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Abstract

Morphological analysis is an important subtask in text-to-speech con-

version, hyphenation, and other language engineering tasks. The tra-

ditional approach to performing morphological analysis is to combine

a morpheme lexicon, sets of (linguistic) rules, and heuristics to �nd a

most probable analysis. In contrast, we present an inductive learning

approach in which morphological analysis is reformulated as a segmen-

tation task. We report on a number of experiments in which �ve in-

ductive learning algorithms are applied to three variations of the task

of morphological analysis. Results show (i) that the generalisation

performance of the algorithms is good, and (ii) that the lazy learning

algorithm Ib1-Ig performs best on all three tasks. We conclude that

lazy learning of morphological analysis as a classi�cation task is indeed

a viable approach; moreover, it has the strong advantages of avoiding

the knowledge-acquisition bottleneck, being fast and deterministic in

learning and processing, and being language-independent.

1 Introduction

Morphological analysis is often deemed to be an important, if not essential

subtask in linguistic modular systems for text-to-speech processing (Allen,

Hunnicutt, and Klatt, 1987) and hyphenation (Daelemans, 1989). In text-

to-speech processing, it serves to prevent incorrect application of grapheme{

phoneme conversion rules across morpheme boundaries (e.g. preventing care-

lessly from being pronounced as /k�'r�l�slai/). In hyphenation, it guides the

placement of hyphens at certain morphological boundaries (e.g. preventing

looking from being hyphenated as loo-king). Morphological analysis also

�
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plays a crucial role in applications such as part-of-speech tagging (assigning

the correct morpho-syntactic category to words in context), for obtaining a

reasonable analysis of words not present in the lexicon.

The traditional approach to performing morphological analyses presup-

poses the availability of a morpheme lexicon, spelling rules, morphological

rules, and heuristics to prioritise possible analyses of a word according to

their plausibility (e.g. see the decomp module in the mittalk system (Allen,

Hunnicutt, and Klatt, 1987)). In contrast, the approach described in this pa-

per presupposes a morphologically analysed corpus of words (rather than a

corpus of morphemes), and an inductive learning algorithm which is trained

to segment spelling words into morphemes in the form of a simple classi�-

cation task.

In this paper, we will �rst outline what we mean by rephrasing a lin-

guistic problem as a classi�cation task, and introduce �ve inductive-learning

algorithms capable of learning classi�cation tasks. Then, in Section 2, we

give an overview of the traditional approach to morphological analysis and

introduce our alternative reformulation. In Section 3 we present and analyse

the results of the application of the learning algorithms to the morphologi-

cal analysis task. We conclude this paper with a summary of the obtained

results and a discussion of the di�erences between the traditional approach

to morphological analysis and an inductive-learning approach, in Section 4.

1.1 Reformulating linguistic problems as classi�cation tasks

Most linguistic problems can be seen as context-sensitive mappings from

one representation to another (e.g. from text to speech; from a sequence

of spelling words to a parse tree; from a parse tree to logical form; from

source language to target language, etc.). The typical traditional approach

to language-engineering problems is to build a description of the general

rules governing these mappings, describe additional subregularities, and list

the remaining exceptions to the rules and subregularities. The acquisition

of this knowledge is labour-intensive and costly. In contrast to this hand-

crafting approach, an inductive machine-learning method approaches a lin-

guistic problem in an data-oriented way, i.e. it automatically gathers the

knowledge needed for solving the problem by considering instances of the

problem. By `instance' we mean a data structure containing an input and

its associated `solution': its classi�cation. The knowledge implicitly present

in the collection of instances is used to classify new instances of the same

problem.

Most linguistic tasks can be described as classi�cation tasks, i.e. given a

description of an input in terms of a number of feature-values, a classi�cation

of the input is performed. Two types of classi�cation tasks can be discerned

(Daelemans, 1995):
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Identi�cation given a set of possible classi�cations and an input of feature

values, determine the correct classi�cation for this input. For example,

given a letter surrounded by a number of neighbours (e.g. a in have),

determine the phonemic transcription of that letter.

