
Valence Alternation without Lexical Rules

Gosse Bouma

�

Abstract

Valence changing lexical rules are a problematic component of constraint-

based grammar formalisms. Lexical rules of this type are procedural, require

defaults, and may easily lead to spurious ambiguity. Relational constraints

can be used to eliminate such rules. The relational approach does not require

defaults, is declarative, avoids spurious ambiguity, and can be an integrated

part of a hierarchically structured lexicon. This is illustrated below for the

complement extraction and adjunct introduction lexical rules of hpsg. We

argue that, apart from the technical bene�ts mentioned above, the relational

approach is linguistically superior, in that it o�ers a uniform account of com-

plement and adjunct extraction. Furthermore, it eliminates the spurious am-

biguity that may arise in grammars which include complement inheritance

verbs as well as a lexicalist account of complement extraction.

Introduction

Recent work in hpsg has argued for lexicalist approaches to complement extraction

(Sag 1995), adjunct selection (Miller 1992; Iida, Manning, O'Neill, and Sag 1994;

Manning, Sag, and Iida 1996), and clitic climbing (Sag and Miller, to appear). Lex-

icalist accounts treat these phenomena as valence variation. That is, complement

extraction requires that each head selecting for an extractable complement C has

a counterpart which does not select for C but instead includes C in its slash-set.

Similarly, lexicalist adjunct selection requires that heads may include (an arbitrary

number of) adjuncts on their comps-list. Lexicalist accounts of clitic climbing,

�nally, require not only that lexical heads may realize some of their complements

as phonological clitics, but also that these heads have a comps-list which is the

append of the list of elements the head subcategorizes for and the comps-list of one

of these elements. That is, verbs allowing for clitic climbing must be complement

inheritance verbs. Note that both the phonological realization of complements as

clitics and complement inheritance lead to valence alternations.

The proposals cited above all rely on lexical rules to account for certain system-

atic alternations in lexical entries. The central role of lexical rules is remarkable,

given the fact that lexical rules are often seen as more or less ad hoc, procedural,

extensions of the formalism, whose formal status is far from resolved.

At the same time, it has been customary in hpsg to employ relational, recursive,

constraints. That is, in accounts of phenomena such as extraction, complement

�

Rijksuniversiteit Groningen, vakgroep Alfa-informatica

26 Valence Alternations without Lexical Rules

inheritance, quanti�er scoping, and word order, the values of list and set-valued

features are routinely de�ned using relations such as member, delete, append,

and (sequence) union. Lexical rules in particular, are often de�ned using such

relations.

Finally, the treatment of valence in recent versions of hpsg is more subtle than

in the versions presented in Pollard and Sag (1987) and Pollard and Sag (1994,

chapters 1-8). Following Borsley (1989), it is now customary to distinguish sub-

jects from other complements by means of the two valence features subj and comps

(replacing the single subcat feature used before). Furthermore, valence is distin-

guished from argument structure, represented by the feature arg-st. Argument

structure contains the list of elements which a lexical sign selects for and is the

level of representation to which the binding principles apply. While in the canon-

ical case arg-st will correspond to the append of subj and comps, this is by no

means always true. In Manning and Sag (1995) it is observed that phenomena such

as passive, `pro-drop', and syntactic ergativity in a number of languages can be seen

as evidence for several non-canonical relationships between valence and argument

structure, providing evidence for a level of representation independent of valence.

Note also that complement inheritance verbs will typically contain (inherited) ele-

ments on comps that do not correspond to arguments of that verb. Lexicalized

extraction, �nally, implies that some (non-subject) elements on arg-st will not be

present on comps, but are included in slash instead.

In this paper, it is argued that the distinction between valence and argument

structure allows valence changing lexical rules to be eliminated. Valence alterna-

tions are captured instead by general, possibly recursive, constraints de�ning the

mapping between argument structure and valence. We demonstrate this in some

detail for complement extraction and adjunct introduction. Other valence chan-

ging lexical rules (such as) can in principle be replaced by constraints in a similar

fashion.

1

Approaches to valence variation using relational constraints have been proposed

by, among others, Kathol (1994) and Frank (1994). The current proposal, however,

allows recursive constraints, and thus it can account for complement extraction

(requiring arbitrary elements on arg-st to be realized as gaps) and adjunct in-

troduction (requiring the insertion of an arbitrary number of adjuncts on arg-st

(and comps)). Furthermore, the constraints proposed below do not require the

introduction of additional features. Instead, all constraints apply to independently

motivated features, leading to a tight integration of the constraint system with the

overall architecture of hpsg.

