A Reusable Syntactic Generator for Dutch

Erwin Marsi
University of Nijmegen, Department of Language and Speech

Abstract

The syntactic generator is the component of a Natural Language Generation (NLG) system
that takes care of the syntactic and morphological form of the generated natural language
expressions. We argue that, once developed, a syntactic generator can be reused to build
NLG systems for new application domains with less effort. We describe our work in progress
on areusable syntactic generator for Dutch called SEM2SYN. We discuss its input (semantic
structures) and the tasks it is responsible for, i.e. inserting function words, inflecting content
words and determining the word order. Next, we outline its implementation as a Functional
Unification Grammar (FUG). We focus on the part of the grammar that determines word
order at the sentence level. We conclude with a provisional evaluation of SEM2SYN.

1 Introduction

The goal of Natural Language Generation (NLG) is to build computer systems that
map non-linguistic input to natural language output (Bateman and Hovy 1991, De
Smedt, Horacek and Zock 1996, Reiter and Dale 1998). The input can range from
a simple data structure to some sort of structured knowledge representation like a
semantic network, possibly accompanied by a communicative goal. The outputis a
natural language expression, which may again range from a single phrase to a com-
pletely formatted (hypertext) document. Consider for example an NLG system that
serves as the front-end to a train table information system. The input to the gener-
ator is a knowledge representation for a train journey, which contains information
about the place and time of departure, the place and time of arrival, the places to
change trains, train types, train numbers, platform numbers, etc. The overall com-
municative goal given to the NLG system is to inform the user about how to get
from one place to another by train. The resulting output is a text that is intended
to transfer to the user the information that is required to satisfy this communicative
goal.

1.1 Architecture of NLG systems

In spite of the fact that NLG is a relatively new discipline and agreement about its
fundamental goals, problems and methods is often lacking, there appears to be a
consensus on the overall architecture of a NLG system (Reiter 1994, Reiter and
Dale 1998). Most systems employ a modular pipe-line architecture, which consists
of three modules that perform separate generation tasks and have one-way commu-
nication without feedback:

1. The Text Planner performs content determination (determining what to say)
and discourse planning (expressing the content in a coherent way).

206 Erwin Marsi

2. The Sentence Planner is concerned with aggregation (determining which
pieces of information will be combined and expressed as phrases or clauses),
lexicalization and referring expression generation (among others, generating
a pronominal or definite expression where appropriate).

3. The Linguistic Realizer takes care of the syntactic, morphological and or-
thographic realization. Among its tasks are inserting function words, inflect-
ing content words, determining word order and adding punctuation.

The sentence planner outputs a sequence of sentence plans. A sentence plan is
an abstract representation for a sentence, also known as a deep structure or a seman-
tic structure, which latter term we will use here. The task of the third module is to
map a semantic structure to a string of words constituting a grammatical sentence.
Again, there are various names in use for this module: syntactic realization com-
ponent, surface generator, tactical generator or — the term we prefer — syntactic
generator. For small application domains, this mapping can be done conveniently
by using templates. For larger domains, however, where the range of possible ex-
pressions is much wider, the template approach isno longer feasible, and some form
of grammar is required (see (Reiter 1995) for a comparison of the two approaches).
The input to a grammar-based realizer has the form of a feature structure. It usually
contains some sort of case frame structure, enriched with semantic features and the
lemmas of content words. We will return to this matter in Section 2.

1.2 Reusability

One of the advantages of the modular architecture sketched above is that it al-
lows for reuse of modules in new systems for other application domains. This is
especially true for the syntactic generator, since it is relatively domain-independ-
ent, which is in turn due to the fact that morphology and syntax are to a large ex-
tent domain-independent aspects of a language. For English, there are a number
of reusable syntactic generators available. Among the best known are: NIGEL
(Mann and Matthiesen 1983) (the syntactic module of the Penman NLG sys-
tem), which is continued in the multilingual KOMET system (Bateman 1994);
SPOKESMAN (Meteer 1989); and SURGE (Elhadad and Robin 1996, Elhadad
and Robin to appear) (see (Reiter 1994) for more systems). The concept of a
reusable syntactic generator has proven to be quite successful. SURGE, for exam-
ple, has been used in at least eight different NLG systems, for applications ranging
from stock market reports to the technical documentation of telephone networks
(Elhadad and Robin to appear, Appendix A).

Asmightbe expected, the situation for Dutch is less fortunate. Althoughanum-
ber of NLG systems for Dutch have been developed (Claassen 1992, Appelo, Leer-
makers and Rous 1993, Marsi 1995, Teunissen 1997), none of these has given rise
to a reusable syntactic generator comparable to those existing for English. Proba-
bly the best known system is IPG (Incremental Procedural Grammar) by Kempen
& Hoenkamp (Kempen and Hoenkamp 1987), which formed the point of depar-
ture for IPF (Incremental Parallel Formulator) (De Smedt 1990). However, both

A Reusable Syntactic Generator for Duich 207

systems appear to be primarily oriented towards implementing a psycholinguistic
model of human grammatical encoding, and are less concerned with comprehen-
siveness. As far as we are aware, the only work that may come close to a reusable
syntactic generator is the systemic grammar for Dutch that is under development as
apart of the multilingual NLG system KOMET (Degand 1993). Nevertheless, the
conclusion seems justified that there is room for reusable syntactic generators for
Dutch. The availability of such generators would greatly facilitate the construction
of NLG systems for Dutch.

