
Consistent Identi�ation in the Limit of Some of Penn andBuszkowski's Classes is NP-hardChristophe Costa Florênio�UiL/OTS, Utreht University
AbstratIn (Buszkowski, 1987) and (Buszkowski andPenn, 1990) ertain `disovery proedures' forlassial ategorial grammars were de�ned.These proedures aept a sequene of stru-tures (strings labeled with derivational informa-tion) as input and yield a set of hypotheses inthe form of grammars.In (Kanazawa, 1998) learning funtions basedon these disovery proedures were studied, andit was shown that some of the lasses assoiatedwith these proedures an be e�etively identi-�ed in the limit from positive data. The timeomplexity of these funtions however was stillleft an open question.In this paper I will show that learning fun-tions for these lasses that are responsive andonsistent on their lass and learn their lassprudently are all NP-hard.1 Identi�ation in the LimitIn the seminal paper (Gold, 1967) the oneptof identi�ation in the limit was introdued. Inthis model of learning a learning funtion re-eives an endless stream of sentenes from thetarget language, alled a text, and hypothesizesa grammar for the target language at eah time-step.A lass of languages is alled learnable if andonly if there exists a learning funtion suh thatafter a �nite number of presented sentenes itguesses the right language on every text for ev-ery language from that lass and does not devi-ate from this hypothesis. Researh within thisframework is known as formal learnability the-ory.In this paper only those aspets of formal� I would like to thank Dik de Jongh and Peter vanEmde-Boas for their valuable omments.

learnability theory that are relevant to the proofof NP-hardness will be disussed. See (Osher-son et al., 1997) and (Jain et al., 1999) for aomprehensive overview of the �eld.In formal learnability theory the set
 de-notes the hypothesis spae, whih an be anylass of �nitary objets. Members of
 arealled grammars.The set S denotes the sample spae, a reur-sive subset of �� for some �xed �nite alphabet�. Elements of S are alled sentenes, subsetsof S (whih obviously are sets of sentenes) arealled languages.The funtion L maps elements of
 to subsetsof S. If G is a grammar in
, then L(G) is alledthe language generated by (assoiated with) G.L is also alled the naming funtion. The ques-tion whether a sentene belongs to a languagegenerated by a grammar is alled the univer-sal membership problem. Usually, the namingfuntion is assumed to be suh that the univer-sal membership problem is deidable or at leastsemi-deidable (r.e.).1A triple h
;S;Li satisfying the above ondi-tions is alled a grammar system. A lass ofgrammars is denoted G, a lass of languages isdenoted L.I will adopt notation from (Kanazawa, 1998)and let FL denote a lass of struture languages,to be de�ned in Setion 3. The orrespondingnaming funtion is FL(G). Learning funtionsare written as ', their input sequenes as � or� . 1In fat, in this paper learning is assumed to takeplae under onditions suh that membership is deida-ble and the lass of grammars to be learned is r.e. Theseare quite natural onditions for linguistially plausiblegrammar formalisms, and very onvenient when deal-ing with learnability issues. See (Angluin, 1980) and(Wright, 1989) for haraterizations of learnable lassesunder these restritions.

1.1 Constraints on Learning FuntionsThe behaviour of learning funtions an be on-strained in a number of ways. Suh a onstraintis alled restritive if it restrits the spae oflearnable lasses. Only some important on-straints relevant to this disussion will be de-�ned here:De�nition 1 Consistent LearningA learning funtion ' is onsistent on G iffor any L 2 L(G) and for any �nite se-quene hs0; : : : ; sii of elements of L, either'(hs0; : : : ; sii) is unde�ned or fs0; : : : ; sig �L('(hs0; : : : ; sii)).Informally, onsisteny requires that thelearning funtion explains all the data it seeswith its onjeture.De�nition 2 Prudent LearningA learning funtion ' learns G prudently if 'learns G and range(') � G.Prudent learners only hypothesize grammarsthat are in the lass they are able to learn.De�nition 3 Responsive LearningA learning funtion ' is responsive on G iffor any L 2 L(G) and for any �nite sequenehs0; : : : ; sii of elements of L (fs0; : : : ; sig � L),'(hs0; : : : ; sii) is de�ned.A responsive learning funtion is always de-�ned, as long as the text is onsistent with alanguage from its lass.Given the assumptions mentioned earlier,none of these onstraints are restritive.1.2 Time Complexity of LearningFuntionsIn formal learnability theory there are no a pri-ori onstraints on the omputational resouresrequired by the learning funtion. In (Jain etal., 1999) a whole hapter has been devoted toomplexity issues in identi�ation, where it isnoted that there is a lose relationship betweenthe omplexity of learning and omputationalomplexity of funtionals and operators. De�n-ing the latter is a omplex problem and still anative area of researh. It is therefore no sur-prise that only partial attempts have been madeat modeling the omplexity of the identi�a-tion proess. Some examples are given that are