The connection between lexical rules and relational constraints was �rst noted

in van Noord and Bouma (1994). By viewing lexical rules as relational constraints,

delayed evaluation techniques can be used to solve the computational problems

posed by recursive lexical rules. However, the constraints in van Noord and Bouma

(1994) hold between full-blown lexical entries (i.e. signs), whereas below we use

1

In Sag and Miller (to appear), for instance, an account of French clitization is presented

which is directly compatible with (and inspired by) the approach outlined below in that it de�nes

the realization of certain elements on arg-st as clitics by means of a constraint on the mapping

between arg-st and comps, instead of by means of a lexical rule, as in previous proposals.

Bouma 27

constraints to relate only speci�c features within a sign. Since all constraints apply

to the same sign conjunctively, the issue of rule-ordering, which was solved in van

Noord and Bouma (1994) by hard-wiring the order of rule application into the con-

straints (see Meurers and Minnen (1995) for an alternative approach), disappears.

Also, the need for default sharing of information between input and output of a

lexical rule disappears.

Below, we present an example lexicon fragment, in which both lexical inherit-

ance and lexical rules are used. We point out a number of problematic aspects of

these rules in a constraint-based setting. In section 2, we rede�ne the fragment

by replacing lexical rules with relational constraints. We demonstrate that the

constraint-based fragment naturally leads to an account of complement extraction

which subsumes the possibility of adjunct extraction. In section 3, we argue that

the kind of spurious ambiguity noted in Hinrichs and Nakazawa (1996) does not

arise in our proposal.

1 A lexicon fragment with lexical rules

We present a lexicon fragment for verbs which uses inheritance, constraints, and

lexical rules. We point out various problematic aspects of this set-up.

The basic lexicon

A de�nite clause speci�cation for the basic lexical entries of a small lexicon fragment

is given in �g. 1. The unary predicate basic-entry de�nes the set of basic lexical

entries in the language. A basic entry is of type word, and can be a major category

(i.e. v, n, etc.) entry satisfying the slash-amalgamation constraint (introduced

below). A verbal major category must satisfy verbal-subcat and map-args. The

�rst de�nes the various verbal subcategorization types, whereas the latter de�nes

the mapping between argument structure and valence.

Following Manning and Sag (1995), we assume that di�erent verbal subcat-

egorization types di�er only in their argument structure, and that the values of

the valence features are de�ned by means of a general mapping constraint. This

is the task of the relational constraint map-args. Canonically, the �rst element

on arg-st is the subject, while the rest is equal to comps ('j' connects the head

and tail of a list). (Alternative de�nitions are considered below.). By combining

the de�nitions of verbal-subcat, verbal-lex, and map-args, we can for instance

derive the following fact:

(1) major(

2

6

6

6

6

6

6

6

6

4

phon hates

head v

arg-st h

1

np

i

,

2

np

j

i

subj h

1

i

comps h

2

i

cont hate

0

(i; j)

3

7

7

7

7

7

7

7

7

5

)

28 Valence Alternations without Lexical Rules

basic-entry(

1

2

6

4

word

arg-st

2

slash

3

3

7

5

)

major(

1

) ^ slash-amalgamation(

2

,

3

)

major(

1

2

6

6

6

4

head v

arg-st

2

subj

3

comps

4

3

7

7

7

5

)

verbal-subcat(

1

) ^ map-args(

2

,

3

,

4

)

verbal-subcat(

2

6

4

phon

1

arg-st h np

i

i

cont

2

(i)

3

7

5

)

verbal-lex(intrans,

1

,

2

)

verbal-subcat(

2

6

4

phon

1

arg-st h np

i

,np

j

i

cont

2

(i; j)

3

7

5

)

verbal-lex(trans,

1

,

2

)

verbal-lex(instrans,sleeps,sleep

0

)

verbal-lex(trans,hates,hate

0

)

map-args(h

1

j

2

i, h

1

i,

2

)

slash-amalgamation(h i, ;)

slash-amalgamation(h [slash

1

] j

2

i,

1

]

3

)

slash-amalgamation(

2

,

3

)

Figure 1: A fragment of the basic lexicon

Bouma 29

The two main features of the lexicalist approach to extraction presented in Sag

(1995) is the elimination of the nonlocal feature principle in favour of a

lexical slash amalgamation constraint and the elimination of traces in favour of a

lexical complement extraction rule. Slash amalgamation requires that the slash-

value of a basic lexical entry is the set-union of the slash-values of its arguments.

