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Abstract

A machine translation system is said to be complete if all expres-

sions that are correct according to the source-language grammar can

be translated into the target language. This paper addresses the com-

pleteness issue for compositional machine translation in general, and

for compositional machine translation of context-free grammars in par-

ticular. Conditions that guarantee translation completeness of context-

free grammars are presented.

1 Introduction

Systems for translation of controlled language

1

require the source text to be

expressed within severe syntactical and lexical limits. One of the objectives

of such systems is that an author who fully conforms to the imposed restric-

tions is rewarded with a reliable and fully automatic translation of his text

into one or more target languages. Therefore a proof of their completeness

is of great importance. A machine translation system is said to be complete

if all expressions that are correct according to the source-language grammar

can be translated into the target language.

The starting point of this research has been the compositional approach

to machine translation developed in the Rosetta project, (Rosetta, 1994).

An important di�erence is that Rosetta made use of a rather complex gram-

mar formalism, M -grammars, for which completeness could not be proven,

whereas the current research focuses on the provability of completeness for

relatively simple grammar formalisms, which may be more appropriate for

machine translation of controlled languages.

�

The research presented here is part of my PhD-project on the completeness of com-

positional machine translation. In this PhD-project I address the completeness issue for

several grammar formalisms, describing and comparing them in terms of an abstract, alge-

braic formulation of compositional grammars and compositional translation. This paper

is restricted mainly to the context-free grammar formalism.

1

For more information on controlled language, see:

http://wwwots.let.ruu.nl/Controlled-languages/.
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First, Sections 2 and 3 describe our view and de�nitions of respectively

compositional grammar and compositional machine translation. Section 4

presents the theme of this paper, viz. completeness of compositional machine

translation. Subsequently, Section 5 works out completeness conditions for

compositional grammars based on context-free grammars. These conditions

are rather restrictive, and may therefore �nd application primarily in areas

such as controlled languages. One of the objectives of ongoing research is to

relax the conditions. Section 6 concludes the paper and discusses ongoing

and future research.

2 Compositional Grammars

This Section de�nes compositional grammars (Subsection 2.1), and the aux-

iliary notions syntactic derivation tree (Subsection 2.2) and semantic deriva-

tion tree (Subsection 2.3).

2.1 A De�nition of Compositional Grammars

Compositional machine translation assumes that the source language (SL)

and the target language (TL) are de�ned by means of compositional gram-

mars, i.e. grammars that obey the well-known compositionality principle

(cf. (Partee, ter Meulen, and Wall, 1993; Janssen, 1986; Gamut, 1991, p.

315 �.)). Abstracting away from the details of any speci�c syntactic formal-

ism, we de�ne a compositional grammar G as consisting of (i) a syntactic

component, (ii) a semantic component, and (iii) an interpretation from the

syntactic component to the semantic component (cf. Montague's Universal

Grammar, (Thomason, 1974)). Roughly, the syntactic component consists

of a set of basic expressions (words), each having a syntactic category, and

a set of syntactic rules that build larger expressions from basic expressions.

Likewise, the semantic component consists of a set of basic meanings, each

having a semantic category, and a set of semantic rules that build larger

meanings from basic meanings. The interpretation associates with every

basic expression a set of basic meanings, and with every syntactic rules a

set of semantic rules.

There now follows a more detailed description of these components,

which the eager reader may wish to skip on a �rst pass.

The syntactic component speci�es a �nite set of basic expressions BE,

a �nite set of syntactic rules SynR, a �nite set of syntactic categories

SynCats, and a syntactic type-assignment function SynType(�). Basic ex-

pressions are, roughly, the smallest meaningful units in a language (more

or less the stems of content words). Syntactic rules are operations that

recursively build derived expressions from basic expressions. Syntactic cat-

egories describe the syntactic properties of expressions. Basic expressions b
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all have a syntactic category SynCat(b); syntactic rules restrict their argu-

ments in their categories, and specify the category of the derived expression

they yield. The syntactic type-assignment function associates every syntac-

tic rule R with a 2-tuple SynType(R) consisting of a so-called argument list

SynAL(R) of the categories of its arguments and its resultant category. The

arity arity(R) of a syntactic rule is the number of categories in the rule's ar-

gument list. We require that all syntactic and semantic rules are total: They

must be applicable for any combination of arguments that matches their ar-

gument lists. Note that this is not a real restriction of expressiveness: Any

partial function can be made into a total function by an appropriate tuning

of the set of categories.