Segmentation given a set of possible boundary classes and an input con-

sisting of a focus position in its immediate context, determine whether

a boundary is associated with the focus position, and if so, which one.

For example, determine if the b in table marks the boundary of a

syllable.

Once a task is reformulated as a classi�cation task, it can be learned

by an inductive-learning algorithm. Di�erences exist in the ways inductive

algorithms extract knowledge from the available instances. In lazy learn-

ing (such as memory-based learning, (Stan�ll and Waltz, 1986; Daelemans,

1995)), there is no abstraction of higher-level data structures such as rules

or decision trees at learning time; learning consists of simply storing the

instances in memory. A new instance of the same problem is solved by

retrieving those instances from memory that match the new instance best

(according to a similarity metric), and by extrapolating from the solutions of

these `nearest neighbours'. The memory-based learning approach therefore

does not distinguish between regularities and individual exceptions; rule-like

behavior automatically emerges from the interaction between the memory

contents and the similarity metric used. In eager learning approaches (such

as C4.5 (Quinlan, 1993) or connectionist learning), abstract data structures

(matrices of connection weights in connectionist networks, decision trees in

C4.5) are extracted from the learning material during learning. In contrast

with lazy learning, eager learning devotes a signi�cant amount of e�ort to

abstracting from instances, rather than simply storing them in memory.

In previous research we have demonstrated the application of a memory-

based (lazy) learning approach to several linguistic problems, e.g. segmenta-

tion as in hyphenation and syllabi�cation (Daelemans and Van den Bosch,

1992; Van den Bosch et al., 1995), and identi�cation as in grapheme{

phoneme conversion (Weijters, 1991; Van den Bosch and Daelemans, 1993;

Daelemans and Van den Bosch, 1994), and stress assignment (Daelemans,

Gillis, and Durieux, 1994). In most cases, the memory-based (lazy) ap-

proach outdid the more eager inductive algorithms. We believe that in a

`noisy' domain such as natural language, abstracting from the training in-

stances is a bad idea because any one instance (however exceptional from

the point of view of the learning algorithm) can potentially be a model for

new instances.

In this paper, we demonstrate that the memory-based learning approach

is also applicable to morphological parsing, by reformulating it as a senmen-

tation task. We compare the approach to alternative inductive machine-
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learning algorithms. First, we provide a brief summary of the inductive-

learning algorithms used in the experiments reported in this paper.

1.2 Algorithms and methods for inductive learning

Inductive learning in its most straightforward form is exhibited by memory-

based lazy learning algorithms such as ib1 (Aha, Kibler, and Albert, 1991)

and variations, e.g. Ib1-Ig (Daelemans and Van den Bosch, 1992; Daele-

mans, Van den Bosch, and Weijters, 1996), in which all instances are fully

stored in memory, and in which classi�cation involves a pass along all stored

instances. To optimise memory lookup and minimise memory usage, more

eager learning algorithms are available that compress the memory in such

a way that most relevant knowledge is retained and stored in a quickly

accessible form, and redundant knowledge is removed. Examples of such

algorithms are the decision-tree algorithms IgTree (Daelemans, Van den

Bosch, and Weijters, 1996) and C4.5 (Quinlan, 1993). Another popular in-

ductive algorithm is the connectionist Back-propagation (bp) (Rumelhart,

Hinton, and Williams, 1986) learning algorithm. We provide a summary of

the basic functions of these learning algorithms.

1. ib1 (Aha, Kibler, and Albert, 1991) constructs a data base of in-

stances (the instance base) during learning. An instance consists of a

�xed-length vector of n feature-value pairs, and an information �eld

containing the classi�cation(s) of that particular feature-value vector.

When the feature-value vector is associated to more than one clas-

si�cation (i.e. when its classi�cation is ambiguous), the distributions

(occurrences) of the di�erent classi�cations in the learning material

are counted and stored with the instance. After the instance base

is built, new instances are classi�ed by ib1 by matching them to all

instances in the instance base, and calculating with each match the

distance between the new instance X and the memory instance Y ,

�(X;Y ), using the function in Equation 1.