The slash-amalagamation constraint implements this by recursively traversing

the list of elements on arg-st, and unioning all the slash values: (] denotes

(non-vacuous) set-union). Slash amalgamation makes the nonlocal feature

principle super
uous, as slash can simply be shared between head and mother in

phrases without a �ller daughter, while slash is subject to rule-speci�c constraints

in head-�ller phrases. An example of slash amalgamation at work is given after we

have introduced the lexical rule for extraction.

The basic lexicon incorporates the following notion of lexical inheritance: A

basic entry has various major category entries as its subclasses. All of these sub-

classes must satisfy slash-amalgamation. Similarly, the verbal major category

class has various verbal subcategorization types as subclass. All of these must

satisfy map-args. Thus, the unary predicates in general de�ne subclasses of the

general class basic-entry, whereas the other predicates de�ne constraints which

must hold for the class in whose antecedent the predicate appears.

Adding lexical rules

In �g. 2, we de�ne two lexical rules. A lexical rule de�nes a relationship between

an `input' and `output' lexical entry. Therefore, lexical rules can be added to the

fragment as instances of the relation lexical-rule(In,Out). Furthermore, the set

of lexical entries (basic or derived) is now de�ned by the relation entry.

entry(

1

)

basic-entry(

1

)

entry(

1

)

entry(

0

) ^ lexical-rule(

0

,

1

)

%% complement extraction lexical rule (celr)

lexical-rule(

2

4

comps

1

*"

loc

2

slash f

2

g

#+

3

5

,

h

comps

1

i

)

%% adjuncts lexical rule

lexical-rule(

"

arg-st

1

cont

2

#

,

"

arg-st

1

� h adv i

cont adv0(

2

)

#

)

Figure 2: Adding lexical rules

The complement extraction lexical rule (celr) is adopted from Sag (1995), and

30 Valence Alternations without Lexical Rules

identi�es an element on comps as a gap (i.e. subtype of synsem which satis�es

the constraint that its slash-value is a singleton set, the only element of which

is reentrant with loc). The gap is absent in the output of the rule (
 denotes

sequence union). The interaction of this rule with slash amalgamation implies that

the slash-value of the deleted element will be included in slash of the input (and

output) sign. As each complement is also present on arg-st, and the slash-value

of the sign itself is the union of the slash-value of its members, the instantiation

of slash on one of these members will have a direct e�ect on slash. Furthermore,

as it is assumed that information is shared by default between input and output,

the instantiated slash value will be present on the output of the rule as well.

Note, however, that the present formulation does not account for default sharing

of information.

Assuming the latter problem can be solved, the celr allows the derivation of

the following lexical entry, in which the object has been extracted:

(2) entry(

2

6

6

6

6

6

6

6

6

6

4

phon hates

arg-st

*

1

np

i

[slash

3

],

"

loc

2

np

j

slash f

2

g

#+

subj h

1

i

comps h i

slash

3

] f

2

g

3

7

7

7

7

7

7

7

7

7

5

)

Together with slash amalgamation, and the assumption that slash is a head feature

in head-valence phrases, while it gets `bound' in head-�ller phrases, this allows for

the derivations of the example in �g. 3.

The second lexical rule lexically introduces adjuncts as complements. Several

versions of such a rule have been presented (Miller 1992; van Noord and Bouma

1994; Manning, Sag, and Iida 1996). Here, we will assume, following Manning,

Sag, and Iida (1996), that adjuncts are added to arg-st for reasons of binding and

(adjunct) extraction (� denotes append).

Again, this rule as given is incomplete. However, an appeal to default matching

cannot give the correct results in this case. Note that the newly introduced adjunct

should be added to comps as well. This means that the value of comps on input

and output must di�er, in spite of the fact that the rule does not mention them.

Intuitively, the correct value for comps should follow from the map-args constraint.

