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Abstract

In this paper we describe the application of Memory-Based Learning to the

problem of Prepositional Phrase attachment disambiguation. We compare

Memory-Based Learning, which stores examples in memory and generalizes

by using intelligent similarity metrics, with a number of recently proposed

statistical methods that are well suited to large numbers of features. We

evaluate our methods on a common benchmark dataset and show that our

method compares favorably to previous methods, and is well-suited to in-

corporating various unconventional representations of word patterns such as

value di�erence metrics and Lexical Space.

Introduction

A central issue in natural language analysis is structural ambiguity resolution. A

sentence is structurally ambiguous when it can be assigned more than one syn-

tactic structure. The drosophila of structural ambiguity resolution is Prepositional

Phrase (PP) attachment. Several sources of information can be used to resolve PP

attachment ambiguity. Psycholinguistic theories have resulted in disambiguation

strategies which use syntactic information only, i.e. structural properties of the

parse tree are used to choose between di�erent attachment sites. Two principles

based on syntactic information are Minimal Attachment (MA) and Late Closure

(LC) (Frazier 1979). MA tries to construct the parse tree that has the fewest nodes,

whereas LC tries to attach new constituents as low in the parse tree as possible.

These strategies always choose the same attachment regardless of the lexical con-

tent of the sentence. This results in a wrong attachment in one of the following

sentences:

1 She eats pizza with a fork.

2 She eats pizza with anchovies.

�
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In sentence 1, the PP \with a fork" is attached to the verb \eats" (high attach-

ment). Sentence 2 di�ers only minimally from the �rst sentence; here, the PP \with

anchovies" does not attach to the verb but to the NP \pizza" (low attachment). In

languages like English and Dutch, in which there is very little overt case marking,

syntactic information alone does not su�ce to explain the di�erence in attachment

sites between such sentences. The use of syntactic principles makes it necessary

to re-analyse the sentence, using semantic or even pragmatic information, to reach

the correct decision. In the example sentences 1 and 2, the meaning of the head of

the object of `with' determines low or high attachment. Several semantic criteria

have been worked out to resolve structural ambiguities. However, pinning down

the semantic properties of all the words is laborious and expensive, and is only

feasible in a very restricted domain. The modeling of pragmatic inference seems to

be even more di�cult in a computational system.

Due to the di�culties with the modeling of semantic strategies for ambiguity

resolution, an attractive alternative is to look at the statistics of word patterns

in annotated corpora. In such a corpus, di�erent kinds of information used to

resolve attachment ambiguity are, implicitly, represented in co-occurrence regular-

ities. Several statistical techniques can use this information in learning attachment

ambiguity resolution.

Hindle and Rooth (1993) were the �rst to show that a corpus-based approach to

PP attachment ambiguity resolution can lead to good results. For sentences with

a verb/noun attachment ambiguity, they measured the lexical association between

the noun and the preposition, and the verb and the preposition in unambiguous

sentences. Their method bases attachment decisions on the ratio and reliabil-

ity of these association strengths. Note that Hindle and Rooth did not include

information about the second noun and therefore could not distinguish between

sentence 1 and 2. Their method is also di�cult to extend to more elaborate com-

binations of information sources.

More recently, a number of statistical methods better suited to larger numbers of

features have been proposed for PP-attachment. Brill and Resnik (1994) applied

Error-Driven Transformation-Based Learning, Ratnaparkhi, Reynar and Roukos

(1994) applied a Maximum Entropy model, Franz (1996) used a Loglinear model,

and Collins and Brooks (1995) obtained good results using a Back-O� model.

In this paper, we examine whether Memory-Based Learning (MBL), a family of

statistical methods from the �eld of Machine Learning, can improve on the perform-

ance of previous approaches. Memory-Based Learning is described in Section 1.

In order to make a fair comparison, we evaluated our methods on the common

benchmark dataset �rst used in Ratnaparkhi, Reynar, and Roukos (1994). In sec-

tion 2, the experiments with our method on this data are described. An important

advantage of MBL is its use of similarity-based reasoning. This makes it suited to

the use of various unconventional representations of word patterns (Section 1.3).