�(X;Y ) =

n

X

i=1

W (f

i
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i

; y

i
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where W (fi) is the weight of the ith feature (in ib1, this weight is
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i
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The classi�cation of the memory instance Y with the smallest �(X;Y )

is then taken as the classi�cation of X. New to ib1, as compared to

the algorithm proposed by Aha, Kibler, and Albert (1991), is that

when the single best matching instance is an ambiguous instance (i.e.

the instance carries information on the distribution of more than one

classi�cations, rather than a single classi�cation), ib1 selects the clas-

si�cation with the highest occurrence in the instance's distribution.

We have furthermore added to the ib1 algorithm a function that, in

case of more than one best matching memory instance, merges (i.e.

sums) the distributions (occurrences) of the classi�cations of all of

these best-matching memory instances, and produces as output the

classi�cation that has the highest occurrence in the merged classi�ca-

tion distribution. In cases of occurrence ties, random selections are

made.

2. Ib1-Ig (Daelemans and Van den Bosch, 1992; Daelemans, Van den

Bosch, and Weijters, 1996) di�ers from ib1 in the weighting function

W (f

i

) (cf. Equation 1). This function computes for each feature, over

the full instance base, its information gain, a function from informa-

tion theory that is also used in id3 (Quinlan, 1986) andC4.5 (Quinlan,

1993) (for more details, see Daelemans and Van den Bosch (1992)). In

short, the information gain of a feature expresses its relative relevance

compared to the other features in performing the mapping from input

to classi�cation. This weighting function gives right to the fact that

for some tasks, some features are far more important than other fea-

tures. When information gain is used as the weighting function in the

distance function (Equation 1), instances that match on an important

feature are regarded as less distant (more alike) than instances that

match on an unimportant feature.

3. IgTree (Daelemans, Van den Bosch, and Weijters, 1996) compresses

an instance base into a decision tree. Instances are stored in the tree

as paths of connected nodes and leaves contain classi�cation infor-

mation. Nodes are connected via arcs denoting feature values. In-

formation gain is used in IgTree to determine the order in which

instance feature values are added as arcs to the tree. The reasoning

behind this compression is that when the computation of informa-

tion gain points to one feature clearly being the most important in

classi�cation, search can be restricted to matching a test instance to

those memory instances that have the same feature value as the test

instance at that feature. Instead of indexing all memory instances

only once on this feature, the instance memory can then be optimised

further by examining the second most important feature, followed by

the third most important feature, etc. A considerable compression is
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obtained as similar instances share partial paths. The tree structure is

compressed even more by restricting the paths to those input feature

values that disambiguate the classi�cation from all other instances in

the training material. The idea is that it is not necessary to fully store

an instance as a path when only a few feature values of the instance

make the instance classi�cation unique. In applications to linguistic

tasks, IgTree is shown to obtain compression factors of 90% or more

as compared to ib1/Ib1-Ig (Van den Bosch and Daelemans, 1993;

Daelemans and Van den Bosch, 1994).

IgTree also stores with each non-terminal node information concern-

ing the most probable or default classi�cation given the path thus far,

according to the classi�cation bookkeeping information maintained by

the tree construction algorithm. This extra information is essential

when processing new instances. Processing a new instance involves

traversing the tree (i.e. matching all feature-values of the test instance

with arcs in the order of the overall feature information gain), and

either retrieving a classi�cation when a leaf is reached (i.e. an exact

match was found), or retrieving the default classi�cation on the last

matching non-terminal node if an exact match fails. For more details

on IgTree, see Daelemans, Van den Bosch, and Weijters (1996).

4. C4.5 (Quinlan, 1993) is a well-known decision-tree algorithm which

basically uses the same type of strategy as IgTree to compress an

instance base into a compact tree. To this purpose, standard C4.5

also uses information gain, or gain ratio (Quinlan, 1993) to select

the most important feature in tree building; however, in contrast to

IgTree, C4.5 recomputes this function for each node in the tree.