The syntactic generator we have been developing for Dutch goes by the name
SEM2SYN and is part of a concept-to-speech system called CONPAS (Concepts
to Prosodically Adequate Speech). So far, CONPAS has been used for two applica-
tion domains: (1) generating spoken train table information; (2) generating spoken
descriptions of the botanical properties of plants. CONPAS is primarily meant as
a research tool to test and extend linguistic theory about how prosody is related to
syntax and semantics. In addition, the goal is to extend the idea of a reusable syn-
tactic generator to include speech output as well. Our goal is a realization compo-
nent that takes a semantic structure as input, that will subsequently take care of its
syntactic, morphological and prosodic realization, and that will ultimately output
prosodically adequate synthetic speech.

However, we will not elaborate on concept-to-speech or the CONPAS system
here (but see (Marsi to appear)). Instead, we will focus on the present state of the
syntactic generator SEM2SYN. First, we will describe the form of its semantic in-
put on the basis of an example. Second, we will give an overview of the specific
tasks that it carries out in order to arrive at a grammatical expression. We will cen-
tre on the question what is done during syntactic generation. The range of syntactic
phenomena that is discussed not only illustrates why a syntactic generator is neces-
sary in an NLG system for larger domains, but also that implementing a syntactic
generator is far from trivial, since it must incorporate detailed knowledge of the
syntactic structure of the language. Third, we will outline SEM2SYN’s implemen-
tation as a modular Functional Unification Grammar. Here, we will focus on how
syntactic generation is done. Since it is impossible to fully describe all implemen-
tation aspects here, we will concentrate on how word order at the sentence level is
determined. We will finish with a provisional evaluation of SEM2SYN.

2 Input to the generator

The input to SEM2SYN is a semantic structure for a natural language expression
(a sentence, a phrase, or just a single word). An example is given in Figure 1.}
The input has the form of a feature description (FD), which consists of attributes
and their values. The feature [CAT S] at the top level tells SEM2SYN that it has
to generate a sentence. The semantic structure of this sentence is encoded under
SYNSEM and has three principle components:

I'The corresponding output is not particularly useful for any practical domain, but is only meant to illus-
trate several aspects of SEM2SYN in a single example.

208

fcar S
[LEMMA betalen
LEMMA Hein
col | SYNSEM
PROPER frue
AGENT LEMMA Niels
CO2 | SYNSEM
PROPER frue
PARTIC
CONJUNCTION | LEX of
[SYNSEM | LEMMA auto
THEME €0l | SYNSEM | LEMMA
DESCRIBERS
CO2 | SYNSEM | LEMMA
0
SYNSEM | TMS IOk _ fme
N1 | VALUE 1
HRS
TIME | SYNSEM NO | VALUE 2
N1 | VALUE [
MI
NO | VALUE 6
CIRCUM
LOCATION | SYNSEM | DISTANCE near
LEMMA spaarcent
SYNSEM
NUMBER plural
INSTRUMENT
LEMMA
DETERMINER | SYNSEM
I PROPER
| EXP | TENSE | PERFECT lrue

Om twaalf uur zestien heeft Hein of Niels hier een grote dure
At twelve hour sixteen has Hein or Nielsherea big expensive car
betaald met Jans spaarcenten.

paid

with Jan’s savings.

Erwin Marsi

groot
duur

Jan
true

auto

Figure 1: Example of SEM2SYN'’s input and output. The feature description at the top is
the semantic structure that serves as input. The Dutch sentence at the bottom is the string of
words that is produced as output.

The thematic structure (TMS), which describes a situation (an event, state,
belief, etc.) in terms of a predicate (LEMMA) and a number of thematic roles.
Thematic roles are divided into obligatory participants (PARTIC) and op-

tional circumstances (CIRCUM).?

2There are many proposals regarding the set of thematic roles that ought to be distinguished, which all
employ slightly different labels and definitions (see (Winograd 1983, Section 6.5) for an overview). In
fact, it is not even very clear what the criteria for deciding on thematic roles should be. Rather than

A Reusable Syntactic Generator for Dutch 209

23 Other aspects of the meaning of a sentence that are systematically expressed
by the grammar, which include the tense, mood and voice of a sentence. For
lack of a better term, we will call this the expressive structure (EXP) of the
sentence.

3. The information structure, which is a component of the semantic structure
that is not localized in the value of a single attribute (as for TMS and EXP),
but distributed throughout the input structure in the form of a Boolean feature
FOCUS, which may occur on any constituent. The focus distribution affects
the syntactic realization of participants and has a major impact on the word
order. It is not explicitly given in Figure 1; we will discuss its contribution
in Section 5.