In Section 2.2 a comparison is provided between two promising representational

forms. Section 3 contains a comparison of our method to previous work, and we

conclude with section 4.
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1 Memory-Based Learning

Classi�cation-based machine learning algorithms can be applied in learning dis-

ambiguation problems by providing them with a set of examples derived from an

annotated corpus. Each example consists of an input vector representing the con-

text of an attachment ambiguity in terms of features (e.g. syntactic features, words,

or lexical features in the case of PP-attachment), and an output class (one of a

�nite number of possible attachment positions representing the correct attachment

position for the input context). Machine learning algorithms extrapolate from the

examples to new input cases, either by extracting regularities from the examples

in the form of rules, decision trees, connection weights, or probabilities in greedy

learning algorithms, or by a more direct use of analogy in lazy learning algorithms.

It is the latter approach which we investigate in this paper. It is our experience

that lazy learning (such as the Memory-Based Learning approach adopted here) is

more e�ective for several language-processing problems (see Daelemans (1995) for

an overview) than more eager learning approaches. Because language-processing

tasks typically can only be described as a complex interaction of regularities, sub-

regularities and (families of) exceptions, storing all empirical data as potentially

useful in analogical extrapolation works better than extracting the main regularities

and forgetting the individual examples (Daelemans 1996).

1.1 Analogy from Nearest Neighbors

The techniques used are variants and extensions of the classic k-nearest neighbor

(k-NN) classi�er algorithm. The instances of a task are stored in a table, together

with the associated \correct" output. When a new pattern is processed, the k

nearest neighbors of the pattern are retrieved from memory using some similarity

metric. The output is determined by extrapolation from the k nearest neighbors.

The most common extrapolation method is majority voting which simply chooses

the most common class among the k nearest neighbors as an output.

1.2 Similarity metrics

The most basic metric for patterns with symbolic features is the Overlap metric

given in Equations 1 and 2; where �(X;Y ) is the distance between patterns X and

Y , represented by n features, w

i

is a weight for feature i, and � is the distance per

feature. The k-NN algorithm with this metric, and equal weighting for all features

is called ib1 (Aha, Kibler, and Albert 1991). Usually k is set to 1.

�(X;Y ) =

n

X

i=1

w

i

�(x
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; y
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i
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; else 1 (2)

This metric simply counts the number of (mis)matching feature values in both

patterns. If no information about the importance of features is available, this is



210 Memory-Based PP Attachment

a reasonable choice. But if we have information about feature relevance, we can

add linguistic bias to weight or select di�erent features (Cardie 1996). An altern-

ative, more empiricist, approach is to look at the behavior of features in the set

of examples used for training. We can compute statistics about the relevance of

features by looking at which features are good predictors of the class labels. In-

formation Theory provides a useful tool for measuring feature relevance in this way,

see (Quinlan 1993).

Information Gain (IG) weighting looks at each feature in isolation, and meas-

ures how much information it contributes to our knowledge of the correct class

label. The Information Gain of feature f is measured by computing the di�erence

in uncertainty (i.e. entropy) between the situations without and with knowledge of

the value of that feature (Equation 3):

w

f

=

H(C)�

P

v2V

f

P (v)�H(Cjv)

si(f)

(3)

si(f) = �

X

v2V

f

P (v) log

2

P (v) (4)

Where C is the set of class labels, V

f

is the set of values for feature f , and

H(C) = �

P

c2C

P (c) log

2

P (c) is the entropy of the class labels. The probabilities

are estimated from relative frequencies in the training set. The normalizing factor

si(f) (split info) is included to avoid a bias in favor of features with more values. It

represents the amount of information needed to represent all values of the feature

(Equation 4). The resulting IG values can then be used as weights in Equation 1.

The k-NN algorithm with this metric is called ib1-ig (Daelemans and van den

Bosch 1992).

The possibility of automatically determining the relevance of features implies

that many di�erent and possibly irrelevant features can be added to the feature set.