Another di�erence with IgTree is that c4.5 implements a pruning

stage, in which parts of the tree are removed as they are estimated to

contribute to instance classi�cation below a certain threshold.

5. bp (Rumelhart, Hinton, and Williams, 1986) is an arti�cial-neural-

network learning rule, which operates on multi-layer feed-forward net-

works (mfns). In these networks, feature-values of instances are en-

coded as activation patterns in the input layer, and the network is

trained to produce an activation pattern at the output layer represent-

ing the desired classi�cation. In contrast to the previously described

algorithms, bp does not accumulate its knowledge by literally storing

(parts of) instances in memory or by constructing a decision tree on

the basis of them. Rather, bp tunes the connections between units in

the input layer and the hidden layer, and between units of the hid-

den layer and the output layer, during a training phase in which all

training instances are presented several times to the network. The bp

learning algorithm, which is a gradient-descent algorithm, attempts
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to set the connections between the layers with increasing subtlety,

aiming at minimisation of the error on the training material. After

training, the units at the hidden layer encode an intermediary rep-

resentation that captures some essential information from both the

input (the feature-values) and the output (the desired classi�cation).

These representations are non-symbolic, and do not lend themselves

easily for inspection, in contrast to the previously described symbolic

algorithms.

When one plans to apply learning algorithms to classi�cation tasks, it

is important to establish a method for interpreting the results from such

experiments beforehand. In our experiments, we are primarily interested

in the generalisation accuracy of trained models, i.e. the ability of these

models to use their accumulated knowledge to classify new instances that

were not in the training material. A method that gives a good estimate of

the generalisation performance of an algorithm on a given instance base, is

10-fold cross-validation (Weiss and Kulikowski, 1991). Using this method,

10 partitionings into a training set (90%) and a test set (10%) are generated

on the basis of an instance base, leading to 10 experiments and 10 results per

learning algorithm and instance base. Signi�cance tests such as one-tailed t-

tests can be applied to the outcomes of 10-fold cross-validation experiments

with several learning algorithms trained on the same data.

2 Morphological analysis

2.1 Traditional approaches

The traditional approach to morphological analysis basically presupposes

three components: (i) a morpheme lexicon, (ii) a set of spelling rules and

morphological rules to discover possible analyses of morphologically complex

words, and (iii) prioritising heuristics to choose the most probable analysis

from sets of possible analyses. We brie
y illustrate the functioning of this

type of analysis by taking decomp's processing of the word scarcity as an

example (Allen, Hunnicutt, and Klatt, 1987):

1. In a morpheme lexicon covering the English language, a �rst analysis

divides scarcity into scar and city.

2. The analysis scarjcity is validated by a �nite-state automaton covering

the possible sequences of morphemes in English words; furthermore,

an analysis-cost heuristic assigns an integer-valued cost to the combi-

nation of two noun stems.

3. Using spelling rules of letter deletion in in
ection and compounding

in English, the system suspects that the analysis scarcejity is also
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possible, as ity may have deleted the e of scarce. This analysis, which

is validated by the morpheme-sequence �nite-state automaton, yields

a lower cost than scarjcity, as the analysis-cost heuristic assigns a lower

value to a derivational a�x than to a second stem.

4. As no further spelling-change rules can be applied to the analysis with

the lowest cost, scarcejity, the process ends by producing this analysis.

It is argued in Allen, Hunnicutt, and Klatt (1987) that a morpheme

lexicon containing 10,000 morphemes is e�ective in a text-to-speech system.

Neologisms, a problem for purely lexicon-based approaches, seldomly con-

tain new morphemes. The morpheme-sequence �nite-state automaton, the

spelling rules, and the analysis-cost heuristic are in principle not very com-

plex in terms of processing. They demand, however, a considerable amount

of knowledge acquisition and �ne-tuning. Another serious problem with

these analysis components is that the number of analyses of morphologi-

cally complex words may become very much larger (near exponential in the

number of morphemes) for longer words.