The thematic roles will be realized as phrases or subordinated sentences. Nor-
mally, it is not necessary to specify their category, as this will be deduced by the
penerator. However, the inputneeds to be partly lexicalized; thatis, it has to contain
the lemmas of content words. For instance, it must contain the lemma for the main
verb of the sentence (cf. betalen ‘pay’). For thematic roles, providing a lemma is
optional. If no lemma is given, SEM2SYN will assume that some form of referring
expression must be generated.

The thematic roles may be internally structured. For instance, the THEME in
Figure 1 has two DESCRIBERS, and the INSTRUMENT has a possessive determiner.
In addition, they may carry a number of semantic features that affect their syntactic
realization (e.g. PROPER and NUMBER).

As is clear from Figure 1, many features can be left out of the input, either be-
cause they receive an appropriate default value from SEM2SYN, or because their
value can inferred from the other features. There are, for example, no values for
MOOD and VOICE in Figure 1, so SEM2SYN will assign default values to them
(declarative and active respectively).

3 Tasks of the generator

The tasks that SEM2SYN carries out during the generation of a syntactic structure
can be divided into three main tasks: insertion of function words, inflection of con-
tent words, and determination of word order. As we will see in the next section
however, these tasks are not necessarily carried out in this order.

3.1 Insertion of function words

An important distinction in syntactic generation is that between Sfunction (closed-
class) words and content (open-class) words. Function words include auxiliary
verbs, articles, pronouns and pronominal adverbs, complementizers, conjunctions
and prepositions. Content words form the complement of the set of function words.

trying to evaluate the various proposals, or adding yet another one, we adopt the thematic roles from
(Frawley 1992, Chapter 5), which is an attempt to compile a comprehensive set of roles out of several
earlier proposals.

210 Erwin Marsi

Content words result from a lexical choice process earlier on in the generation
process, and their lemmas are provided in the semantic input to the syntactic gen-
erator (Stede 1995). In contrast, function words are in principle not provided in the
input, because they are predictable from the semantic features in the input and the
syntactic knowledge encapsulated in the syntactic generator.

Auxiliaries Auxiliaries are used, among other things, to express the voice and
tense of a sentence. For instance, auxiliaries of tense are inserted according to
the tense specification in the input, which allows the conventional eight tenses of
Dutch to be described by means of three Boolean features: PAST, FUTURE and PER-
FECT (Haeseryn, Romijn, Geerts, de Rooij and van den Toorn 1997, Section 2.4.8).
In Figure 1, the presence of the feature [PERFECT #rue] results in the insertion of
the auxiliary heeft (‘has’).

Determiners The syntactic generator first has to decide whether a determiner is
required at all. Proper nouns, by default, take no determiner (cf. Hein and Niels);
neither do plural indefinite nouns. Moreover, a noun that is already specified by
means of a possessor, a numeral or a quantifier normally does not take a determiner
(cf. Jans spaarcenten). If it has been established that a determiner is obligatory,
however, its lexicalization depends on both semantic and syntactic factors. Seman-
tically, it depends on the definiteness and the number of the following noun. These
are either provided in the input or given their default values (indefinite and singular
respectively). Syntactically, it depends on whether the noun is neuter or non-neuter.
This syntactic property is retrieved from a syntactic lexicon. We will return to the
use of a lexicon in Section 4.3.

Pronouns and pronominal adverbs Pronouns handled by SEM2SYN include
personal, possessive, demonstrative, relative, and wh-pronouns. Whenever the syn-
tactic generator encounters a semantic constituent that can only be realized as a
noun, but that lacks a lemma, it will try to insert an appropriate pronoun. For this,
it uses the semantic features from the input (or defaults for them) as well as the
syntactic context of the pronoun. For instance, the choice of a personal pronoun
is based on the semantic features NUMBER, PERSON, GENDER, FORMAL and FO-
CUS, the purely syntactic feature CASE, and the Boolean feature REDUCED.? The
case value of a personal pronoun is either nominative or accusative, depending on
whether it functions as a subject or not. This is in fact one of the reasons why syn-
tactic functions have (o be assigned as part of the generation process.

Pronominal adverbs include those of the demonstrative type (e.g. hier ‘here’,
daarmee ‘with that’) and those of the question type (waar ‘where’, waarmee ‘with
what’). Their realization results from their thematic role and their semantic fea-
tures. For instance, the presence of the feature [DISTANCE near] at the thematic
role of LOCATION in Figure 1 triggers its realization as hier ‘here’, instead of its
default realization daar ‘there’. If the thematic role had been that of INSTRUMENT,

3The feature REDUCED distinguishes a full pronoun like jij ‘you’ from a reduced one like je.

A Reusable Syntactic Generator for Dutch 211

its realization would have been hiermee ‘with this’. This illustrates one of the uses
of thematic roles in the input.

Prepositions The fact that the distinction between function and content words is
not always clear-cut comes to light especially in the case of prepositions. On the
one hand, a preposition can be completely functional, i.e. with no meaning of its
own, when it is subcategorized for by a verb (e.g. wachten op ‘to wait for’, denken
aan “to think about’, etc.). If so, SEM2SYN retrieves the preposition from its lex-
icon. On the other hand, a preposition can carry a distinct semantic content, €.g.
a particular spatial orientation as in bovenop ‘on top of” and onderaan ‘at the bot-
tom of’. Prepositions of this type must be determined by the lexicalization process
that precedes syntactic generation. In other words, they are treated just like con-
tent words, which must be provided in the input. In between these two extremes
are cases where a default preposition is predictable from the thematic role. For in-
stance, om ‘at’ to realize a Time and met ‘with’ to realize an Instrument (cf. Fig-
ure 1).