based on bounding the number of mind hangesof a learner, or bounding the number of exam-ples required before the onset of onvergene.These de�nitions do not seem to be diretlyrelated to any `omputational' notion of om-plexity. Ideally, suh a onstraint would satisfysome obvious intuitions about what onstitutestratability: for example, in the worst ase alearning funtion should onverge to a orretsolution in polynomial time with respet to thesize of the input. Suh de�nitions are not di-retly appliable, sine the input is not guar-anteed to be helpful, for example it an startwith an unbounded number of presentations ofthe same sentene. In full generality there annever be a bound on the number of time-stepsbefore onvergene, so suh a onstraint posesno bounds on omputation time whatsoever.It turns out that giving a usable de�nition ofthe omplexity of learning funtions is not atall easy. In this subsetion some proposals andtheir problems will be disussed, and the hoiefor one partiular de�nition will be motivated.In (Gold, 1967) a de�nition of eÆieny forlearning funtions known as text-eÆieny isgiven: a funtion ' identi�es L (text-)eÆientlyjust if there exists no other funtion that, forevery language in L, given the same text, on-verges at the same point as ' or at an earlierpoint.Formally this an be simply regarded as aonstraint. Note that this property has noth-ing to do with the omputational omplexity oflearning funtions, `faster' is de�ned stritly interms of length of text.Although the text-eÆieny onstraint seemsto orrespond to a rational learning strategy,by itself it is hardly restritive. Every learnablelass is text-eÆiently learnable. Also, there isno diret onnetion between text-eÆieny andtime omplexity. Text-eÆieny seems to be oflimited interest to the present disussion.2Let the omplexity of the update-time ofsome (omputable) learning funtion ' be de-�ned as the number of omputing steps it takesto learn a language, with respet to j�j, the sizeof the input sequene. In (Pitt, 1989) it was�rst noted that requiring the funtion to run in2In fat a whole setion devoted to this subjet in(Osherson et al., 1986) has been ompletely omitted fromthe seond edition (Jain et al., 1999).

a time polynomial with respet to j�j does notonstitute a signi�ant onstraint, sine one analways de�ne a learning funtion '0 that om-bines ' with a lok so that its amount of om-puting time is bounded by a polynomial overj�j. Obviously, '0 learns the same lass as ',and it does so in polynomial update-time.3The problem here is that without additionalonstraints on ' the `burden of omputation'an be shifted from the number of omputationsthe funtion needs to perform to the amountof input data onsidered by the funtion.4 Re-quiring the funtion to be onsistent, that is,requiring that the language assoiated with itshypothesis always ontains rng(�), already on-stitutes a signi�ant onstraint when used inombination with a omplexity restrition (see(Barzdin, 1974)). Some monotone strategiesseem to have the same e�et. See (Stein, 1998)for a disussion of onsistent polynomial-timeidenti�ation.In (Angluin, 1979), onsistent and onserva-tive learning with polynomial time of updatingonjetures was proposed as a reasonable rite-rion for eÆient learning. The onsisteny andonservatism requirements ensure that the up-date proedure really takes all input into a-ount. It is interesting to note that a on-servative (and prudent) learner that is onsis-tent on its lass is text-eÆient (see Proposition8.2.2 A, page 172 of (Osherson et al., 1986)).Therefore, the onservative learning funtions'k-valued, 'least-valued and 'least-ard de�ned in(Kanazawa, 1998) that are onsistent on theirlass are all text-eÆient. This de�nition wasapplied in (Arimura et al., 1992) to analyze theomplexity of learning a sublass of ontext-freetransformations.There does not seem to be any generally a-epted de�nition of what onstitutes a tratablelearning funtion. A serious problem with An-gluin's approah is that it is not generally appli-able to learning funtions for any given lass,3To be more preise: in (Daley and Smith, 1986) itwas shown that any unbounded monotone inreasing up-date boundary is not by itself restritive.4Similar issues seem to be important in the �eld ofomputational learning theory (see (Kearns and Vazirani,1994) for an introdution). The notion sample omplex-ity from this �eld seems losely related to the notionsof text- and data-eÆieny. There also exists a parallelwith our notion of (polynomial) update-time.