It is unclear, however, how that constraint could be made to apply at this point. For

one thing, the interaction with complement extraction (which creates exceptions

to the canonical mapping relation) appears to be highly problematic. That is, a

lexical entry derived by means of complement extraction contains an element on

arg-st which is not realized on comps (i.e. the derived entry for kiss above).

Adding an adjunct to such an entry and reapplying map-args to the result would

reintroduce the extracted complement.

A similar di�culty arises in trying to account for adjunct extraction. The celr

relies on the fact that slash-amalgamation takes into account all elements on

arg-st. However, the adjuncts rule introduces new elements on arg-st. This

Bouma 31

S

2

NP S=f

2

g

Kim NP VP=f

2

g

we V=f

2

g S=f

2

g

know

1

NP VP

�

comps h i

slash f

2

g

�

Dana VP

2

4

arg-st h

1

,

2

i

comps h

2

i

subj h

1

i

3

5

hates

Figure 3: Kim, we know Dana hates

implies that extracting an adjunct by means of the celr only has the intended

e�ect if slash-amalgamation is used to `recompute' the value of slash on the

output of the rule.

Problems for lexical rules

We conclude this section with an overview of problematic aspects of lexical rules

in a constraint-based setting.

Default sharing between input and output. Lexical rules typically af-

fect only a small part of the information in a lexical entry. To account for the

similarity between input and output, some kind of default sharing of information

is required. Default uni�cation as de�ned in Bouma (1992), Carpenter (1992) or

Lascarides, Briscoe, Asher, and Copestake (1996) either is not applicable to the

typed constraint language presupposed by hpsg or to the problem of default shar-

ing in lexical rules. Therefore, Meurers (1995) proposes a special-purpose default

mechanism for lexical rules. Even if this problem can be solved, it is still the case

that lexical rules are the only component of hpsg where nonmonotonicity comes

into play.

Interaction with Inheritance. The adjuncts lexical rule illustrates clearly

that in some cases one wants to use inheritance of constraints to �ll in missing

information in the output, instead of default sharing. The discussion of lexical

rules in Pollard and Sag (1987, chapter 8) also makes this assumption. No detailed

proposals for such an interpretation of lexical rules exist, however. The con
ict

between these two interpretations of lexical rules also seems to have gone unnoticed

in the literature.

32 Valence Alternations without Lexical Rules

Spurious ambiguity. The complement extraction lexical rule removes an

element from comps. If this rule is used to delete two elements, say C

1

and

C

2

, one could either remove C

1

�rst, or C

2

. The distinction is irrelevant for the

outcome, however. Similarly, complement extraction removes an element, while

adjunct introduction adds an element. Again, both orders are possible, but in

general (the exception being cases of adjunct extraction) this will lead to the same

result. To eliminate this kind of redundancy, one may have to introduce external

rule ordering, reformulate the rules so that they no longer need to apply recursively

(van Noord and Bouma 1994), or add �nite state control devices (Meurers and

Minnen 1995).

Subsumption. Hinrichs and Nakazawa (1996) have argued that lexical rules

should only be applied to lexical entries that are subsumed by the input conditions

of the rule. However, not all lexical rules can be interpreted this way. Also, checking

for subsumption appears to be incompatible with certain processing strategies. We

return to this issue in section 3.

2 A constraint-based alternative

A radical solution for the problems just mentioned is to eliminate lexical rules

and to account for valence variation by means of (recursive) constraints only. On

the one hand, the elimination of lexical rules is a substantial simpli�cation of the

formalism. On the other hand, using recursive constraints for valence alternations

is not a complication of the formalism, as recursive constraints are used in various

other components of hpsg already. Note also that lexical rules in particular tend

to be de�ned in terms of recursive constraints. That is, arguments that a system

with lexical rules allows fewer or simpler constraints than a system without lexical

rules can be rejected easily.

The fragment presented in section 1 de�nes the relationship between argument

structure and valence by means of a mapping constraint. Valence changing lexical

rules, such as the complement extraction lexical rule, typically derive lexical entries

which do not obey the `canonical mapping'. A more principled approach to valence

alternations, therefore, is to take these lexical entries not as exceptions, derived by

means of a rule, but to rede�ne the mapping between argument structure and

valence, so as to allow for the `exceptional' cases as well.

The de�nitions in �g. 4 provide a reformulation of the de�nition of major verbal

category lexical entries presented in �g. 1. The celr and adjuncts lexical rules

are made super
uous by a reformulation of map-args and the introduction of an

adjuncts constraint on verbal lexical entries.