Conjunctions The default conjunction supplied by the syntactic generator is en
‘and’. This choice can be overruled, however, by giving another lexical item in the
input. In Figure 1, of ‘or” is forced as the conjunction Lo use. This demonstrates that
the input can (almost) always overrule the default lexical realization of a function
word.

Complementizers Complementizers are inserted in subordinated sentences ac-
cording to their tense and mood: om ‘for’ for non-finite sentences, and dat ‘that’ or
of ‘whether’ for declarative and interrogative finite sentences respectively. Again,
the input may overrule these defaults.

3.2 Inflection of content words

Content nouns Content nouns are inflected for number (cf. spaarcenten ‘sav-
ings’), provided they are countable. In addition, they are inflected with the suffix
-s when they are possessive (cf. Jans ‘John’s’).

Content verbs Content verbs can be either finite or non-finite. Finite verbs are
inflected for number (cf. heeft ‘has’), and for person as well when combined with
a personal pronoun. This requires the establishment of subject-verb agreement,
which in turn presumes subjects are identified.

Non-finite verbs can take a special form according to the voice, tense or mood
of the sentence. SEM2SYN infers the required form and retrieves the lexical form
from its lexicon.

A special class is formed by compound verbs like aankomen ‘arrive’, because
the verbal particle can be separated from the verbal root under certain conditions

212 Erwin Marsi

(e.g. komt aan litt. ‘comes at’ (‘arrive’) and aan te komen litt. ‘at to come’ (‘ar-
rive’)). This means that SEM2SYN has to identify a verb as being a compound
verb, and has to take care of the correct surface position of the verbal particle.

Inflection of adjectives Only attributively used adjectives can be inflected. The
regular pattern is that the suffix -e is attached, unless the noun that they modify is
definite, singular and neuter (cf. een dure auto ‘an expensive car’ versus een duur
schilderij ‘an expensive painting’). Evidently, a noun’s grammatical gender is a
purely syntactic property, and therefore should not be provided in the generator’s
semantic input. Instead, SEM2SYN retrieves this property of a noun from its syn-
tactic lexicon,

Spell-out numeric expressions SEM2SYN is able to spell-out numeric expres-
sions for time, date, dimensions, etc. (cf. 12:16 becomes twaalf uur zestien).

3.3 Determining word order

Word order at the phrase level is fairly rigid in Dutch. For instance, the order of the
constituents in the NP een dure nieuwe auto (DET AP AP N) is almost completely
fixed by the phrase structure rules of the grammar. Notice however, that the order of
the adjectives is somehow determined by their semantic classification. Since this
appears to be a purely semantic matter (Haeseryn et al. 1997, Section 14.5), the
order among adjectives is assumed to be determined by the sentence planner. Mul-
tiple describers are given under CO1, C02, €03, ...in the input, and SEM2SYN
outputs their respective realizations in this order.

In contrast, word order at the clause level is far less rigid. In fact, it is proba-
bly one of the most challenging aspects of syntactic generation for Dutch. We will
explain how SEM2SYN handles word order at the sentence level in Section 5.

4 Implementation of the generator
4.1 SEM2SYN as a Functional Unification Grammar for Dutch

One of the syntactic generators for English mentioned earlier was the Systemic Uni-
Jfication Realization Grammar of English (SURGE) (Elhadad and Robin 1996, El-
hadad, McKeown and Robin 1997, Elhadad and Robin to appear). SURGE is actu-
ally the name of the generation grammar that defines a mapping from semantic in-
putto syntactic output. It is written in an extended version of a grammar formalism
called Functional Unification Grammar (FUG), which is especially suited to NLG
and MT (Kay 1984).* The extended version of FUG is interpreted by a Lisp genera-
tion program called the Functional Unifier (FUF) (Elhadad 1993). For SEM2SYN,
we used the same formalism supported by the same generation program, but with a

4FUG is not a linguistic theory like e.g. GPSG, HPSG, LFG, etc. Instead, it is a formalism to eXpress
a linguistic theory in. In this sense, it is comparable to other theory-neutral formalisms like DCG and
PATR.

A Reusable Syntactic Generator for Dutch 213

Table 1: A comparison between SURGE and SEM2SYN with respect to target language,
generation grammar, grammar formalism and generation program

Target language: English Dutch
Generation grammar: || SURGE | SEM2SYN
Grammar formalism: FUG FUG
Generation program: FUF FUF

different generation grammar, i.e. a grammar for Dutch. So SEM2SYN is actually
aFUG for Dutch, and to some extent it can be considered as a first attempt to create
a Dutch version of SURGE. This state of affairs is summarized in Table 1.