Morphological analysis on a probabilistic basis, using only a morpheme

lexicon, an analyses generator, and a probabilistic function to determine

the analysis with the highest probability (Heemskerk, 1993) does not su�er

from the disadvantageous knowledge acquisition and �ne-tuning phase, but

is nevertheless also confronted with an explosion of the number of generated

analyses.

2.2 Inductive-learning approach

In contrast to this decomposition into three components, we reformulate the

task of morphological analysis as a one-pass segmentation task, in which an

input (a sequence of letters with a focus position) is to be classi�ed as

marking a morpheme boundary at that focus position. This classi�cation

approach demands that the number of input features be �xed, hence we

cannot use whole words as input. Instead, we convert a word into �xed-

sized instances of which the middle letter is mapped to a class denoting a

morpheme boundary decision. To generate �xed-sized instances, we adopt

the windowing scheme proposed by Sejnowski and Rosenberg (1987) which

generates �xed-sized snapshots of words. Surrounding the focus letter, we

choose a �xed context of three letters to the left, and three letters to the

right of the middle position. This context may prove to be too small to dis-

ambiguate between certain instances; we will investigate the impact of this

choice (motivated by our earlier work with inductive learning of morpho-

phonological tasks (Weijters, 1991; Van den Bosch and Daelemans, 1993),

in which this speci�c contextual scope proved to disambiguate between in-

stances nearly exhaustively) in Section 3.
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morphemes

derivational morphemes inflectional morphemes

affixes

stress-affecting affixesstress-neutral affixes

noun and verb stems

Figure 1: Family tree of English morphemes

In its most basic form, the classi�cation of each instance denotes whether

the focus letter of the instance maps to a morpheme boundary (`yes', or

`1') or not (`no', or `0'). However, distinguishing between only `1' and `0'

does not take into account that morphological theory generally distinguishes

between several types of morphemes. For the case of English, a family tree

of morphemes would for example be the one displayed in Figure 1.

Distinguishing between, for example, stress-neutral and stress-a�ecting

a�xes would be directly helpful as input knowledge for performing the

stress-assignment task in a text-to-speech system. However, distinguish-

ing between types of morphemes according to this theory also introduces

a certain amount of pre-wired linguistic knowledge. With this in mind we

extended the task of morphological analysis into three di�erent tasks, with

increasing implicit linguistic knowledge encoded in the classes:

task M1: decide whether the focus letter marks the beginning of

� a morpheme: map to class `1',

� no morpheme: class `0'.

task M2: decide whether the focus letter marks the beginning of

� a derivational morpheme: class `d',

� an in
ectional morpheme: class `i',

� no morpheme: class `0'.

task M3: decide whether the focus letter marks the beginning of

� a noun or verb stem: class `s',

� a stress-neutral a�x: class `1',

� a stress-a�ecting a�x: class `2',
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� an in
ectional morpheme: class `i',

� no morpheme: `0'.

Applying the windowing method to the example word abnormalities

leads to the instances displayed in Table 1, listing for each of the three

tasks their appropriate classi�cations. The morphological analysis of the full

word is simply the concatenation of the instance classi�cations, in which all

classi�cations other than `0' mark morpheme boundaries.

As can be seen from Table 1, a morphological boundary is assigned to the

position at which a new morpheme begins, regardless of the spelling changes

that may have occurred in the vicinity of that position. For example, the

analysis displayed in Table 1 states that the `surface' form iti is a stress-

a�ecting a�x, although its `deep' form is ity. A second characteristic of

our representation of morphological boundaries, is that it is non-hierarchic.

Although morpheme hierarchy may be important in determining the part-

of-speech of a word (Allen, Hunnicutt, and Klatt, 1987), it is not necessary

to have a full hierarchical analysis when the morphological analysis is used

as input to a text-to-speech system.

3 Experiments

3.1 Data collection and algorithmic parameters

The source for the morphological data used in our experiments is celex

(Burnage, 1990), a large lexical data base of English, Dutch, and German.