The semantic component has the same structure as the syntactic com-

ponent: It speci�es a �nite set of basic meanings BM , a �nite set of se-

mantic rules SemR, a �nite set of semantic categories SemCats, and a

semantic type-assignment function SemType(�). Basic meanings are ex-

pressions of the semantic domain of some logical language. Semantic rules

are operations in the logical language that recursively build derived mean-

ings from basic meanings. For the purpose of compositional translation the

choice of this logical language is not very important. However, the semantic

rules must be total. Semantic categories describe the semantic properties

of semantic expressions. Basic meanings m all have a semantic category

SemCat(m); semantic rules restrict their arguments in their semantic cat-

egories, and specify the category of the derived meaning they yield. The

semantic type-assignment function associates every semantic rule M with a

2-tuple SemType(M) consisting of a so-called argument list SemAL of the

categories of its arguments and its resultant category. The arity arity(M)

of a semantic rule is the number of categories in the rule's argument list.

The interpretation, denoted [[:]], associates every basic expression with

a set of basic meanings, and every syntactic rule with a set of semantic

rules. The arities of associated syntactic and semantic rules must match.

Note that our approach di�ers here from Montague grammar, in which a

basic expression (syntactic rule) is associated with exactly one basic meaning

(semantic rule).

2.2 Syntactic Derivation Trees

Derivational histories of syntactic expressions are represented using so-called

syntactic derivation trees:

Definition 1 (Syntactic Derivation Tree)

A syntactic derivation tree t is either a tree consisting of a single node b,

where b is the name of a basic expression, or a tree of the form R[t

1

; : : : ; t

n

],

where R is the name of a syntactic rule, and t

1

; : : : ; t

n

is an ordered list of

syntactic derivation trees.
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We de�ne the syntactic category of a syntactic derivation tree t, denoted

SynCat(t), to be the resultant category of its top syntactic rule. For con-

venience, we will sometimes annotate syntactic derivation trees with their

syntactic category, e.g. t : C.

Intuitively one may think of a syntactic derivation tree as the derivational

history of a syntactic expression. However, not all syntactic derivation trees

actually describe expressions: The de�nition given above does not require

the syntactic rules to be applicable to their arguments. This distinction is

described by the concept of well-formedness.

Definition 2 (Well-Formedness of Syntactic Derivation Trees)

A syntactic derivation tree t is well-formed if and only if it consists of a

single basic expression or otherwise if all the syntactic rules in the tree are

applicable to their arguments as speci�ed by tree t, i.e. if and only if for all

the syntactic rules in tree t (i) the number of arguments (subtrees) matches

the rule's arity, and (ii) the arguments satisfy any conditions on the syntactic

categories that may be made by the syntactic rule.

Since there is generally more than one way to derive an expression, ex-

pressions are in general assigned a set of corresponding syntactic derivation

trees.

2.3 Semantic Derivation Trees

The meaning of a derived expression is derived in parallel with the syntactic

derivation process. Thus this semantic derivation process may be repre-

sented in a tree with the same geometry as the syntactic derivation tree,

but labelled by basic meanings and semantic rules. This tree is called a

semantic derivation tree.

Definition 3 (Semantic Derivation Tree)

A semantic derivation tree d is either a tree consisting of a single node m,

where m is the name of a basic meaning, or a tree of the form M [d

1

; : : : ; d

n

],

where M is the name of a semantic rule, and d

1

; : : : ; d

n

is an ordered list of

semantic derivation trees.

We de�ne the semantic category of a semantic derivation tree d, denoted

SemCat(d), to be the resultant category of its top semantic rule. Semantic

derivation trees may also be annotated with their semantic category, e.g.

d : C.

Since every syntactic derivation tree is associated with a set of semantic

derivation trees, every syntactic derivation tree is associated with a set of

semantic derivation trees. A semantic derivation tree is well-formed if and

only if there is a corresponding well-formed syntactic derivation tree.
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3 Compositional Machine Translation

In our de�nition of compositional translation, the semantic component is

used as an interlingua: source and target-language expressions are transla-

tion equivalent if and only if they have at least one well-formed semantic

derivation tree in common.