This is a very convenient methodology if theory does not constrain the choice su�-

ciently beforehand, or if we wish to measure the importance of various information

sources experimentally.

1.3 MVDM and LexSpace

Although ib1-ig solves the problem of feature relevance to a certain extent, it does

not take into account that the symbols used as values in the input vector features

(in this case words, syntactic categories, etc.) are not all equally similar to each

other. According to the Overlap metric, the words Japan and China are as similar

as Japan and pizza. We would like Japan and China to be more similar to each

other than Japan and pizza. This linguistic knowledge could be encoded into the

word representations by hand, e.g. by replacing words with semantic labels, but

again we prefer a more empiricist approach in which distances between values of the

same feature are computed di�erentially on the basis of properties of the training

set. To this end, we use the Modi�ed Value Di�erence Metric (MVDM) of Cost
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and Salzberg (1993); a variant of a metric �rst de�ned in Stan�ll and Waltz (1986).

This metric (Equation 5) computes the frequency distribution of each value of a

feature over the categories. Depending on the similarity of their distributions, pairs

of values are assigned a distance.

�(V

1

; V

2

) =

n

X

i=1

jP (C

i

jV

1

)� P (C

i

jV

2

)j (5)

In this equation, V

1

and V

2

are two possible values for feature f ; the distance is

the sum over all n categories; and P (C

i

jV

j

) is estimated by the relative frequency

of the value V

j

being classi�ed as category i.

In our PP-attachment problem, the e�ect of this metric is that words (as feature

values) are grouped according to the category distribution of the patterns they

belong to. It is possible to cluster the distributions of the values over the categories,

and obtain classes of similar words in this fashion. For an example of this type

of unsupervised learning as a side-e�ect of supervised learning, see Daelemans,

Berck, and Gillis (1996). In a sense, the MVDM can be interpreted as implicitly

implementing a statistically induced, distributed, non-symbolic representation of

the words. In this case, the category distribution for a speci�c word is its lexical

representation. Note that the representation for each word is entirely dependent

on its behavior with respect to a particular classi�cation task.

In many practical applications of MB-NLP, we are confronted with a very lim-

ited set of examples. This poses a serious problem for the MVD metric. Many

values occur only once in the whole data set. This means that if two such values

occur with the same class, the MVDM will regard them as identical, and if they

occur with two di�erent classes their distance will be maximal. In many cases, the

latter condition reduces the MVDM to the overlap metric, and additionally some

cases will be counted as an exact match on the basis of very shaky evidence. It is,

therefore, worthwhile to investigate whether the value di�erence matrix �(V

i

; V

j

)

can be reused from one task to another. This would make it possible to reliably

estimate all the � parameters on a task for which we have a large amount of training

material, and to pro�t from their availability for the MVDM of a smaller domain.

Such a possibility of reuse of lexical similarity is found in the application of Lex-

ical Space representations (Sch�utze 1994; Zavrel and Veenstra 1995). In LexSpace,

each word is represented by a vector of real numbers that stands for a \�ngerprint"

of the words' distributional behavior across local contexts in a large corpus. The

distances between vectors can be taken as a measure of similarity. In Table 1, a

number of examples of nearest neighbors are shown.

For each focus-word f , a score is kept of the number of co-occurrences of words

from a �xed set of C context-words w

i

(1 < i < C) in a large corpus. Previous

work by Hughes (1994) indicates that the two neighbors on the left and on the

right (i.e. the words in positions n � 2, n � 1, n + 1, n + 2, relative to word n)

are a good choice of context. The position of a word in Lexical Space is thus given

by a four component vector, of which each component has as many dimensions

as there are context words. The dimensions represent the conditional probabilit-
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IN in