As the name implies, FUG primarily relies on the unification of feature struc-
tures (FD’s), also known as attribute-value matrices. Both the input and the gram-
mar are FD’s. The generation process proceeds in two stages. First, a step-wise
unification of input and grammar is performed, which enriches the input with syn-
tactic information from the grammar. Second, the resulting FD is linearized to a
string of words and punctuation marks. Unfortunately, we cannot go into the tech-
nical details of FUG here; but see (Shieber 1986, Elhadad 1993, Marsi to appear).

4.2 Structure of the grammar

SEM2SYN is not an implementation of a particular linguistic theory, since there
appears to be no theory available that provides solutions for all the syntactic phe-
nomena that a syntactic generator must deal with. Instead, the implementation in-
corporates approaches from Transformational Grammar (Model 1991), unification-
based theories of grammar like HPSG (Pollard and Sag 1994), Systemic Func-
tional Linguistics (Halliday 1994), and especially from structuralistic descriptions
of Dutch (Haeseryn et al. 1997).

SEM2SYN has a modular structure. At the highest level, it consists of a gram-
mar for generating phrases and sentences, and a lexicon for generating words. The
distinction is a conceptual one, because technically, both grammar and lexicon are
implemented as FUG’s. The grammar contains separate modules for generating
sentences, verb clusters, NP’s, AP’s, PP’s, AdvP’s, complex or coordinated struc-
tures, and some special categories like Numeral Phrases. Some of these modules
consist of submodules themselves, which take care of particular syntactic aspects.
For instance, the sentence module has submodules thathandle sentence type, mood,
subcategorization, linking thematic roles to syntactic functions, voice, realization
of syntactic functions, and realization of circumstances. Modules can also have
submodules for realizing particular subtypes of phrases. The module for NP’s, for
example, has submodules for handling pronouns, common nouns and proper nouns.

214 Erwin Marsi

4.3 The use of a syntactic lexicon

One of the differences between SURGE and SEM2SYN is that the former uses the
built-in morphological component of FUF. This morphological component takes
care of the inflection of English content words during the linearization step. As it
is not suitable for handling Dutch morphology, inflection in SEM2SYN is handled
by means of a lexicon that lists the inflected forms of content words. On the one
hand, this is a disadvantage, because it fails to capture a considerable amount of
regularity and forces the user to extend the lexicon for each new word that needs to
be generated. On the other hand, Dutch morphology contains many irregularities,
which have to be stored in a lexicon anyway. Moreover, the survey of the tasks of a
syntactic generator given in Section 3 revealed several cases in which the generator
needs to know certain syntactic properties of content words:

e The choice of an article and the inflection of attributive adjectives depends
on the grammatical gender of the noun.

o Some verbs take a prepositional object with an idiosyncratic preposition.
o Some verbs are compound verbs containing a stem and a separable particle.

o Some verbs take hebben ‘have’ as their perfect tense auxiliary, whereas oth-
ers take zijn ‘be’.
A syntactic lexicon therefore appears to be inevitable. The alternative, i.e. includ-
ing this information in the input, would imply that more syntactic information is
required in the input, which goes against the idea of modularization and the con-
centration of all syntactic knowledge in the syntactic generator.

5 Word order at the sentence level

Although strictly speaking processing order ought to be irrelevant in a unification-
based grammar, it is convenient, both from a conceptual and a practical point of
view, to look upon sentence generation as a process consisting of anumber of steps.
Starting with an almost completely underspecified syntactic structure, each step
adds some constraints to the syntactic structure, ultimately resulting in a fully spec-
ified syntactic description. In order to demonstrate SEM2SYN’s implementation as
aFUG, we will focus on two of these steps here: sentence type and mood.
Sentence generation starts with the minimal assumption that every Sentence (S)
must have a constituent with the function of predicate and the syntactic category of
Verb Cluster (VC). The resulting pattern for an S is given in (1). The numbers are
‘anchors’ that will be used later on to determine the position of other constituents.

1 < ..1..2..3..4.. PREDICATE ... >

5.1 Sentence type

Like most syntactic categories in SEM2SYN, S is specialized in terms of a type
hierarchy. The direct subtypes of S are main-S and sub-S. In addition, an S can be

A Reusable Syntactic Generator for Dutch 215

finite or non-finite. The somewhat simplified FD in Figure 2 shows how S-type and
finiteness affect the presence and position of a finite verb or a complementizer. The
two top-level alternatives, surrounded by the outer braces, are for finite and non-
finite sentences respectively (cf. the value of the feature FINITE). The first alterna-
tive contains two alternatives itself: one for a main-S (cf. #1a) and one for a sub-S
(cf. #1b). If the sentence is a finite main-S, a constituent with the name FINITE is
added to the sentence’s pattern. In FUG, the special feature PATTERN is used to
derive the internal word order of a constituent after the input FD and grammar FD
have been unified. The realization of FINITE is shared with that of a constituent with
the same name in PREDICATE, i.e. in the verb cluster.’ This can be looked upon as
SEM2SYN’s equivalent of verb second in Transformational Grammar. If the sen-
tence is a finite sub-S, the finite verb is added to the predicate’s pattern; in other
words, the finite verb will be realized in the verb cluster. If, however, the sentence
is non-finite (cf. #2), it must be a sub-$, without a subject and without a finite verb.
Optionally (as indicated by the round brackets), it starts with the complementizer
om ‘for’.