sine both onsisteny and (espeially) onser-vatism are restritive. I will therefore applyonly the restritions of onsisteny and poly-nomial update-time, sine this seems to bethe weakest ombination of onstraints that isrestritive and has an intuitive relation withstandard notions of omputational omplexity.Even this has drawbaks: not all learnablelasses an be learned by a learning funtionthat is onsistent on its lass, so even this om-plexity measure annot be generally applied.There is also no guarantee that for a lass that islearnable by a funtion onsistent on that lassharateristi samples (i.e. samples that justifyonvergene to the right grammar) an be giventhat are uniformly of a size polynomial in thesize of their assoiated grammar.See (Wiehagen and Zeugmann, 1994),(Wiehagen and Zeugmann, 1995), (Stein, 1998)for disussions of the relation between the on-sisteny onstraint and omplexity of learningfuntions.2 Classial Categorial Grammar andStruture LanguagesThe lasses de�ned in (Buszkowski, 1987) and(Buszkowski and Penn, 1990) are based on a for-malism for (�-free) ontext-free languages alledlassial ategorial grammar (CCG).5. In thissetion the relevant onepts of CCG will bede�ned. I will adopt notation from (Kanazawa,1998)In CCG eah symbol in the alphabet � getsassigned a �nite number of types. Types areonstruted from primitive types by the opera-tors n and =. We let Pr denote the set of prim-itive types. The set of types Tp is de�ned asfollows:De�nition 4 The set of types Tp is the small-est set satisfying the following onditions:1. Pr � Tp,2. if A 2 Tp and B 2 Tp, then AnB 2 Tp.3. if A 2 Tp and B 2 Tp, then B=A 2 Tp.One member t of Pr is alled the distinguishedtype. In CCG there are only two modes of typeombination, bakward appliation, A;AnB)5Also known as AB languages.

B, and forward appliation, B=A;A) B. Inboth ases, type A is an argument, the omplextype is a funtor. Grammars onsist of typeassignments to symbols, i.e. symbol7! T , wheresymbol 2 �, and T 2 Tp.De�nition 5 A derivation of B fromA1; : : : ; An is a binary branhing tree thatenodes a proof of A1; : : : ; An) B.Through the notion of derivation the asso-iation between grammar and language is de-�ned. All strutures ontained in some givenstruture language orrespond to a derivationof type t based solely on the type assignmentsontained in a given grammar. The string lan-guage assoiated with G onsists of the stringsorresponding to all the strutures in its stru-ture language, where the string orrespondingto some derivation onsists just of the leaves ofthat derivation.The lass of all ategorial grammars is de-noted CatG, the grammar system under disus-sion is hCatG;�F;FLi. The symbol FL is an ab-breviation of funtor-argument language, whihis a struture language for CCG. Strutures areof the form symbol, fa(s1,s2) or ba(s1,s2),where symbol 2 Pr, fa stands for forward ap-pliation, ba for bakward appliation and s1and s2 are also strutures.We will only be onerned with struture lan-guages in the remainder of this artile. Thede�nition of identi�ation in the limit (Setion1) an be applied in a straightforward way byreplaing `language' with `struture language',from a formal point of view this makes no dif-ferene. Note that, even though struture lan-guages ontain more information than stringlanguages, learning a lass of struture lan-guages is not neessarily easier than learning theorresponding lass of string languages. Thisis beause the identi�ation riterion for stru-ture languages is stronger than that for stringlanguages: when learning struture languages,a learner must identify grammars that produethe same derivations, not just the same strings.This makes learning suh lasses hard, from theperspetive of both learnability and omplexity.All learning funtions in (Kanazawa, 1998)are based on the funtion GF. This funtion re-eives a sample of strutures D as input andyields a set of assignments (i.e. a grammar)