Complement extraction

The map-args constraint relates argument structure to the valence features subj

and comps, as before. The new map-non-subj-args constraint ensures that non-

subject arguments are either realized as complements, or as gaps. The range of

lexical entries satisfying map-args as de�ned in �g. 4 therefore corresponds exactly

to what can be derived by means of the celr, making the latter spurious.

Bouma 33

major(

2

6

6

6

6

6

6

6

6

4

phon

0

head v

arg-st

1

�

5

subj

2

comps

3

cont

4

3

7

7

7

7

7

7

7

7

5

)

verbal-subcat(

2

6

4

phon

0

arg-st

1

cont

6

3

7

5

) ^

adjuncts(

5

,

6

,

4

) ^

map-args(

1

�

5

,

2

,

3

)

%% map-args(Arg-st,Subj,Comps)

map-args(h

1

j

2

i,h

1

i,

3

)

map-non-subj-args(

2

,

3

)

%% map-non-subj-args(Arg-st,Comps)

map-non-subj-args(h i,h i)

map-non-subj-args(h

1

j

2

i, h

1

j

3

i)

map-non-subj-args(

2

,

3

)

map-non-subj-args(

*"

loc

1

slash f

1

g

#

j

2

+

,

3

)

map-non-subj-args(

2

,

3

)

%% adjuncts(Arg-st, Cont, Cont)

adjuncts(h i,

1

,

1

)

adjuncts(h adv j

1

i ,

2

,

3

)

adjuncts(

1

, adv

0

(

2

),

3

)

Figure 4: A fragment without lexical rules

34 Valence Alternations without Lexical Rules

For instance, assume that the following can be derived by resolving major with

verbal-subcat and adjuncts :

(3) major(

2

6

6

6

4

phon hates

arg-st

1

h np

i

, np

j

i

subj

2

comps

3

3

7

7

7

5

) map-args(

1

,

2

,

3

)

This can be resolved with map-args to give rise to exactly the following two results:

(4) a. major(

2

6

6

6

4

phon hates

arg-st h

1

np,

2

np i

subj h

1

i

comps h

2

i

3

7

7

7

5

)

b. major(

2

6

6

6

6

6

6

6

4

phon hates

arg-st

*

1

np,

"

loc

2

np

slash f

2

g

#+

subj h

1

i

comps h i

3

7

7

7

7

7

7

7

5

)

Note that map-args imposes a constraint on lexical entries, and does not de�ne

a relation between lexical entries. Since all lexical entries, or at least all verbs, must

satisfy map-args, and since there is no distinction between a `basic' and a `derived'

lexical entry, the issue of default sharing of information disappears.

A second advantage is that map-non-subj-args recursively traverses arg-st

and (nondeterministically) `decides' for each element whether it is to be realized

as complement or as gap. Consequently, the spurious ambiguity that was observed

for the celr in case multiple complements had to be extracted, does not arise in

the constraint-based approach.

Adding adjuncts

In section 1, we assumed that the argument structure of a verb is fully determined

by its subcategorization type. The adjuncts lexical rule, however, is incompatible

with this assumption, as it appends elements to arg-st which the verb does not

subcategorize for.

The con
ict can be resolved by assuming that argument structure is the append

of two lists (

1

�

5

in the de�nition of verb in �g. 4), where the value of the �rst

is determined by the verbal subcategorization type, and the value of the second

is determined by the adjuncts constraint. A similar modi�cation is necessary

to account for semantics (cont). As adjunct semantics takes the basic verbal

semantics as argument, the semantics of a verb is no longer directly determined by

choosing a particular instance of verbal-subcat. Instead, verbal-subcat supplies

Bouma 35

a basic semantic value which is taken as argument in the adjuncts constraint. The

latter actually determines the cont value of verb.

