); penguin(x)g

After having computed the set ANT (D), we then compute for each

element a of ANT (D), the corresponding prime implicate �

a

. Then, a > �

a

is added to D

0

:

Algorithm 1

for all a 2 ANT (D) do

compute �

a

add (a > �

a

) to D

0

end for

So we get:

D

0

bird(x) > �

b

penguin(x) > �

p

Actually, the default rules are encoded in such a way that we cannot �nd

two rules with the same antecedent. The fact that birds normally 
y, and

that birds normally have legs, is encoded by bird(x) > (fly(x)^legs(x)), but

not by bird(x) > fly(x) and bird(x) > legs(x). Accordingly, it's not worth

computing the set ANT (D). Thus, Algorithm 1 is replaced by Algorithm 2:

Algorithm 2

for all (a > b) 2 D do

compute �

a

add (a > �

a

) to D

0

end for

In words, for each default rule (a > b) of D, we �rst compute the corre-

sponding prime implicate �

a

. Then, (a > �

a

) is added to D

0

.

Now let us consider the computation of �

a

.

Algorithm 3

�

a

 a ^ b

for all (c > d) 2 D do

if ` (c! a) and ` (d! :b) then

�

a

 �

a

^ :c

end if

end for
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Algorithm 3 can be paraphrased as follows: by virtue of the de�nition

of the truth conditions for (a > b), b must appear in �

a

. The presence of a

in �

a

stems from facticity(a > a) and the de�nition of the truth conditions

for a > a. Therefore, �

a

is initialized with a ^ b. Then we add to �

a

the

negation of each default rule c > d of D such that the formulas c ! a and

d ! :b are veri�ed. This comes from speci�city

2

and the de�nition of the

truth conditions of a > :c. Finally, we get:

D

0

bird(x) > fly(x) ^ legs(x) ^ bird(x) ^ :penguin(x)

penguin(x) > :fly(x) ^ penguin(x)

Soundness

Let us prove that the prime implicates computation is sound, namely:

(D

0

j= � >  )! (D j= � >  ) (2)

with  =  

1

^ 

2

^ : : :^ 

i

^ : : :^ 

n

The proof is accomplished by induction

on i.

Proof: Suppose that (D

0

j= � >  

1

^  

2

^ : : : ^  

i�1

) ! (D j= � >

 

1

^  

2

^ : : : ^  

i�1

) Let us show that D

0

j= � >  

i

)! (D j= � >  

i

).

If D

0

j= � >  

i

then either (i) D contains the default rule � >  

i

, hence

D j= � >  

i

; or (ii) D does not contain this default rule. In the latter

case, either  

i

= � and facticity implies that D j= � >  

i

or  

i

= :� and

D j= � ! � and D j= � > � and D j= � > :�, in which case speci�city

implies that D j= � >  

i

The truth conditions of defeasible rules M;w j= � >  if and only if �

(w; [�]) � [ ] imply that CE veri�es the following rules:

CC: (M;w j= � >  ) ^ (M;w j= � > �)! (M;w j= � >  ^ �)

CM: (M;w j= � >  ^ �)! (M;w j= � >  ) ^ (M;w j= � > �)

CM implies that

(D

0

j= � >  

1

^  

2

^ : : : ^  

i

)!

(D

0

j= � >  

1

^  

2

^ : : : ^  

i�1

) ^ (D

0

j= � >  

i

Thus

(D

0

j= � >  

1

^  

2

^ : : : ^  

i

)!

(D j= � >  

1

^  

2

^ : : : ^  

i�1

) (by the inductive hypothesis)

^ (D j= � >  

i

) (proved)

2

Recall that the axiom which corresponds to speci�city is

((p! b) ^ (b > f) ^ (p > :f))! (b > :p)
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CC entails that

(D j= � >  

1

^  

2

^ : : : ^  

i�1

) ^ (D j= � >  

i

)!

(D j= � >  

1

^  

2

^ : : : ^  

i

)

So (D

0

j= � >  

1

^  

2

^ : : : ^  

i

)! (D j= � >  

1

^  

2

^ : : : ^  

i

) 2

4.2 Extensions computation

In the second part of the theorem prover, we have to compute the exten-

sions of the theory which are maximal consistent sets. Each extension cor-

responds to a given ordering of the default rules. Thus if ANT (D) contains

n elements, n! extensions have to be computed, which is the number of

permutations of the elements.