alled the general form as output. It is a ho-momorphism and runs in linear time. It assignst to eah root node, assigns distint variablesto the argument nodes, and omputes types forthe funtor nodes: if symbol s17! A, givenba(s1,s2)) B, s27! AnB. If symbol s17! A,given fa(s2,s1)) B, s27! B=A.Categorial types an be treated as terms, sonatural de�nitions of substitution and uni�a-tion apply. A substitution over a grammar isjust a substitution over all of the types on-tained in its assignments. We state withoutproof that FL(G) � FL(�[G℄), see (Kanazawa,1998) for details.The following proposition and orollary willbe onvenient for the proof of NP-hardness:Proposition 6 For every struture s, if s 2FL(G), then there exists a substitution � suhthat � [GF(fsg)℄ � G.Proof (Sketh): Sine s 2 FL(G), G ontainsa set of type assignments G0 � G suh that G0admits the derivation of type t orrespondingwith struture s. Eah step in a derivation antake the form of just the following three ases:� The struture deriving type T is symbolS 2 �.� The struture deriving type T is fa(s1; s2).Struture s2 derives some type Tnew,struture s1 derives T=Tnew. The typeTnew may be omplex.� The struture deriving type T is ba(s1; s2).Struture s1 derives some type Tnew,struture s2 derives TnewnT . The typeTnew may be omplex.This indutive de�nition shows G0 to be equiv-alent to GF(fsg), exept that primitive typesin GF(fsg) may orrespond to omplex ones inG0. Let � be the substitution that maps theomplex types in G0 to the orresponding prim-itive ones in GF(fsg). Then, � [GF(fsg)℄ = G0.Sine G0 � G, � [GF(fsg)℄ � G follows. �Corollary 7 For every onsistent learningfuntion ' learning a sublass of CatG and ev-ery sequene � for a language from that sub-lass there exists a substitution � suh that� [GF(�)℄ � '(�).

Thus, if GF(�) assigns x di�erent types tothe same symbol that are pairwise not uni�able,the onsistent learning funtion '(�) assigns atleast x di�erent types to that same symbol.3 The Classes of GrammarsIn the following subsetions de�nitions for therelevant lasses will be given. The �rst twolasses are espeially important for understand-ing the proof of NP-hardness.3.1 Rigid GrammarsA rigid grammar is a partial funtion from � toTp. It assigns either zero or one type to eahsymbol in the alphabet.We write Grigid to denote the lass of rigidgrammars over �. The lass fFL(G)jG 2 Grigidgis denoted FLrigid.This lass is learnable with polynomialupdate-time, by simply unifying all types as-signed to the same symbol in the general form.The other lasses de�ned in (Buszkowski, 1987)and (Buszkowski and Penn, 1990) are general-izations of this lass.3.2 k-Valued GrammarsA k-valued grammar is a partial funtion from� to Tp. It assigns at most k types to eahsymbol in the alphabet.We write Gk-valued to denote the lass of k-valued grammars over �. The lass fFL(G)jG 2Gk-valuedg is denoted FLk-valued.Note that in the speial ase k = 1, Gk-valuedis equivalent to Grigid.The learning funtion 'VGk learns Gk-valuedfrom strutures. 6The proof of NP-hardness that we will giveapplies diretly to the lass of k-valued gram-mars. The proof of this result then applies tosome of the following related lasses.3.3 Least-Valued GrammarsA grammar G is alled a least-valued grammarif it is least-valued with respet to FL(G).Let L � �F. A grammar G 2 Gk+1 -valued �Gk-valued is alled least-valued with respet to Lif L � FL(G) and there is no G0 2 Gk-valued suhthat L � FL(G0).6With this funtion, and the funtions de�ned for theother lasses, we will denote arbitrary learning funtionsthat learn these lasses, not neessarily the partiularfuntions de�ned in (Kanazawa, 1998).