This grammar fragment also demonstrates how default values are implemented.
During the unification of input and grammar, the alternatives are tried in the order
they occur in the grammar. This means that if the input for an S does not specify
for a particular S-type, nor for finiteness, it will be unified with the first alternative
available (cf. #1a), and will therefore become a finite main-S. Notice that changing
the order of the alternatives would give rise to different default values.

52 Mood

SEM2SYN distinguishes the common types of mood: declarative, imperative,
polar-question (or yes-no-question), and wh-question. The subgrammar that han-
dles most of the mood is shown in Figure 3. The first two alternatives at the
top-level differentiate between main and subordinated sentences. For a main-S, a
declarative or wh-question mood has no direct consequences — these will be taken
care of elsewhere — whereas a polar-question or imperative mood forces a sentence
to start with a finite verb. In addition, an imperative mood allows no subject. For
finite subordinated sentences, all moods except imperative are allowed. A declar-
ative mood forces the sentence to start with the complementizer dat ‘that’ (unless
another lexical item is given in the input); a polar-question mood requires the com-
plementizer of ‘whether’ (again, unless another one is given). A wh-questionmood
is allowed as well, although its realization will be taken up elsewhere. All remain-
ing sentences, i.e. non-finite sentences, allow no value for mood.

SPeature sharing in FUG is expressed by means of a path that points to another location in the FD, anal-
ogous to the notion of a directory path as used in operating systems. The relative path <1 PREDICATE
FINITE>> means: go up one level and from there follow the features PREDICATE and FINITE to reach
the intended value.

216 Erwin Marsi

[SYNSEM | EXP | FINITE true

‘ .. . 5\
#1a: Finite main sentence

Ccar main-S
FINITE {1 PREDICATE FINITE)
PATTERN <...FINITE...1...»

< ;
#1b: Finite subordinated sentence
[car sub-S
d PREDICATE | PATTERN < ...FINITE...» >
e N - 4

#2: Non-finite sentence

[SYNSEM | EXP | FINITE false
CAT sub-§

SUBJECT NONE

CAT comp
COMP
LEX om

PATTERN < COMP...>

Figure 2: FUG fragment for sentence type

53 Remaining steps in sentence generation

Subcategorization Next, the subcategorization frame of a verb is retrieved from
the lexicon and unified with the input. Subcategorization requirements may en-
force, among other things, the realization of a thematic role as a particular syntactic
category. For instance, the verb wachten (op) ‘wait (for)’ forces its Theme to be re-
alized as a PP. This in turn affects the word order, since PP’s can be moved around
more easily than NP’s.

'

Linking SEM2SYN implements a version of Linking Theory (Jackendoft 1990),
which links the participant thematic roles to core syntactic functions. There are
maximally three of these syntactic functions: subject, first object and second ob-
ject.t The assignment of grammatical functions facilitates the determination of
word order. The position of a subject, for instance, is relatively fixed. Likewise,
prepositional objects need to be closer to the predicate than adjunct PP’s (unless
they are fronted).

Passive voice may also be considered a source of word order variation, es-
pecially when it is analysed as movement of syntactic constituents. However,
SEM2SYN accounts for passive voice in terms of a different linking of thematic
roles to syntactic functions: the most prominent thematic role is demoted and

SWe ignore relational verbs (e.g. ‘be’), which are linked differently.

A Reusable Syntactic Generator for Dutch

'8

[CAT main-S

PATTERN < FINITE...>

PATTERN =< FINITE...>
SUBJECT NONE

[CAT sub-S

SYNSEM| EXPRESS | FINITE frue
'

5 CAT comp
COMP

| PATTERN < COMP...>

coMP

CAT comp
LEX (of GIVEN)
| PATTERN < COMP ...~

[SYNSEM | EXP | MOOD NONE]

Figure 3: FUG fragment for mood

[sYNsEM| EXP | MOOD (declarative wh-question)|

SYNSEM| EXP | MOOD polar-question

SYNSEM| EXP | MOOD imperative

CSYNSEM| EXP | MOOD declarative

LEX (dat G[VEN)]

{ [synseMm | Exp | MoOD polar-question

[SYNSEM | EXP | MOOD wh-question]
.

-

Fy

217

linked to an adjunct PP, while the second most prominent thematic role is linked
to the subject function.

Participantrealization After being linked to one of the core syntactic functions,
a participant needs to be syntactically realized. If it is in the scope of a relative
clause or a wh-question, it will be realized as a relative pronoun or a (phrase con-
taining a) wh-element, and it will occupy the first sentence position. Otherwise, its
position is affected by a combination of factors:

o Syntactic function. As already mentioned above, a subject takes a different
position than objects.

e Syntactic category. Normally, extraposition of NP objects is impossible. In
contrast, PP objects may be extraposed, whereas S objects are by default ex-
traposed.

o Focus. The focus distribution, encoded by means of a Boolean feature FO-
cUs, affects word order, because the canonical word order requires unfo-
cused material to precede focused material. Therefore, unfocused NP ob-

218 Erwin Marsi

jects are put before anchor 1 (cf. (1)), while focused NP objects are put
between anchors 3 and 4. Furthermore, an unfocused PP object cannot be
extraposed. Since SEM2SYN by default focuses content words and defo-
cuses function words, an object realized as a referring expression will nor-
mally precede fully lexicalized constituents. In other words, the distinction
between content and function words influences the word order as well, albeit
in an indirect way.

o Complexity. The Boolean feature COMPLEX marks a constituent as excep-
tionally complex (heavy). It can be used to force extraposition of an NP or
PP, or to suppress extraposition of an S.