Each extension E

i

(i 2 [1::n!]) is computed in the following way:

Algorithm 4

E

i

 C

for all (a > �

a

) 2 D

0

do

if �

a

is consistent with E

i

then

add (a! �

a

) to E

i

end if

end for

To illustate this algorithm, let us consider a more interesting example:

Example 5

D

bird(x) > fly(x)

bird(x) > legs(x)

penguin(x) > :fly(x)

C

penguin(x)! bird(x)

penguin(tweety)

The prime implicates computation leads us to build exactly the same set D

0

as in Example 4. Before computing the extensions, the default rules of D

0

have to be instantiated:

D

0

bird(tweety) > fly(tweety) ^ legs(tweety) ^

bird(tweety) ^ :penguin(tweety))

penguin(tweety) > :fly(tweety) ^ penguin(tweety)

Next, 2! extensions have to be computed (as D

0

contains 2 default rules).

For the �rst extension, E

1

, the ordering is: �(bird) = 1 and �(penguin) = 2.

First of all, E

1

is initiated with C.

fly(tweety) ^ legs(tweety) ^ bird(tweety) ^ :penguin(tweety)
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is not consistent with E

1

, but :fly(tweety) ^ penguin(tweety) is, so

penguin(tweety)! :fly(tweety) ^ penguin(tweety)

is added to E

1

:

E

1

penguin(x)! bird(x)

penguin(tweety)

penguin(tweety)! :fly(tweety) ^ penguin(tweety)

For the next extension, E

2

, the ordering is: �(bird) = 2 and �(penguin) = 1.

:fly(tweety) ^ penguin(tweety)

is consistent with E

2

, so

penguin(tweety)! :fly(tweety) ^ penguin(tweety)

is added to E

2

, but

fly(tweety) ^ legs(tweety) ^ bird(tweety) ^ :penguin(tweety)

is still not consistent with E

2

, thus E

2

= E

1

.

Non-monotonic consequence is de�ned in the following way:

Definition 5 (Non-monotonic consequence)

� j�  i� for all �-extensions E;E `  

In Example 5, :fly(tweety) is nonmonotonically inferred as it can be

monotonically inferred from E

1

and E

2

. This example illustrates the fact

that the theorem prover supports the Penguin Principle.

Example 6

D

quaker(x) > pacifist(x)

republican(x) > :pacifist(x)

C

quaker(Nixon)

republican(Nixon)

The prime implicates computation brings us to build the following D

0

:

D

0

quaker(x) > pacifist(x) ^ quaker(x)

republican(x) > :pacifist(x) ^ republican(x)

D

0

is now instantiated:

D

0

quaker(Nixon) > pacifist(Nixon) ^ quaker(Nixon)

republican(Nixon) > :pacifist(Nixon) ^ republican(Nixon)
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For the �rst extension, E

1

, the ordering is:

�(quaker) = 1 and �(republican) = 2.

quaker(Nixon) ^ pacifist(Nixon)

is consistent with E

1

, so

quaker(Nixon)! quaker(Nixon) ^ pacifist(Nixon)

is added to E

1

but republican(Nixon)^:pacifist(Nixon) is not consistent

with E

1

.

E

1

quaker(Nixon)

republican(Nixon)

quaker(Nixon)! quaker(Nixon) ^ pacifist(Nixon)

For the second extension,

2

, the ordering is:

�(quaker) = 2 and �(republican) = 1.

republican(Nixon) ^ :pacifist(Nixon)

is this time consistent with E

2

so

republican(Nixon)! republican(Nixon) ^ :pacifist(Nixon)

is added to E

2

but quaker(Nixon)^ pacifist(Nixon) is not consistent any-

more with E

2

.

E

2

quaker(Nixon)

republican(Nixon)

republican(Nixon)! republican(Nixon) ^ :pacifist(Nixon)

pacifist(Nixon) can be monotonically inferred from E

1

but not from E

2

.