We extracted from the English data base all available information on word-

forms relating to spelling and morphology, and created a lexicon of 65,558

morphologically analysed words (please note that celex does not provide

a morphological analysis for all of its wordforms: it does not provide ob-

scure and undeterminable analyses of exceptional (loan) words, and, more

importantly, it does not analyse words containing etymologically old roots

not current in English, such as ad in addict; these words are included as

monomorphemic words in our lexicon). On the basis of the word token fre-

quency information contained in celex, we computed that this lexicon cov-

ers approximately 65% of the word tokens in the 16,6 million word cobuild

corpus of written text (Burnage, 1990); 26% of the words in our corpus do

not occur in the cobuild corpus. This 65,558-word lexicon was used to cre-

ate instance bases for the M1, M2, and M3 tasks, each containing 573,544

instances.

For completeness, the learning parameters of the �ve algorithms de-

scribed in Section 1, viz. ib1, Ib1-Ig, IgTree, C4.5, and bp, as used in

our experiments, are the following: (i) ib1 and Ib1-Ig implement 1-nearest

neighbour matching; (ii) C4.5 uses the gain ratio criterion, default prun-

ing, and no subsetting of feature-values; (iii) bp uses a network with 294
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input units (letters are locally coded), 50 hidden units, and 2, 3, or 5 output

units (classes are locally coded), a learning rate of 0.1, a momentum of 0.4,

and an update tolerance of 0.2. IgTree's functioning is not governed by

parameters.

3.2 Results

We applied the �ve algorithms to the three tasks, performing with each

algorithm and each task a 10-fold cross-validation experiment (Weiss and

Kulikowski, 1991). We computed for each 10-fold cross-validation experi-

ment the average percentage of incorrectly processed test words. A word is

incorrectly processed when one or more instance classi�cations associated

with the instances derived from the word are incorrect (i.e. when one or

more of the segmentations is incorrect). Figure 2 displays these general-

isation errors. The algorithms are ordered on their performance on task

M1.

The best performing algorithm on tasks M1, M2, and M3 is Ib1-Ig. Its

performance is signi�cantly better compared to all other algorithms in all

three tasks with p < 0:001. On task m1, the algorithm performing second

best to Ib1-Ig (12.04% incorrectly processed test words) is IgTree (14.27%)

(level of signi�cance t(19) = 13:56; p < 0:001). On task M2, the second best

algorithm is ib1 (15.74%) ; Ib1-Ig processes 14.40% test words incorrectly

(t(19) = 7:64; p < 0:001). On task M3, Ib1-Ig incorrectly processes 17.63%

of the test words, again followed by ib1 with 18.94% (t(19) = 6:95; p <

0:001).

Interesting is the fact that IgTree performs well on M1, but performs

relatively badly on M2 and M3. IgTree is known to perform worse when

the information gain of the input features displays a low variance (Daele-

mans, Van den Bosch, and Weijters, 1996), i.e. when there is little di�erence

between the relative relevance of the input features. This suggests that the

information-gain values of the features with tasks M2 and M3 have less out-

spoken di�erences than with M1, which is indeed the case, as is displayed

in Figure 3. For all three tasks, Figure 3 displays the fact that the letter

immediately preceding the focus letter is the most important one in the

segmentation task.

A more general observation on the basis of the results displayed in Fig-

ure 2 is that tasks M1, M2, and M3 are increasingly di�cult to learn for all

algorithms. Distinguishing between more output classes with a �ner linguis-

tic granularity obviously increases the di�culty of learning the task. The

results in Figure 2 also provide an indication that the performance of the

best algorithms is quite good, considering (i) the test words are not seen

by the algorithms during training, and (ii) the test words are dictionary

words, rather than words from a written text corpus: they are on the av-

erage morphologically more complex than words from a free-text corpus.
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instance left focus right classi�cation