Circumstance realization Circumstantial thematic roles are not linked to syn-
tactic functions, but realized directly as syntactic constituents, usually PP’s or
AdvP’s. Like participants, their positionis affected by their syntactic category, their
focus value and their complexity. Unless topicalized or extraposed, unfocused cir-
cumstances are located between anchor 1 and 2, whereas focused circumstances
are located between anchor 2 and 3.

6 Evaluation of the generator

Since SEM2SYN is really work in progress, an evaluation is rather preliminary. In
due time, a detailed comparison with other generators is desirable, especially with
other generators for Dutch, but right now we are not in a position to perform an
extensive evaluation. Instead, we will discuss SEM2SYN with respect to a number
of criteria which in our opinion are essential to a reusable syntactic generator.’

1. Itshouldbe able to generate all syntactically well-formed expressions, given
that their corresponding semantic structures are provided. In other words, the
generator should cover all expressions of the target language.

SEM2SYN can handle the standard moods, voice alternations (active,
passive, pseudo-passive), the conventional tenses, ‘movements’ like topical-
ization and extraposition, coordinated constituents, modifiers at the sentence
level (circumstances) and at the phrasal level (including relative clauses),
compound verbs, a range of pronouns and pronominal adverbs, numbers and
times, Among the phenomena not covered yet are subject and object con-
trol, modal verbs, reflexive and reciprocal pronouns, cleft and pseudo-cleft
constructions, and ellipses. Also, the lexicon is still relatively small. We
can therefore conclude that although a considerable part remains to be cov-
ered, SEM2SYN already accounts for a major part of the ‘core grammar’ of
Dutch. Moreover, we see no principle obstacles that would prevent extension
of SEM2SYN.

2. It should generate only syntactically well-formed expressions.

"Most of these criteria were taken from (Blhadad and Robin 1996, Elhadad and Robin to appear).

A Reusable Syntactic Generator for Dutch 219

10.

Since SEM2SYN is intended as a syntactic generator and not as a recog-
nizer of well-formed semantic structures, it is not possible to reject all ill-
formed input. Therefore, generation of ungrammatical expressions cannot
be completely excluded. However, in practice over-generation does not oc-
cur.

For every input, it must terminate (within a reasonable period of time).

On a moderate PC (Pentium: 133Mhz), short sentences (less than 10
words) are usually generated within a second, whereas longer sentences (20
words or more) may take a few seconds. Since FUF allows one to put an
upper limit on the number of backtracking points, the system always termi-
nates.

The form and content of its semantic input have to be well-defined and doc-
umented in order to make a syntactic generator reusable.

The form and content of the semantic input is not completely stable yet.

Apart from the comments in the grammar code, there is no documentation
yet. '
It should minimize the amount of syntactic information that is required in the
input. In other words, all syntactic knowledge should be concentrated in the
syntactic generator. This requirement follows from the goal of modularity of
an NLG system.

SEM2SYN appears to be fairly successful at this point. In this respect, it

is better than SURGE, due to the fact that it uses a syntactic lexicon, which
contains syntactic information that would otherwise have to be supplied in
the input.
It has to provide sensible defaults whenever a semantic structure is under-
specified. This relieves a user or client application from the obligation to
know all the details of the semantic structure. Instead, they can safely ignore
irrelevant details, because the generator will choose sensible default values
for them. In addition, it allows for a compact specification of the input.

SEM2SYN’s default values are adequate in the sense that almost every
feature can be omitted from the input.

Its implementation should be grammar-based, so that there is a clear divi-
sion between the declarative and procedural parts of the grammar. This sig-
nificantly facilitates comprehension, maintenance and extension of the gram-
mar.

As a FUG implemented in FUF, SEM2SYN meets this requirement.

For the same reasons, the grammar has to be modular.

SEM2SYN is a modular grammar.
It has to be portable across platforms, as this increases its reusability.

As a program written in FUF, which is in turn coded in Lisp, SEM2SYN
is portable across almost all platforms.

It has to be computationally efficient (in terms of time and space). Among
other things, this is required to make experiments with long and complex sen-

220 Erwin Marsi

tences feasible.

We have not been bothered by efficiency considerations yet, as
SEM2SYN is fast enough for current purposes. This may change if the
grammar grows. Howevet, FUF provides a number of ways to control and
optimize backtracking during unification, which may be explored when
needed.

Acknowledgements

This paper benefitted from useful comments by an anonymous reviewer and the
CLIN editors. The author would also like to thank Peter-Armo Coppen, Carlos
Gussenhoven and Toni Rietveld.