Definition 4 (Compositional Translation)

For two compositional grammars G and G

0

, the compositional translation of

a source-language utterance e is a set of target-language utterances, derived

as follows:

Target-Language Utterances

Generation

TL Syntactic Derivation TreesSL Syntactic Derivation Trees

Source-Language Utterance

Analysis

morphosyntactic analysis (1:n)

semantic analysis (1:n) semantic generation (1:n)

morphosyntactic generation (1:1)

SL/TL Semantic Derivation Trees

Figure 1: The Process of Compositional Translation

First, morphosyntactic analysis performs morphological and syntactic

analysis of a SL utterance, yielding the set of all syntactic derivation trees

that correspond to the utterance:

morsynan(e) = fb j b = e; b 2 BEg [ fR[t

1

; : : : ; t

n

] j e = R(e

1

; : : : ; e

n

)

with 8i (1 � i � n); t

i

2 morsynan(e

i

); R 2 SynR, and where R(e

1

; : : : ; e

n

)

denotes the result of applying rule R to expressions e

1

; : : : ; e

n

.

Then, semantic analysis of a syntactic derivation tree yields the set of

all corresponding semantic derivation trees:

seman(b) = [[b]]

seman(R[t

1

; : : : ; t

n

]) = fM [d

1

; : : : ; d

n

] jM 2 [[R]]g

with 8i (1 � i � n) d

i

2 seman(t

i

).

Next, semantic generation from a semantic derivation tree yields the set

of all corresponding syntactic derivation trees:

semgen(m) = fb j m 2 [[b]]g

semgen(M [d

1

; : : : ; d

n

]) = fR[t

1

; : : : ; t

n

] jM 2 [[R]]g

with 8i (1 � i � n) t

i

2 semgen(d

i

).
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Finally, morphosyntactic generation for a well-formed syntactic deriva-

tion tree produces the corresponding utterance:

morsyngen(b) = b

morsyngen(R[t

1

; : : : ; t

n

]) = R(e

1

; : : : ; e

n

)

where 8i (1 � i � n) e

i

2morsyngen(t

i

).

4 Completeness of Machine Translation

An important question regarding the reliability of compositional translation

is what we call the completeness

2

issue: Can the translation process be guar-

anteed to produce at least one translation? In Subsection 4.1, we �rst make

this notion of completeness precise. Then, in Subsection 4.2, we investigate

what conditions must be satis�ed to guarantee completeness. In Section 5,

conditions are elaborated for compositional grammars based on context-free

grammars.

4.1 Three Levels of Completeness

Completeness is about the guaranteed generation of well-formed transla-

tions, given a speci�c SL and TL grammar, and translation process. How-

ever, this description does not make precise from which stage on the trans-

lation process must be guaranteed to succeed. Depending on this, one may

distinguish (at least) three levels of completeness (cf. Figure 1):

1. Utterance Completeness: For each well-formed SL utterance, the trans-

lation process yields at least one well-formed TL utterance.

2. Syntactic Completeness: For each syntactic derivation tree of each

well-formed SL utterance, the translation process yields at least one

well-formed TL utterance.

3. Semantic Completeness: For each semantic derivation tree of each syn-

tactic derivation tree of each well-formed SL utterance, the translation

process yields at least one well-formed TL utterance.

Note: Semantic completeness subsumes syntactic completeness, which

in turn subsumes utterance completeness.

Naively, one would like a machine translation system to produce at least

one translation for every SL utterance. This requirement is included in

the de�nition of utterance completeness above. However, it is well-known

2

The term `completeness' was taken from (Whitelock, 1994, pp. 342{343). In the

Rosetta framework completeness is known as `strict isomorphism', and is discussed

in (Landsbergen, 1987) and (Rosetta, 1994).
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that natural-language utterances are often ambiguous. For each of its inter-

pretations, such an ambiguous utterance may have a di�erent translation.

Therefore, a machine translation system should be able to provide at least

one translation for each of the interpretations of the SL utterance. Natural-

language ambiguity takes on two forms: structural ambiguity and lexical

ambiguity. The notion of syntactic completeness takes care of the structural

ambiguity: it is formulated in terms of structurally unambiguous syntactic

derivation trees. However, syntactic completeness is still unsatisfactory, as

syntactic derivation trees are often lexically ambiguous. This is due to the

fact that basic expressions may have more than one meaning, and syntactic

rules may have more than one semantic rule associated with them. What

is needed is a formulation of completeness in terms of a structure that is

both structurally and lexically unambiguous. The solution is provided by

the notion of semantic completeness. Therefore, from now on, the term

`completeness' will be taken to refer to semantic completeness only.