:pacifist(Nixon) can be monotonically inferred from E

2

but not from E

1

.

Accordingly neither pacifist(Nixon) nor :pacificist(Nixon) is nonmono-

tonically inferred. This example illustrates the fact that the theorem prover

supports the Nixon Diamond.

Remark

If the theory contains no embedded defaults then whenever we have to prove

formulas in the nonmonotononic component of CE, those formulas are clas-

sical ones because proofs are made only on the right part or on the left part

of the default rule but never on the whole default rule. Therefore in the

�rst version of the implementation of the nonmonotonic part of CE, which

does not allow embedded default rules, a theorem prover for the �rst order
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logic is used instead of a theorem prover for the monotonic component of

CE. But if the theory contains embedded default rules then we will have to

prove formulas which contain default rules. In that case a theorem prover

for the monotonic part of CE is necessary.

The algorithm presented above depends on consistency checks in �rst

order logic but �rst order consistency checking is undecidable. It is well

known, however, that the purely universal fragment of �rst order logic is

equivalent to zero order logic (no quanti�ers). As zero order logic is decid-

able, the algorithm works only for the limited fragment of CE which does

not contain any existential quanti�ers.

To summarize, the algorithm presented above works only for the limited

fragment of CE which does not contain any embedded default rules and

any existential quanti�ers. Hopefully, all the default rules stated so far

belong to that fragment. The algorithm allowed us for instance to test

the validity of the default rules involved in the spatiotemporal structure

computation. However, embedded default rules will be necessary to model

discourse phenomena other than spatiotemporal structure. As far as the

extension of SDRT to dialogue is concerned, existential quanti�ers appear

to be needed (especially to model the semantic e�ects of discourse relations

on mental states of the participants of a dialogue).

Complexity

The extension calculation takes a long time but that is not really surprising

since it is a commonplace problem. In Algorithm 4 presented above, n � n!

consistency tests have to be performed to compute the extensions. However,

as far as the discourse relation computation is concerned, the algorithm can

be optimized because the default rules involved in the discourse relation

computation belong to a subset of the language of CE. The set of those

default rules has indeed the following property: the antecedent set and the

consequent set are distinct. Moreover, those default rules do not contain

any existential quanti�ers. We have thus built an algorithm which takes

into account those properties. Hopefully, it will be much more e�cient as

it performs n consistency tests. However, unfortunately, the algorithm can

only be used for discourse relation computation.

5 Conclusion

We have built a theorem prover for the nonmonotonic logic, CE, which

runs on a UNIX machine in Sicstus Prolog. This allowed us to implement

the axioms and rules of SDRT for a fragment of natural language, namely

narratives describing trajectories. This has been possible not only because

we had this theorem prover, but also because a lot of theoretical results on

lexical semantics, grammatical semantics, discourse pragmatics, discourse
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semantics and world knowledge have been achieved in my research group

(Asher et al., 1994). It was not possible for space reasons to present this

in that paper but as implementation issues go, the theorem prover was the

most di�cult one.

Our aim is neither to obtain a fully automated discourse analysis sys-

tem, nor to get an e�cient tool for real applications, but rather, to test

the validity of the axioms and rules of SDRT which model the theoretical

results. The axioms interact in a very complex way because of the non-

monotonicity. It is thus very di�cult to check by hand if they are correct.

To get a fully automated discourse analysis, it is necessary to add a parser

and a DRS builder. However, in order to check if the axioms and rules of

SDRT are correct, we neither need a parser nor a DRS builder. This would

unnecessarily make the system even more complicated. Another aim is to

prove that the implementation is feasible, and, �nally, if we want to get a

more e�cient system, we have to make approximations, so another aim of

that implementation is to get a sound system to which approximations can

be compared in order to see what the method is attempting to approximate.

The �rst version of the implementation of CE, which does not allow

embedded default rules, was su�cient to test the axioms and rules stated

so far. However, embedded defaults will be undoubtedly indispensable to

model other inference patterns underlying discourse interpretation. This

is why we are currently engaged in an implementation of CE which does

allow embedded defaults. This involves building a theorem prover for the

monotonic part of CE.
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