The e�ect of these modi�cations can be illustrated as follows. Assume that

major resolves with verbal-subcat to give rise to the following:

(5) major(

2

6

6

6

6

6

4

phon hates

arg-st

1

h np

i

, np

j

i �

5

subj

2

comps

3

cont

4

3

7

7

7

7

7

5

)

adjuncts(

5

,hate0(i; j),

4

) ^ map-args(

1

�

5

,

2

,

3

)

Resolution with adjuncts, among others, gives:

(6) major(

2

6

6

6

6

6

4

phon hates

arg-st

1

h np

i

, np

j

, adv i

subj

2

comps

3

cont adv

0

(hate0(i; j))

3

7

7

7

7

7

5

) map-args(

1

,

2

,

3

)

which in turn can be resolved against map-args to give:

(7) major(

2

6

6

6

6

6

4

phon hates

arg-st h

1

np

i

,

2

np

j

,

3

adv i

subj h

1

i

comps h

2

,

3

i

cont adv

0

(hate0(i; j))

3

7

7

7

7

7

5

)

The newly introduced adjuncts constraint has exactly the same e�ect as the

corresponding lexical rule. Since the constraint is integrated with the lexical hier-

archy, however, the mapping between argument structure and valence is automat-

ically accounted for.

Adjunct extraction

Since the possibility of adjuncts on arg-st is now taken into account in the de�n-

ition of verbal lexical entries (i.e. the de�nition of major as given in �g. 4),

slash-amalgamation will automatically apply to adjuncts on arg-st as well.

Furthermore, the mapping between argument structure and valence, de�ned by

map-args, will also take adjuncts into account. As slash-amalgamation and

map-args are the two constraints responsible for complement extraction, the pos-

sibility of adjunct extraction is now just a special case of complement extraction.

For instance, an alternative solution for (6) is:

36 Valence Alternations without Lexical Rules

S

3

ADV S=f

3

g

Intensely NP VP=f

3

g

we V=f

3

g S=f

3

g

know

1

NP VP=f

3

g

Dana V

2

4

comps h

2

i

subj h

1

i

slash f

3

g

3

5

2

NP

hates Kim

Figure 5: Intensely, we know Dana hates Kim

(8) verb(

2

6

6

6

6

6

6

6

6

6

4

phon hates

arg-st

*

1

np

i

,

2

np

j

,

"

loc

3

adv

slash f

3

g

#+

subj h

1

i

comps h

2

,

3

i

cont adv

0

(hate0(i; j))

3

7

7

7

7

7

7

7

7

7

5

)

This allows us to derive the entry in (9) for hates, where slash-amalgamation has

applied. An example involving this entry is given in �g. 5.

(9) entry(

word

2

6

6

6

6

6

6

6

6

6

6

6

4

phon hates

arg-st

0

*

1

np

i

[sl

4

],

2

np

j

[sl

5

],

"

loc

3

adv

sl f

3

g

#+

subj h

1

i

comps h

2

i

cont adv

0

(hate0(i; j))

slash

4

]

5

] f

3

g

3

7

7

7

7

7

7

7

7

7

7

7

5

)

Constraints declaratively and monotonically de�ne the space of possible lexical

entries, whereas lexical entries do this procedurally and nonmonotonically. There-

fore, constraints can be integrated into a hierarchical lexicon de�nition in a way

that is di�cult or impossible for a system using lexical rules. Furthermore, since

the system is declarative, procedural issues such as rule ordering and spurious am-

biguity do not arise. Since constraints relate speci�c features, and not (complete)

lexical entries, default sharing of information also is no longer necessary.

Bouma 37

There are also linguistic bene�ts. A grammar avoiding spurious ambiguity is

linguistically preferable over a system which does allow spurious derivations. Also,

as shown above, the constraint-based approach can account for the possibility of

adjunct extraction in a way that does not require any additional rules or mechan-

isms.

3 Complement Inheritance and Extraction

In this section, we argue that the constraint-based approach also o�ers a solution

for the spurious ambiguity problem observed in Hinrichs and Nakazawa (1996).

Hinrichs and Nakazawa (1994) have argued that German modal and auxiliary

verbs are complement inheritance verbs, i.e. they subcategorize for a possibly

unsaturated lexical verbal complement, and include the complements of this verb

in their own comps list. That is, a modal verb such as German k�onnen (to be able

to) must be associated with the feature structure in (10). In Hinrichs and Nakazawa

(1996) it is argued that a combination of complement inheritance and an approach

to complement extraction based on lexical rules leads to spurious ambiguity in

sentences containing modal or auxiliary verbs, as an inherited complement may be

extracted not only from the comps-list of the verb which subcategorizes for it, but

also from the comps-list of each of the verbs inheriting this complement. This is

illustrated in (11).