Definition 5 (Completeness)

For a pair of compositional grammars hG;G

0

i, compositional translation

from G to G

0

is complete if and only if for each well-formed semantic deriva-

tion tree, the translation process yields at least one well-formed TL utter-

ance.

4.2 Guaranteeing Completeness

The central issue of this paper is the question of how to guarantee com-

pleteness. Or, stated in terms of the process of compositional translation

described above: What conditions on the SL and TL grammars are su�cient

(and necessary) to guarantee that, after successful analysis, generation can

produce a well-formed TL expression? Generation comprises morphosyntac-

tic generation and semantic generation (cf. Figure 1).

Morpho-syntactic generation evaluates syntactic derivation trees which

result from semantic generation by recursive rule application. As stated in

Section 2, we assume that all syntactic rules are total for the categories

of their arguments. Rule application therefore succeeds if and only if the

arguments are of the correct categories. To ensure this, we must move

upstream to semantic generation.

Semantic generation simply replaces the basic meanings and semantic

rules in the semantic derivation tree with corresponding syntactic elements

of the TL grammar, forming the TL syntactic derivation trees. An obvious

necessary and su�cient condition for completeness of semantic generation

is that there be at least one translation-equivalent counterpart in the TL

grammar for each possible semantic element in the SL semantic derivation

trees. A compositional grammar pair satisfying this condition is called a

homomorphic grammar pair (see also (Rosetta, 1994, p. 368)):
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Definition 6 (Grammar Homomorphism)

A compositional grammar pair hG;G

0

i is homomorphic from G to G

0

if and

only if G

0

is attuned to G:

i. For each SL basic expression b, for each of the basic meanings m of b,

there is at least one TL basic expression b

0

such that basic meaning m

is also a basic meaning of b

0

.

Formally: 8b 2 BE;8m 2 [[b]];9b

0

2 BE : m 2 [[b

0

]]

ii. For each SL syntactic rule R, for each of the semantic rules M of R,

there is at least one TL syntactic rule R

0

such that semantic rule M is

also a semantic rule of R

0

.

Formally: 8R 2 SynR;8M 2 [[R]];9R

0

2 SynR : M 2 [[R

0

]]

However, to demand grammar homomorphism is only a necessary condi-

tion for completeness, and not a su�cient one. It merely guarantees that for

every well-formed SL semantic derivation tree there is a corresponding TL

syntactic derivation tree, and does not guarantee that this syntactic deriva-

tion tree is well-formed. The next section is about such su�cient conditions

for context-free grammars.

5 Completeness for CFG-Based Compositional

Grammars

This section presents completeness conditions for translation between com-

positional grammars based on the context-free grammar (CFG) formalism.

We assume that the reader is familiar with this formalism. Subsection 5.1

explicates how a compositional grammar can be based on context-free gram-

mars. Subsections 5.2 and 5.3 subsequently develop completeness conditions

for such compositional grammars.

5.1 CFG-Based Compositional Grammar

A compositional grammar consists of a syntactic component with basic ex-

pressions and syntactic rules, a semantic component with basic meanings

and semantic rules, and an interpretation from the syntactic component to

the semantic component. Here we model the syntactic component as a CFG.

The semantic component and the interpretation are as de�ned above.

In the syntactic component we let basic expressions correspond to rewrite

rules that do not have right-hand side (RHS) nonterminals. The rule's RHS

corresponds to the lexical material of the basic expression; the rule's left-

hand side (LHS) nonterminal corresponds to the syntactic category of the

basic expression. We let syntactic rules correspond to rewrite rules that do

have RHS nonterminals. The type of a syntactic rule is a 2-tuple consisting

of a list of categories of the arguments it expects and the category of the
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expression it produces. The list of categories corresponds to an ordered list

of the rewrite rule's RHS nonterminals; the resultant category corresponds

to the rewrite rule's LHS nonterminal. The operation performed by the

syntactic rule is the in-order concatenation of its RHS terminals and non-

terminals, where the nonterminals are replaced with the lexical material of

the expressions which are provided as arguments to the syntactic rule. An

example illustrates this:

Example 1 (CFG-Based Compositional Grammars)

In this example, we briey illustrate CFG-based compositional grammars.

Consider Table 1, which shows the syntactic component of a CFG-based

compositional grammar and its interpretation in the semantic component.