for(in)0.05 since(in)0.10 at(in)0.11 after(in)0.11 under(in)0.11

on(in)0.12 until(in)0.12 by(in)0.13 among(in)0.14 before(in)0.16

GROUP nn

network(nn)0.08 �rm(nn)0.11 measure(nn)0.11 package(nn)0.11 chain(nn)0.11

club(np)0.11 bill(nn)0.11 partnership(nn)0.12 panel(nn)0.12 fund(nn)0.12

JAPAN np

china(np)0.16 france(np)0.16 britain(np)0.19 canada(np)0.19 mexico(np)0.19

india(np)0.19 australia(np)0.20 korea(np)0.22 italy(np)0.23 detroit(np)0.23

Table 1: Some examples of the direct neighbors of words in a Lexical Space (con-

text:250 lexicon:5000 norm:1). The 10 nearest neighbors of the word in upper case

are listed by ascending distance.

ies P (w

n�2

1

jf) : : : P (w

n+2

c

jf).

We derived the distributional vectors of all 71479 unique words present in the

3 million words of Wall Street Journal text, taken from the ACL/DCI CD-ROM

I (1991). For the contexts, i.e. the dimensions of Lexical Space, we took the 250

most frequent words.

To reduce the 1000 dimensional Lexical Space vectors to a manageable format

we applied Principal Component Analysis

1

(PCA) to reduce them to a much lower

number of dimensions. PCA accomplishes the dimension reduction that preserves

as much of the structure of the original data as possible. Using a measure of

the correctness of the classi�cation of a word in Lexical Space with respect to a

linguistic categorization (see Zavrel and Veenstra (1995)) we found that PCA can

reduce the dimensionality from 1000 to as few as 25 dimensions with virtually no

loss, and sometimes even an improvement of the quality of the organization.

Note that the LexSpace representations are task independent in that they only

re
ect the structure of neighborhood relations between words in text. However, if

the task at hand has some positive relation to context prediction, Lexical Space

representations are useful.

2 MBL for PP attachment

This section describes experiments with a number of Memory-Based models for PP

attachment disambiguation. The �rst model is based on the lexical information

only, i.e. the attachment decision is made by looking only at the identity of the

words in the pattern. The second model considers the issue of lexical representation

in the MBL framework, by taking as features either task dependent (MVDM)

or task independent (LexSpace) syntactic vector representations for words. The

introduction of vector representations leads to a number of modi�cations to the

distance metrics and extrapolation rules in the MBL framework. A �nal experiment

examines a number of weighted voting rules.

The experiments in this section are conducted on a simpli�ed version of the

\full" PP-attachment problem, i.e. the attachment of a PP in the sequence: VP

1

Using the simplesvd package, which was kindly provided by Hinrich Sch�utze. This software

can be obtained from ftp://csli.stanford.edu /pub/prosit/papers/simplesvd/.
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NP PP. The data consist of four-tuples of words, extracted from the Wall Street

Journal Treebank (Marcus, Santorini, and Marcinkiewicz 1993) by a group at IBM

(Ratnaparkhi, Reynar, and Roukos 1994).

2

They took all sentences that contained

the pattern VP NP PP and extracted the head words from the constituents, yielding

a V N1 P N2 pattern. For each pattern they recorded whether the PP was attached

to the verb or to the noun in the treebank parse. Example sentences 1 and 2 would

then become:

3 eats, pizza, with, fork, V.

4 eats, pizza, with, anchovies, N.

The data set contains 20801 training patterns, 3097 test patterns, and an in-

dependent validation set of 4039 patterns for parameter optimization. It has been

used in statistical disambiguation methods by Ratnaparkhi, Reynar, and Roukos

(1994) and Collins and Brooks (1995); this allows a comparison of our models to

the methods they tested. All of the models described below were trained on all of

the training examples and the results are given for the 3097 test patterns. For the

benchmark comparison with other methods from the literature, we use only results

for which all parameters have been optimized on the validation set.

In addition to the computational work, Ratnaparkhi, Reynar, and Roukos

(1994) performed a study with three human subjects, all experienced treebank

annotators, who were given a small random sample of the test sentences (either as

four-tuples or as full sentences), and who had to give the same binary decision. The

humans, when given the four-tuple, gave the same answer as the Treebank parse

88.2 % of the time, and when given the whole sentence, 93.2 % of the time. As a

baseline, we can consider either the Late Closure principle, which always attaches

to the noun and yields a score of only 59.0 % correct, or the most likely attachment

associated with the preposition, which reaches an accuracy of 72.2 %.