number context letter context M1 M2 M3

1 a b n o 1 d 1

2 a b n o r 0 0 0

3 a b n o r m 1 d s

4 a b n o r m a 0 0 0

5 b n o r m a l 0 0 0

6 n o r m a l i 0 0 0

7 o r m a l i t 1 d 1

8 r m a l i t i 0 0 0

9 m a l i t i e 1 d 2

10 a l i t i e s 0 0 0

11 l i t i e s 0 0 0

12 i t i e s 1 i i

13 t i e s 0 0 0

Table 1: Instances with morphological analysis classi�cations derived from

the word abjnormjaljitijes. The three classi�cation �elds belong to tasks

M1, M2, and M3, respectively. Denotations of the classi�cation labels is as

follows: 0 = no morpheme boundary; 1 = morpheme boundary with M1,

and stress-neutral a�x with M3; 2 = stress-a�ecting a�x; d = derivational

boundary; i = in
ectional boundary; s = stem boundary.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

BP C4.5 IB1 IGTREE IB1-IG

ge
ne

ra
lis

at
io

n 
er

ro
r 

(%
)

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

Figure 2: Generalisation errors in terms of the percentage of incorrectly

classi�ed test words, with standard deviations (error bars) of �ve algorithms

applied to the three variations of the task of English morphological analysis
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Figure 3: Information-gain values of the features of tasks M1 (left), M2

(middle), and M3 (right), computed over the full instance bases
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When the generalisation performance is expressed in terms of incorrectly

classi�ed instances, low error rates are obtained. For example, trained on

M1, Ib1-Ig classi�es only 1.65% of all test instances incorrectly (1.97% on

M2, and 2.46% on M3).

A close inspection of the errors generated by Ib1-Ig shows that most

classi�cation errors occur when Ib1-Ig is forced to choose between two or

more best-matching instances, i.e. when the algorithm decides to choose

the most frequently occurring classi�cation summed over the classi�cation

distributions of the best-matching instances. Inspecting the application of

Ib1-Ig on the �rst partitioning of task M1, it was found that only 4.8% of

all matches between test instances and stored instances retrieve more than

one best-matching instance; in 81% of these ambiguous cases, the classi�ca-

tion produced by Ib1-Ig is correct. However, the remaining 19% incorrect

classi�cations contribute to 60% of the total generalisation error of Ib1-Ig

applied to M1. For task M2, this percentage is 59%; for M3, it is 65%.

A matter related to Ib1-Ig's problems with similar best-matching in-

stances with di�erent classi�cations, is the question whether the window

size of three left context letters and three right context letters is enough to

disambiguate between all instances. A detailed inspection of the decision

trees generated by IgTree applied to the three tasks shows that there are

indeed instances that cannot be disambiguated with this context: they are

stored in the trees as non-ending (unresolved) nodes at the deepest level of

the tree. These nodes carry as classi�cation label the most frequently oc-

curring class for that ambiguous path, which acts as a `last best' guess when

classifying new instances: actually, for IgTree's application to the �rst par-

titioning of M1, 81% of these `last best' guesses turn out to be correct (a

performance which is closely similar to Ib1-Ig's performance on classifying

similar best-matching instances with di�erent classi�cations). The 19% in-

correct best guesses contribute to no less than 52% of the total generalisation

error on test instances of the decision tree generated by IgTree on M1. For

task M2 as well as for task M3, this percentage is 68%. These error levels

suggest that there might be some gain in the generalisation performance of

IgTree when the context is expanded.

As a test, we applied IgTree to tasks M1, M2, and M3 (with a 10-fold

cross-validation setup), using instances containing �ve left context letters

and �ve right context letters, adding up to a window containing eleven let-

ters per instance. The trees generated by IgTree on these eleven-letter

instances contained no non-terminal nodes at the bottom level, indicating

that the eleven-letter window is wide enough to disambiguate between all

instances. Surprisingly, however, we found that the generalisation perfor-

mance of IgTree was worse for the three tasks than the performances

of IgTree reported above, on the smaller seven-letter instances: IgTree's

performances on the three tasks were 15.0% incorrectly processed test words

for M1 (14.3% previously on the seven-letter task), 20.6% for M2 (19.9% pre-
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viously), and 25.0% for M3 (23.8% previously). The di�erences between the