Observe that the order of syntactic categories in the argument list need not

CFG Rewrite Rule Syntactic Rule Basic Expression Interpretation

Name :Type Name : Category

A!B C R

1

: hhB;Ci; Ai fM

1

g

A! a B d R

2

: hhBi; Ai fM

2a

;M

2b

g

A! e C B R

3

: hhB;Ci; Ai fM

3a

;M

3b

g

B! b b : B fm

1

g

C! c c : C fm

2a

;m

2b

g

Table 1: CFG-based compositional grammar

be the same as the order in the rewrite rules (see R

1

; R

3

). Syntactic rules

R

1

and R

3

have two arguments. As a consequence semantic rules M

1

, M

3a

and M

3b

are binary operators. Syntactic rule R

2

and semantic rules M

2a

and M

2b

have one argument.

The notion of well-formedness can be made more precise now:

Definition 7 (CFG-well-formedness)

A CFG syntactic derivation tree t is CFG-well-formed if and only if it is

either the name of a basic expression, or a tree of the form R[t

1

; : : : ; t

n

],

such that:

i. rule R's argument list matches the list of syntactic categories of the

subtrees t

1

; : : : ; t

n

: SynAL(R) = hSynCat(t

1

); : : : ; SynCat(t

n

)i

ii. subtrees t

1

; : : : ; t

n

are CFG-well-formed.

What about the `translation power' of CFG-based compositional gram-

mars? The compositional translation method described in Section 3 de-

mands that basic expressions of the source language correspond to basic

expressions in the target language, and that the syntactic rules of the source-

language correspond to syntactic rules of the target language with the same

arity. This restricts the translation power considerably. The main degrees
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of freedom in the translation relation are the following. In the syntactic

rules, the nonterminals need not occur in the same order as in the argu-

ment list. This allows translation-equivalent rules to describe word-order

di�erences between languages. Syntactic rules may also introduce lexical

material other than that of the arguments. This is called syncategorematic

introduction (cf. syntactic rules R

2

and R

3

in the example above, where ba-

sic expressions a, d and e are left out). The third degree of freedom relates

to the correspondence between categories of source- and target-language

grammars.

Subsection 5.2 now develops a completeness condition for CFG-based

compositional grammars. Subsection 5.3 then shows that this condition is

rather restrictive and presents a way to relax it.

5.2 CFG Completeness for Many-to-One Category Corre-

spondence

In this section, we show how a restriction of the correspondence between

syntactic and semantic categories of the target language can lead to com-

pleteness. First, we formally de�ne a restriction of this correspondence:

Definition 8 (N{1 Category Correspondence)

There is an N{1 category correspondence between a semantic component

and a syntactic component of a compositional grammar if and only if there

is a function f : SemCats!SynCats such that:

i. 8m 2 BM;8b 2 BE :

m 2 [[b]] ) SynCat(b) = f(SemCat(m))

ii. 8M 2 SemR;8R 2 SynR :

((M 2 [[R]]) ^ (SemType(M) = hhc

1

; : : : ; c

n

i; ci)) )

SynType

(

(R)) = hhf(c

1

); : : : ; f(c

n

)i; f(c)i

The restriction of compositional grammars to such an N{1 category

correspondence together with the grammar homomorphism condition gives

us completeness:

Theorem 1 (CFG Completeness for N{1 Category Correspondence)

For any CFG-based compositional grammar pair hG;G

0

i, compositional

translation from G to G

0

is complete if

i. the grammar pair is homomorphic from G to G

0

ii. there is an N{1 category correspondence between the semantic and the

syntactic categories of G

0

.
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Proof: As we are concerned with semantic completeness, we have to prove

that for every grammatical SL utterance, for every one of its well-formed se-

mantic derivation trees, there exists at least one grammatical TL utterance.

As we assume it to be trivial that morphosyntactic generation succeeds for

CFG-well-formed syntactic derivation trees, we focus on semantic genera-

tion. We must show that every well-formed semantic derivation tree always

yields at least one CFG-well-formed TL syntactic derivation tree. We do

this by induction on the depth of the semantic derivation trees.

Induction Base A semantic derivation tree of depth 1 is a basic meaning.

Homomorphism from G to G

0

guarantees that there is at least one TL basic

expression that is associated with that basic meaning. Basic expressions are

trivially CFG-well-formed syntactic derivation trees.

Induction Hypothesis For every well-formed semantic derivation tree

derivable in G which is of depth m or less, compositional translation yields

at least one CFG-well-formed TL syntactic derivation tree in G

0

.