The training data for this task are rather sparse. Of the 3097 test patterns,

only 150 (4.8 %) occurred in the training set; 791 (25.5 %) patterns had at least

1 mismatching word with any pattern in the training set; 1963 (63.4 %) patterns

at least 2 mismatches; and 193 (6.2 %) patterns at least 3 mismatches. Moreover,

the test set contains many words that are not present in any of the patterns in the

training set. Table 2 shows the counts of feature values and unknown values. This

table also gives the Information Gain estimates of feature relevance.

2.1 Overlap-Based Models

In a �rst experiment, we used the IB1 algorithm and the IB1-IG algorithm. The

results of these algorithms and other methods from the literature are given in

Table 3. The addition of IG weights clearly helps, as the high weight of the P feature

in e�ect penalizes the retrieval of patterns which do not match in the preposition.

As we have argued in Zavrel and Daelemans (1997), this corresponds exactly to the

behavior of the Back-O� algorithm of Collins and Brooks (1995), so that it comes

2

The dataset is available from ftp://ftp.cis.upenn.edu/pub/adwait/PPattachData/. We

would like to thank Michael Collins for pointing this benchmark out to us.
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Feature train values total values unknown IG weight

V 3243 3475 232 0.03

N1 4315 4613 298 0.03

P 66 69 3 0.10

N2 5451 5781 330 0.03

C 2 2 0 {

Table 2: Statistics of the PP attachment data set.

Method percent correct

Overlap 83.7 %

Overlap IG ratio 84.1 %

C4.5 79.7 %

Maximum Entropy 77.7 %

Transformations 81.9 %

Back-o� model 84.1 %

Late Closure 59.0 %

Most Likely for each P 72.0 %

Table 3: Scores on the Ratnaparkhi et al. PP-attachment test set (see text); the

scores of Maximum Entropy are taken from Ratnaparkhi et al. (1994); the scores

of Transformations and Back-o� are taken from Collins & Brooks (1995). The C4.5

decision tree results, and the baselines have been computed by the authors.

as no surprise that the accuracy of both methods is the same. Note that the Back-

O� model was constructed after performing a number of validation experiments on

held-out data to determine which terms to include and, more importantly, which

to exclude from the back-o� sequence. This process is much more laborious than

the automatic computation of IG-weights on the training set.

The other methods for which results have been reported on this dataset include

decision trees, Maximum Entropy (Ratnaparkhi, Reynar, and Roukos 1994), and

Error-Driven Transformation-Based Learning (Brill and Resnik 1994),

3

which were

clearly outperformed by both IB1 and IB1-IG, even though e.g. Brill & Resnik used

more elaborate feature sets (words and WordNet classes). Adding more elaborate

features is also possible in the MBL framework. In this paper, however, we focus

on more e�ective use of the existing features. Because the Overlap metric neglects

information about the degree of mismatch if feature-values are not identical, it is

worthwhile to look at more �negrained representations and metrics.

3

The results of Brill's method on the present benchmark were reconstructed by Collins and

Brooks (1995).
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2.2 Continuous Vector Representations for Words

In experiments with Lexical Space representations, every word in a pattern was

replaced by its PCA compressed LexSpace vector, yielding patterns with 25x4

numerical features and a discrete target category. The distance metric used was

the sum of the LexSpace vector distance per feature, where the distance between

two vectors is computed as one minus the cosine, normalized by the cumulative

norm. Because no two patterns have the same distance in this case, to use only

the nearest neighbor(s) means extrapolating from exactly one nearest neighbor.
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Figure 1: Accuracy on the PP-attachment test set of of MVDM and LexSpace

representations as a function of k, the number of nearest neighbors.