performances on the seven-letter and eleven-letter windows are signi�cant

for all three tasks, with p < 0:01 for M1 and p < 0:001 for M2 and M3. It

can be concluded from these results that no performance gain can be ob-

tained when the window is expanded to disambiguate between all instances:

apparently, the default classi�cation information stored at the bottom of

the trees generated on the basis of the seven-letter instances is more reliable

when classifying new instances than the unambiguous class labels stored at

the end nodes of the trees generated on the basis of the eleven-letter in-

stances. This justi�es our usage of the seven-letter instances, and points to

the interesting fact that morphological analysis can be performed success-

fully to a large extent using only the small, local contextual scope of seven

letters.

As a �nal illustration, we provide some examples of segmentations gen-

erated by Ib1-Ig on the �rst partitioning of task M1. Most errors are

related to (apparent) morphological ambiguities: incorrect boundary inser-

tions in earjly, navjy, and cojaljed, and missed boundaries in printable, up-

land, and manslaughtjer. Some examples of correctly segmented words that

are morphologically complex are horsejwhip, nutjtijest, steepjen, vetojes, and

disjagreejablejness.

Comparing the performance of the algorithms under investigation, ap-

plied here to the English celex data, with other morphological analysis

systems, one is faced with two problems: (i) a proper comparison can only

be made when the systems to be compared are tested on the same data,

and (ii) we are currently not aware of any system tested on the English

celex data. Further research should investigate the possibilities of making

comparisons with other systems by performing tests on commonly used test

sets

1

.

4 Conclusions

We have demonstrated the applicability of an inductive machine-learning

approach to morphological analysis, by reformulating the problem as a

segmentation task in which letter sequences are classi�ed as marking dif-

ferent types of morpheme boundaries. The generalisation performance of

inductive-learning algorithms to the task is good.

An interesting result is that within the class of inductive learning algo-

rithms, generalisation accuracy correlates with the degree of eagerness of

the inductive algorithm used; best results are obtained with memory-based

1

Please note that it is possible to train the inductive-learning algorithms on the com-

plete celex dataset, rather than on a 90% subset, when the test set is not derived from

celex, but from free text or any other corpus. The generalisation performance of the

algorithms can be expected to be more accurate on this kind of testing material than the

performances reported in this paper. Future tests will have to corroborate this hypothesis.
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learning (Ib1-Ig), a lazy learning algorithm retaining full memory of all

training instances with a classi�cation-task-related feature-weighting simi-

larity function. The methods abstracting most from the instances perform

worst. This corroborates our hypothesis that because of the intricate inter-

action of regularities, subregularities and exceptions present in this task as

well as in most other linguistic problems we studied, lazy learning methods

are superior to eager learning methods.

In comparison with the traditional approach, in which morphological

analysis is performed by a system containing several components, the in-

ductive learning approach applied to a reformulation of the problem as a

classi�cation task of the segmentation type, has a number of advantages:

� it presupposes no more linguistic knowledge than explicitly present

in the corpus used for training, i.e. it avoids a knowledge-acquisition

bottleneck

� it is language-independent, as it operates on any morphologically anal-

ysed corpus in any language

� learning is automatic and fast

� processing is non-recurrent, i.e. it does not retry analysis generation,

and is only linearly related to the length or morphological complexity

of words.

Nevertheless, it also displays two disadvantages:

� produces an analysis that lacks hierarchy of morphemes

� it does not recover the `deep' form of morphemes.

Future work on inductive learning of morphological analysis should in-

clude a thorough performance comparison with existing traditional systems

for morphological analysis, based on linguistic theory and heuristics such

as decomp (Allen, Hunnicutt, and Klatt, 1987) as well as with probabilis-

tic systems (Heemskerk, 1993). Secondly, we aim at integrating trained

learning models of morphological analysis into larger systems, to investi-

gate whether the enrichment of spelling input with morphological boundary

information improves the generalisation performance of other learning sys-

tems trained on, e.g. stress assignment, grapheme{phoneme conversion, and

part-of-speech prediction of unknown words.
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