Induction Step Assuming the induction hypothesis holds for arbitrary

depthm, we must prove that it also holds for depthm+1. Every well-formed

semantic derivation tree of depth m + 1 is of the form M [d

1

; : : : ; d

n

] : A,

where each subtree d

i

is of the form M

i

[: : :] : A

i

(see Figure 2 below). Be-

cause of the given well-formedness of the semantic derivation tree we know

that M is applicable to its arguments, so that its argument list hA

1

; : : : ; A

n

i

matches the semantic categories of the arguments A

i

. Homomorphism guar-

antees that M has at least one associated syntactic rule R

0

, which has some

argument list hB

1

; : : : ; B

n

i. The induction hypothesis guarantees that ev-

ery tree d

i

has at least one CFG-well-formed TL syntactic derivation tree

t

0

i

= R

0

i

[: : :] : C

i

associated with it. Note that the induction hypothesis says

nothing about the categories C

i

of these trees.

. . .

. . .

r’ :C r’ :Cn n1 1

t’1 t’n

. . .

. . .

1 nR’<B ...B >

. . . . . .

d d

M :A M :A

M<A ...A >

1 n

n n1

1 n

1

SL/TL Semantic Derivation Tree TL Syntactic Derivation Trees

Figure 2: Induction Step: Generating Syntactic from Semantic Derivation

Trees

The remaining question is whether there is at least one TL syntactic

derivation tree formed in this way which is CFG-well-formed, i.e. for which,

according to De�nition 2, (i) rule R

0

is applicable to its arguments, and

(ii) all subtrees t

0

i

are CFG-well-formed. Condition (ii) is covered by the
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induction hypothesis. Condition (i) requires that the argument list of rule R

0

matches the syntactic categories of the subtrees t

0

1

; : : : ; t

0

n

:

SynAL(R) = hB

1

; : : : ; B

n

i = hSynCat(t

0

1

); : : : ; SynCat(t

0

n

i

From the condition in the theorem, we know that there is an N{1 category

correspondence f between the semantic categories and the syntactic cate-

gories of G

0

. Because rule R

0

is associated with rule M , we know that, for

all 1 � i � n, B

i

= f(A

i

). Since for all 1 � i � n, we also know that tree t

0

i

is associated with tree d

i

, it holds that C

i

= f(A

i

). Since f is a function, it

must hold that for all 1 � i � n, B

i

= C

i

, so that the argument list of R

0

matches the categories of its arguments. Therefore, every such rule R

0

is

applicable to its arguments, so that completeness is guaranteed. 2

5.3 Many-to-Many Category Correspondence

The N{1 category correspondence condition is rather restrictive. It implies

that a semantic category of the source language must be translated into

exactly one syntactic catgory of the target language. We would like to have

a looser category correspondence.

Example 2

Consider the following grammar rules for translating between English and

French noun phrases, where French uses agreement on determiners and

nouns: Here we would like to relate semantic category DET to syntactic

English Syntax Semantics French Syntax

R

1

: NP ! DET N M

1

: NP ! DET N R

0

1a

: NP

0

! DET

0

m

N

0

m

R

0

1b

: NP

0

! DET

0

f

N

0

f

Table 2: English/French noun phrases

categories DET

0

m

and DET

0

f

, and semantic category N to syntactic cate-

gories N

0

m

and N

0

f

. To be able to do so, we could allow every semantic

category to be associated with a number of syntactic categories, instead of

with just one. This corresponds to an N{N category correspondence.

Definition 9 (N{N Category Correspondence)

There is an N{N category correspondence between a semantic component

and a syntactic component of a compositional grammar if and only if there

is a function f : SemCats!SynCats such that:

i. 8m 2 BM;8b 2 BE :

m 2 [[b]] ) SynCat(b) 2 f(SemCat(m))
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ii. 8M 2 SemR;8R 2 SynR :

((M 2 [[R]]) ^ (SemType(M) = hhc

1

; : : : ; c

n

i; ci)))

SynType(R) = hhc

0

1

; : : : ; c

0

n

i; c

0

i

where 8i (1 � i � n) c

0

i

2 f(c

i

) and c

0

2 f(c)

For a semantic category C the set of corresponding syntactic categories f(C)

is called the category correspondence set of C and is denoted

~

C.