(10)

2

6

6

6

6

6

4

phon k�onnen

arg-st h

1

np

i

,

2

v

j

[comps

3

] i

subj h

1

i

comps

3

� h

2

i

cont be-able0(i; j)

3

7

7

7

7

7

5

)

(11)

1

NP

2

V

h

comps h

1

i

i

V

h

comps h

1

,

2

i

i

Welches Buch wird Peter kaufen k�onnen

which book will Peter buy be-able

Which book will Peter be able to buy

The extracted element welches Buch appears on the comps list of two verbs, and

thus a complement extraction lexical rule could apply to either kaufen or k�onnen.

The solution proposed by Hinrichs and Nakazawa (1996) is to let lexical rules

apply only to inputs which are subsumed by the input conditions of the rule. Since

inherited complements are not instantiated (lexically) on comps of a complement

inheritance verb, the complement extraction lexical can no longer extract inherited

complements. This solution is not without problems, however. First, more recent

versions of the celr, such as the one proposed in Sag (1995), both instantiate and

delete an element in the input. Thus, for such a rule it is crucial that the input is

not necessarily subsumed by the input conditions of the rule. Second, subsumption

appears to be thoroughly incompatible with processing strategies involving delayed

38 Valence Alternations without Lexical Rules

evaluation (van Noord and Bouma 1994), a technique which is relevant especially

for the type of grammar considered in Hinrichs and Nakazawa (1996). For a sub-

sumption test, the moment of evaluation, and thus the order in which constraints

are evaluated, is essential. For delayed evaluation, however, it must be the case

that order in which constraints are evaluated can be determined dynamically.

The constraint-based analysis of complement extraction developed in section 2

integrates the account of extraction with the mapping between argument struc-

ture and valence. Remember that map-non-subj-args determines for each (non-

subject) element on arg-st whether it is to be realized as a complement or as a

gap. Consequently, only arguments of a verb can be extracted. Since the extrac-

ted np in examples such as (11) above appears on the arg-st of kaufen only, no

spurious ambiguity will arise. Thus, the elimination of lexical rules also elimin-

ates the problem observed in Hinrichs and Nakazawa (1996), without requiring a

subsumption test.

The introduction of complement inheritance does present another kind of chal-

lenge, however. In the constraint-based fragment presented above, verbal subcat-

egorization types only specify argument structure. The mapping between argument

structure and valence is determined by a general map-args constraint. Comple-

ment inheritance verbs are characterized by the fact that their comps-list may

contain (inherited) complements which do not correspond to elements of arg-st.

Consequently, complement inheritance verbs do not obey the map-args constraint

as de�ned in the previous section.

Complement inheritance can be accounted for if a rather di�erent characteriza-

tion of complement inheritance is introduced. Together with a modi�cation of the

map-args constraint this will make it possible to include complement inheritance

verbs in the constraint based fragment developed so far.

Whereas complements are normally saturated phrases (i.e. their comps-value is

the empty list), the verbal complements of complement inheritance verbs need not

be saturated. Thus, in terms of the verbal subcategorization relation introduced

in the previous section, the distinction between a regular vp-complement taking

verb, such as versuchen (try) and k�onnen is that the former requires a saturated vp

whereas the latter selects for a (lexical) verbal complement, but does not impose

any conditions on the value of comps of that complement. The relevant entries for

verbal-subcat are given below.

(12) verbal-subcat(

2

6

4

phon versuchen

arg-st h np

i

, v

j

[comps h i]i

cont versuchen

0

(i; j)

3

7

5

)

verbal-subcat(

2

6

4

phon k�onnen

arg-st h np

i

, v

j

[comps

1

]i

cont k�onnen

0

(i; j)

3

7

5

)

Note that

1

in the second clause is provided only to make the contrast with the

�rst clause explicit. As it is an anonymous variable, no constraint whatsoever is

imposed on the value of comps. This su�ces as a characterization of complement

inheritance, if map-non-subj-args is modi�ed as follows:

Bouma 39

(13) map-non-subj-args(h i)

map-non-subj-args(h

1

[comps

2

] j

3

i, (

2

� h

1

i �

4

))

map-non-subj-args(

3

,

4

)

map-non-subj-args(

*"

loc

1

slash f

1

g

#

j

2

+

,

3

)

map-non-subj-args(

2

,

3

)

The second clause, which maps non-subject arguments onto comps also prepends

the complements of this element. This clause applies generally (i.e. to all comple-

ments) and thus the possibility of complement inheritance is the rule, rather than

the exception. Note, however, that for verbs selecting saturated complements,

2

in the de�nition above will be the empty list. In those cases, the de�nition of

map-non-subj-args simply works as before. In cases where the value of comps

of a complement is left unspeci�ed (i.e. the verbal complement of an inheritance

verb) the de�nition has the e�ect of prepending the complements of the verbal

complement on comps, and thus a lexical entry will result which is identical to

what is proposed in Hinrichs and Nakazawa (1994).