In preliminary experiments, this was found to give bad results, so we also ex-

perimented with various settings for k : the parameter that determines the number

of neighbors considered for the analogy. The same was done for the MVDM metric

which has a similar behavior. We found that LexSpace performed best when k was

set to 13 (83.3 % correct); MVDM obtained its best score when k was set to 50

(80.5 % correct). Although these parameters were found by optimization on the

test set, we can see in Figure 1 that LexSpace actually outperforms MVDM for all

settings of k. Thus, the representations from LexSpace which represent the beha-

vior of the values independent of the requirements of this particular classi�cation

task outperform the task speci�c representations used by MVDM. The reason is

that the task speci�c representations are derived only from the small number of
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occurrences of each value in the training set, whereas the amount of text available

to re�ne the LexSpace vectors is practically unlimited. Lexical Space however,

does not outperform the simple Overlap metric (83.7 % correct) in this form. We

suspected that the reason for this is the fact that when continuous representations

are used, the number of neighbors is exactly �xed to k, whereas the number of

neighbors used in the Overlap metric is, in e�ect, dependent on the speci�city of

the match.

2.3 Weighted Voting

This section examines possibilities for improving the behavior of LexSpace vectors

for MBL by considering various weighted voting methods.

The �xed number of neighbors in the continuous metrics can result in an over-

smoothing e�ect. The k-NN classi�er tries to estimate the conditional class prob-

abilities from samples in a local region of the data space. The radius of the region

is determined by the distance of the k-furthest neighbor. If k is very small and

i) the nearest neighbors are not nearby due to data sparseness, or ii) the nearest

neighbor classes are unreliable due to noise, the \local" estimate tends to be very

poor, as illustrated in Figure 1. Increasing k and thus taking into account a larger

region around the query in the dataspace makes it possible to overcome this e�ect

by smoothing the estimate. However, when the majority voting method is used,

smoothing can easily become oversmoothing, because the radius of the neighbor-

hood is as large as the distance of the k'th nearest neighbor, irrespective of the local

properties of the data. Selected points from beyond the \relevant neighborhood"

will receive a weight equal to the close neighbors in the voting function, which can

result in unnecessary classi�cation errors.

A solution to this problem is the use of a weighted voting rule which weights

the vote of each of the nearest neighbors by a function of their distance to the test

pattern (query). This type of voting rule was �rst proposed by Dudani (1976). In

his scheme, the nearest neighbor gets a weight of 1, the furthest neighbor a weight

of 0, and the other weights are scaled linearly to the interval in between.

w

j

=

�

d

k

�d

j

d

k

�d

1

if d

k

6= d

1

1 if d

k

= d

1

(6)

where d

j

is the distance to the query of the j'th nearest neighbor, d

1

the distance

of the nearest neighbor, and d

k

the distance of the furthest (k'th) neighbor.

Dudani further proposed the inverse distance weight (Equation 7), which has

recently become popular in the MBL literature (Wettschereck 1994). In Equation 7,

a small constant is usually added to the denominator to avoid division by zero.

w

j

=

1

d

j

(7)

Another weighting function considered here is based on the work of Shepard

(1987), who argues for a universal perceptual law, in which the relevance of a
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previous stimulus for the generalization to a new stimulus is an exponentially de-

creasing function of its distance in a psychological space. This gives the weighed

voting function of Equation 8, where � and � are constants determining the slope

and the power of the exponential decay function. In the experiments reported

below, � = 3:0 and � = 1:0.

w

j

= e

��d

�

j

(8)

Figure 2 shows the results on the test set for a wide range of k for these voting

methods when applied to the LexSpace represented PP-attachment dataset.
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Figure 2: Accuracy on the PP-attachment test set of various voting methods as a

function of k, the number of nearest neighbors.

With the inverse distance weighting function the results are better than with

majority voting, but here, too, we see a steep drop for k's larger than 17. Using

Dudani's weighting function, the results become optimal for larger values of k, and

remain good for a wide range of k values. Dudani's weighting function also gives us

the best overall result, i.e. if we use the best possible setting for k for each method,

as determined by performance on the validation set (see Table 4).