For this new situation we must adjust the completeness condition. Re-

ferring to Figure 2, it now is the case that each syntactic category C

i

may be

any category in the set f(A

i

). As the induction hypothesis guarantees only

one successful translation for each subtree d

i

| and it is not known which

one | to guarantee completeness is to guarantee that there is a syntactic

rule R

0

for every argument list in f(A

1

)� : : :�f(A

n

). This is an unrealistic

condition: In the English/French example (Example 2), it corresponds to

the demand that there must be a French syntactic rule for all four argument

lists hDET

m

; N

m

i; hDET

m

; N

f

i; hDET

f

; N

m

i; hDET

f

; N

f

i. But, to demand

that there is e.g a syntactic rule R

0

that combines a masculine determiner

DET

m

and a feminine noun N

f

, as this would imply, is nonsensical. The

underlying problem is that the agreement dependencies cannot be expressed

explicitly in the CFG grammar formalism. The lesson to be learned from

this example is that the dependencies between the categories should be taken

into account.

We will now present a way of encoding information about the dependen-

cies between categories in CFG-based compositional grammar. To this end,

we distinguish two kinds of category correspondence:

Definition 10 (Conjunctive/Disjunctive Correspondence Category)

For a compositional grammar, a semantic category N is a conjunctive (corre-

spondence) category if and only if for every well-formed semantic derivation

tree d of category N , for every corresponding category N

0

in

~

N, there exists

at least one corresponding well-formed syntactic derivation tree t

0

of cate-

gory N

0

. Any semantic category that is not a conjunctive correspondence

category is called a disjunctive (correspondence) category. Semantic cate-

gories that have only one syntactic category in their category correspondence

set are trivially conjunctive categories.

For example, in the case of the English/French NP rules, the semantic

category DET corresponds conjunctively to categories DET

0

m

and DET

0

f

(any determiner has both a masculine and a feminine form), whilst seman-

tic category N corresponds disjunctively to categories N

0

m

and N

0

f

(nouns

usually have either masculine or feminine gender). Semantic category NP

corresponds to only one category, NP

0

, and is therefore a conjunctive cate-

gory.
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How can we use this to establish a condition for completeness? The

key idea is that some of the CFG-well-formed syntactic derivation trees of

some category A may be guaranteed to translate into at least one CFG-

well-formed TL syntactic derivation tree for all categories in

~

A, instead of

for at least one. Category A is then said to correspond conjunctively to the

categories in

~

A. As opposed to disjunctive categories, a conjunctive category

does not require every rule R

0

to have translation-equivalent variants for all

categories in

~

A. Thus, the distinction between conjunctive and disjunctive

categories allows for a more realistic condition on the grammars.

We adjust the de�nition of N{N category correspondence, taking into

account the distinction between conjunctive and disjunctive categories. As

for the basic meanings and basic expressions: for every basic meaning m, if

its category C is a disjunctive category, there must be at least one associated

basic expression b

0

with category C

0

for at least one category C

0

in

~

C. If

category C of basic meaning m is a conjunctive category, then there must

exist at least one associated basic expression b

0

with category C

0

for every

category C

0

in

~

C.

As for the semantic and syntactic rules, for every semantic rule M with

type hhA

1

; : : : ; A

n

i; Ai, we establish conditions on the syntactic rules with

which they are associated. Again referring to Figure 2, when generating

a syntactic derivation tree from a semantic derivation tree, for subtrees d

i

that have a conjunctive category C we can guarantee a tree t

0

i

for every

category in

~

C. For subtrees d

i

that have a disjunctive category C we can

guarantee a tree t

i

for only one category in

~

C, and we do not know which

one. Therefore, we must guarantee that for every tuple

3

D 2 X

i2I

d

~

A

i

of

the syntactic categories corresponding to disjunctive categories of M , there

exists at least one syntactic rule R

0

with type hhB

1

; : : : ; B

n

i; Bi such that:

1. The tuple of the syntactic categories corresponding to the disjunctive

categories of the argument list of M is equal to D: hB

i

j i 2 I

d

i=D.

2. Every syntactic category B

i

that corresponds to a conjunctive category

A

i

of the argument list of M is in the category correspondence set of

A

i

: 8i 2 I

c

B

i

2

~

A

i

.

3. In addition, the resultant category A of semantic rule M must be

taken into account. If this is a disjunctive category, then it su�ces if

the resultant category B of the syntactic rule R

0

is in

~

A. If category

A is a conjunctive category, then there must be at least one syntactic

rule R

0

with resultant category N for all categories N in

~

A.