4 Conclusions

We have argued that recursive constraints can be used to eliminate a highly prob-

lematic class of lexical rules, i.e. those a�ecting valence. Apart from avoiding

a number of technical di�culties associated with the use of lexical rules, the

constraint-based alternative has the advantage of providing a uniform account of

complement and adjunct selection without spurious ambiguity.

References

Borsley, R. D. (1989). An HPSG approach to Welsh. Journal of Linguistics 25,

333{354.

Bouma, G. (1992). Feature structures and nonmonotonicity. Computational Lin-

guistics 18 (2), 183{204.

Carpenter, B. (1992). Skeptical and creduluous default uni�cation with ap-

plications to templates and inheritance. In T. Briscoe, A. Copestake, and

V. de Paiva (Eds.), Default Inheritance within Uni�cation-Based Approaches

to the Lexicon. Cambridge: Cambridge University Press.

Frank, A. (1994). Verb second by lexical rule or by underspeci�cation. Technical

report, Institute for Computational Linguistics, Stuttgart.

Hinrichs, E. and T. Nakazawa (1994). Linearizing AUXs in German verbal com-

plexes. In J. Nerbonne, K. Netter, and C. Pollard (Eds.), German in Head-

driven Phrase Structure Grammar, Lecture Note Series, pp. 11{38. Stanford:

CSLI.

40 Valence Alternations without Lexical Rules

Hinrichs, E. and T. Nakazawa (1996). Applying lexical rules under subsump-

tion. In Proceedings of the 16th International Conference on Computational

Linguistics (COLING), Copenhagen, pp. 543{549.

Iida, M., C. Manning, P. O'Neill, and I. Sag (1994). The lexical integrity of

Japanese causatives. Paper presented at the LSA 1994 Annual Meeting.

Kathol, A. (1994). Passive without lexical rules. In J. Nerbonne, K. Netter,

and C. Pollard (Eds.), German in Head-driven Phrase Structure Grammar,

Stanford, pp. 237{272. CSLI.

Lascarides, A., T. Briscoe, N. Asher, and A. Copestake (1996). Order in-

dependent and persistent typed default uni�cation. Linguistics and Philo-

sophy 19 (1), 1{89.

Manning, C. and I. Sag (1995). Dissociations between argument structure and

grammatical relations. Draft, Stanford University, July 1995.

Manning, C., I. Sag, and M. Iida (1996). The lexical integrity of Japanese caus-

atives. In T. Gunji (Ed.), Studies on the Universality of Constraint-based

Phrase Structure Grammars. Osaka University.

Meurers, W. D. (1995). Towards a semantics of lexical rules as used in HPSG.

In Proceedings of the Conference on Formal Grammar, Barcelona.

Meurers, W. D. and G. Minnen (1995). The covariation approach as compu-

tational treatment of hpsg lexical rules. In Proceedings of the Fifth Inter-

national Workshop on Natural Language Understanding and Logic Program-

ming, Lisbon.

Miller, P. (1992). Clitics and Constituents in Phrase Structure Grammar. New

York: Garland.

Pollard, C. and I. Sag (1987). Information Based Syntax and Semantics, Volume

1. Center for the Study of Language and Information Stanford.

Pollard, C. and I. Sag (1994). Head-driven Phrase Structure Grammar. Center

for the Study of Language and Information Stanford.

Sag, I. (1995). Constraint-based Extraction (Without a Trace). Draft, Stanford

University, November, 1995.

Sag, I. and P. Miller (to appear). French clitic movement without clitics or move-

ment. Natural Language and Linguistic Theory

van Noord, G. and G. Bouma (1994). Adjuncts and the processing of lexical

rules. In Proceedings of the 15th International Conference on Computational

Linguistics (COLING), Kyoto, pp. 250{256.