The Dudani weighted k-nearest neighbor classi�er (k=30) slightly outperforms

Collins & Brooks' (1995) Back-O� model. A further small increase was obtained

by combining LexSpace representations with IG weighting of the features, and

Dudani's weighted voting function. Although the improvement over Back-O� is
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Method % correct

LexSpace (Dudani, k=30) 84.2 %

LexSpace (Dudani, k=50, IG) 84.4 %

Table 4: Scores on the Ratnaparkhi et al. PP-attachment test set with Lexical

Space representations. The values of k, the voting function, and the IG weights

were determined on the training and validation sets.

quite limited, these results are nonetheless interesting because they show that MBL

can gain from the introduction of extra information sources, whereas this is very

di�cult in the Back-O� algorithm. For comparison, consider that the performance

of the Maximum Entropy model with distributional word-class features is still only

81.6% on this data.

3 Discussion

If we compare the accuracy of humans on the V,N,P,N patterns (88.2 % correct)

with that of our most accurate method (84.4 %), we see that the paradigm of

learning disambiguation methods from corpus statistics o�ers good prospects for

an e�ective solution to the problem. After the initial e�ort by Hindle and Rooth

(1993), it has become clear that this area needs statistical methods in which an

easy integration of many information sources is possible. A number of methods

have been applied to the task with this goal in mind.

Brill and Resnik (1994) applied Error-Driven Transformation-Based Learning to

this task, using the verb, noun1, preposition, and noun2 features. Their method

tries to maximize accuracy with a minimal amount of rules. They found an in-

crease in performance by using semantic information from WordNet. Ratnaparkhi,

Reynar, and Roukos (1994) used a Maximum Entropy model and a decision tree

on the dataset they extracted from the Wall Street Journal corpus. They also

report performance gains with word features derived by an unsupervised cluster-

ing method. Ratnaparkhi et al. ignored low frequency events. The accuracy of

these two approaches is not optimal. This is most likely due to the fact that they

treat low frequency events as noise, though these contain a lot of information in

a sparse domain such as PP-attachment. Franz (1996) used a Loglinear model for

PP attachment. The features he used were the preposition, the verb level (the

lexical association between the verb and the preposition), the noun level (idem

dito for noun1), the noun tag (POS-tag for noun1), noun de�niteness (of noun1),

and the PP-object tag (POS-tag for noun2). A Loglinear model keeps track of

the interaction between all the features, though at a fairly high computational

cost. The dataset that was used in Franz' work is no longer available, making a

direct comparison of the performance impossible. Collins and Brooks (1995) used

a Back-O� model, which enables them to take low frequency e�ects into account

on the Ratnaparkhi dataset (with good results). In Zavrel and Daelemans (1997)

it is shown that Memory-Based and Back-O� type methods are closely related,
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which is mirrored in the performance levels. Collins and Brooks got slightly better

results (84.5 %) after reducing the sparse data problem by preprocessing the data-

set, e.g. replacing all four-digit words with `YEAR'. The experiments with Lexical

Space representations have as yet not shown impressive performance gains over

Back-O�, but they have demonstrated that the MBL framework is well-suited to

experimentation with rich lexical representations.

4 Conclusion

We have shown that our MBL approach is very competent in solving attachment

ambiguities; it achieves better generalization performance than many previous stat-

istical approaches. Moreover, because we can measure the relevance of the features

using an information gain metric (IB1-IG), we are able to add features without a

high cost in model selection or an explosion in the number of parameters.

An additional advantage of the MBL approach is that, in contrast to the other

statistical approaches, it is founded in the use of similarity-based reasoning. There-

fore, it makes it possible to experiment with di�erent types of distributed non-

symbolic lexical representations extracted from corpora using unsupervised learn-

ing. This promises to be a rich source of extra information. We have also shown

that task speci�c similarity metrics such as MVDM are sensitive to the sparse data

problem. LexSpace is less sensitive to this problem because of the large amount of

data which is available for its training.
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