References

Appelo, E., Leermakers, M. and Rous, J.(1993), Template-based generation of
natural language expressions with controlled m-grammar, IPO Annual
Progress Report, number 28, Eindhoven, The Netherlands, 131-138.

Bateman, J. A.(1994), KPML: The KOMET-Penman (multilingual) development
environment, Technical report, Institut fiir Integrierte Publikations- und In-
formationssysteme (IPST), GMD.

Bateman, J. A. and Hovy, E. H.(1991), Computers and text generation: Principles
and uses, in C. Butler (ed.), Computers and Texts: An applied Perspective,
Basil Blackwell, Oxford, England, 53-74.

Claassen, W.(1992), Aspects of automated natural language generation, in R. D.
ad E. Hovy, D. Rosner and O. Stock (eds), Generating Referring Expres-
sions in a Multimodal Environment, Springer, Berlin, 247-262.

De Smedt, K.(1990), IPF: an incremental parallel formulator, in R. Dale, C. Mellish
and M. Zock (eds), Current Research in Natural Language Generation,
Academic Press, London, 167-192.

De Smedt, K., Horacek, H. and Zock, M.(1996), Architectures for natural language
generation: Problems and perspectives, in G. Adorni and M. Zock (eds),
Trends in Natural Language Generation: An Artificial Intelligence Perspec-
tive, Springer, Berlin, 17-46.

Degand, L..(1993), Dutch grammar documentation, Technical report, Institut fiir In-
tegrierte Publikations- und Informationssysteme (IPSI), GMD.

Elhadad, M.(1993), FUF: The Universal Unifier - User Manual, version 5.2, New
Yotk. Technical Report CUCS-038-91.

Elhadad, M. and Robin, J.(1996), An overview of SURGE: A reusable comprehen-
sive syntactic realization component, Technical Report 96-03, Ben Gurion
University, Department of Computer Science.

Elhadad, M. and Robin, J.(to appear), SURGE: a comprehensive plug-in syntactic
realization component fot text generation, Computational Linguistics.

Elhadad, M., McKeown, K. and Robin, J.(1997), Floating constraints in lexical
choice, Computational Linguistics 23(2), 195-239.

A Reusable Syntactic Generator for Dutch 221

Frawley, W.(1992), Linguistic Semantics, Lawrence Erlbaum Associates, Publish-
ers, Hillsdale, New Jersey.

Haeseryn, W., Romijn, K., Geerts, G., de Rooij, J. and van den Toorn, M.(1997),
Algemene Nederlandse Spraakkunst, second edn, Martinus Nijhoff Uitgev-
ers, Groningen.

Halliday, M.(1994), An Introduction to Functional Grammar, Edward Amold,
London.

Jackendoff, R.(1990), Semantic Structures, Vol. 18 of Current Studies in Linguis-
tics, MIT Press, Cambridge, Massachussetts.

Kay, M.(1984), Functional unification grammar: A formalism for machine trans-
lation, Proceedings of COLING-84, ACL, Stanford University, 75-78.

Kempen, G. and Hoenkamp, E.(1987), An incremental procedural grammar for
sentence production, Cognitive Science (11), 201-258.

Mann, W. and Matthiesen, C.(1983), NIGEL: A systemic grammar for text gener-
ation, Technical Report ISI RR-83-105, ISL.

Marsi, E.(1995), Intonation in a spoken language generator, in H. Strik, N. Oost-
dijk, C. Cucchiarini and P. Coppen (eds), Proceedings 19, Department of
Language and Speech - Univerity of Nijmegen, 85-97.

Marsi, E.(to appear), Prosody in concept-to-speech, PhD thesis, Department of
Language and Speech - Univerity of Nijmegen.

Meteer, M.(1989), The SPOKESMAN natural language generation system, Tech-
nical Report 7090, BBN Systems and Technologies.

Model, 1.(1991), Grammatische Analyse, ICG Publications, Dordrecht.

Pollard, C. and Sag, 1.(1994), Head Driven Phrase Structure Grammar, University
of Chicago Press, Chicago.

Reiter, E.(1994), Has a consensus NL generation architecture appeared, and is it
psycholinguistically plausible?, Proceedings of the Seventh International
Workshop on Natural Language Generation (INLGW-1994), 163-170.

Reiter, E.(1995), NLG versus templates, Proceedings of 7th European Workshop
on Natural Language Generation, Leiden, The Netherlands.

Reiter, E. and Dale, R.(1998), Building applied natural language generation sys-
tems, Natural Language Engineering.

Shieber, S.(1986), An Introduction to Unification-Based Approaches to Grammar,
Vol. 4 of CSLI Lecture Notes, University of Chicago Press, Chicago.

Stede, M.(1995), Lexicalization in natural language generation: A survey, Artificial
Intelligence Review (8), 309-336.

Teunissen, L.(1997), GENIUSS: Generative Implementation of Universal Seman-
tic Syntax, in W. Hoepnner (ed.), 6th European Workshop on Natural Lan-
guage Generation, Gerhard-Mercator-Universitit-GH Duisburg.

Winograd, T.(1983), Language as a Cognitive Process, Vol. I Syntax, Addison-
Wesley, Reading, Massachussetts.