Using this condition we again obtain completeness:

3

Consider the following auxiliary de�nitions. For any argument list hA

1

; : : : ; A

n

i, de�ne

sets I

c

and I

d

as consisting of the indices of its conjunctive and disjunctive categories,

respectively. De�ne hA

i

j i 2 I

c

i and hA

i

j i 2 I

d

i as the corresponding subtuples.
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Theorem 2 (CFG Completeness for N{N Category Correspondence)

For any CFG-based compositional grammar pair hG;G

0

i, compositional

translation from G to G

0

is complete if:

i. the grammar pair is homomorphic from G to G

0

ii. there is an N{N category correspondence between the semantic and

the syntactic categories of G

0

, where every semantic category of G

0

has

been declared conjunctive or disjunctive and the sets of categories of G

0

satisfy the condition described above.

Because of space limitations we do not include the proof; we trust that

the description of the condition above gives the reader an insight into how

the proof can be given.

Example 3

Returning to the English/French example discussed earlier, we declared

DET a conjunctive, N a disjunctive, andNP a conjunctive category. Check-

ing the condition formulated above, this amounts to the requirement that

for every tuple D in fhN

0

m

i; hN

0

f

ig, there exists a syntactic rule R

0

such that

hB

i

j i 2 I

d

i = D and 8i 2 I

c

; B

i

2

~

A

i

, which is indeed the case.

6 Conclusion and Future Research

In this paper, we presented the issue of completeness for compositional trans-

lation, and discussed how conditions for compositional translation could be

found. In Section 5, we examined the completeness issue for context-free

grammars. We established completeness conditions for grammars with an

N{1 category correspondence. As this condition is rather restrictive, we

relaxed this condition to an N{N category correspondence condition. The

�rst attempt however led to unrealistic conditions on the grammar rules,

so that it was necessary to introduce the distinction between conjunctive

and disjunctive categories. We adjusted the N{N category correspondence

condition accordingly, and obtained a completeness condition for grammars

with an N{N category correspondence.

The central issues in ongoing and future research are (i) the completeness

issue for some other grammar formalisms, (ii) the algebraic formulation of

completeness, and (iii) polynomial compositional translation.

� Completeness for Other Grammar Formalisms | The de�nite-clause

grammar formalism (DCG, see e.g. (Pereira and Shieber, 1987)) ex-

tends the CFG grammar formalism with attributes added to the non-

terminals. Attributes have a variety of uses, one of the most prominent

being the enforcement of agreement relations. As for the completeness

condition for DCG, we assume the same conditions on the nontermi-

nals as we did for CFG. In addition, we formulate restrictions on the
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use of attributes. A proof has been established for completeness of

grammars that satisfy these restrictions.

Future research will also address the completeness issue for Tree-

Adjoining Grammars. Tree-Adjoining Grammars are interesting be-

cause they are somewhat more expressive than CFGs (they are so-

called mildly context-sensitive), and it enables expressing linguistic

phenomena such as long-distance dependencies.

� Algebraic Formulation of Compositional Translation | Compositional

grammar, compositional translation and the completeness issue can be

formulated algebraically. Such an algebraic formulation has a num-

ber of advantages: (i) it abstracts away from the details of speci�c

grammar formalisms, thus revealing the essentials of compositional

translation and completeness, (ii) this abstraction provides a basis for

the comparison of di�erent grammar formalisms, and (iii) an algebraic

formulation gives access to well-investigated mathematical theory, the

results of which may be readily carried over. I hope to use the alge-

braic formulation as a basis for the investigation of the combination of

the use of features and completeness. For other work on algebraic de-

scription of natural language, see (Janssen, 1986; Hendriks, 1993). An

algebraic view on compositional translation is presented in (Rosetta,

1994, Chapter 19).

� Polynomial Compositional Translation | Another line of work is con-

cerned with an extension of the method of compositional translation

for grammar formalisms that use only concatenative operations. The

basic idea here is a generalization of the unit of translation-equivalence

from single elements to combinations of these (polynomials). This

improves `translation power', as it becomes possible to overcome all

kinds of translation problems due to structural divergencies between

languages. For example it becomes possible to relate a structure like

[A [B C]] with a structure like [A

0

B

0

C

0

]. I hope to show that, as

polynomially derived algebras are algebras again, completeness condi-

tions found for compositional translation will carry over to polynomial

compositional translation.
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