We write Gleast-valued to denote the lassof least-valued grammars over �. Thelass fFL(G) j G 2 Gleast-valuedg is denotedFLleast-valued.The learning funtion 'LVG learns Gleast-valuedfrom strutures.3.4 Optimal GrammarsAnother extension of rigid grammars proposedby Buszkowski and Penn is the lass of optimalgrammars. The algorithm assoiated with thislass, OG, is based on a generalization of uni�-ation alled optimal uni�ation.We write Goptimal to denote the lass of opti-mal grammars over �. The lass fFL(G) j G 2Goptimalg is denoted FLoptimal.These grammars an be obtained by unify-ing GF(D) `as muh as possible'. Thus, fromno G 2 OG a G0 6= G an be obtained by uni-fying types assigned to the same symbol in G.The lass of optimal grammars is not learnable(see (Kanazawa, 1998), Corollary 7.22). It isonly mentioned here sine it is a superlass ofthe least ardinality grammars and the minimalgrammars.3.5 Least Cardinality GrammarsWe write Gleast-ard to denote the lass ofleast ardinality grammars over �. The lassfFL(G) jG 2 Gleast-ardg is denoted FLleast-ard.If D is a �nite set of funtor-argument stru-tures, letLCG(D) = fG 2 OG(D)j8G0 2 OG(D)(jGj � jG0j)g:Let L � �F. A grammar G is said to be ofleast ardinality with respet to L if L � FL(G)and there is no grammar G0 suh that jG0j < jGjand L � FL(G0).if G 2 LCG(D), then G is of least ardinalitywith respet to D.A grammar G is alled a least ardinalitygrammar if G is of least ardinality with respetto FL(G).The learning funtion 'LCG learns Gleast-ardfrom strutures.3.6 Minimal GrammarsLike least ardinality grammars, the lass ofminimal grammars is a sublass of optimalgrammars. Hypothesized grammars are re-quired to be minimal aording to a ertain par-tial ordering, in addition to being optimal.

We write Gminimal to denote the lass of min-imal grammars over �. The lass fFL(G) jG 2Gminimalg is denoted FLminimal.The following proposition will be useful lateron:Proposition 8 (Kanazawa, 1998) If a gram-mar G is of least ardinality with respet to L,then G is minimal with respet to L.Whether or not Gminimal is learnable fromstrutures is, as far as we know, still an openquestion. Kanazawa onjetures it is learnable(see (Kanazawa, 1998), Setion 7.3).4 The ProofIn order to prove NP-hardness of an algorith-mi problem L, it suÆes to show that thereexists a polynomial-time redution from an NP-omplete problem L0 to L.7 We will presentsuh a redution using the vertex-over prob-lem, a well-known NP-hard problem from the�eld of operations researh.De�nition 9 Let G = (V;E) be an undiretedgraph, where V is a set of verties and E is aset of edges, represented as tuples of verties. Avertex over of G is a subset V 0 � V suh thatif (u; v) 2 E, then u 2 V 0 or v 2 V 0 (or both).That is, eah vertex `overs' its inident edges,and a vertex over for G is a set of verties thatovers all the edges in E. The size of a vertexover is the number of verties in it.The vertex-over problem is the problem of�nding a vertex over of minimum size (alledan optimal vertex over) in a given graph.The vertex over problem an be restated as adeision problem: does a vertex over of givensize k exist for some given graph?Proposition 10 The deision problem relatedto the vertex-over problem is NP-omplete.Proposition 11 The vertex-over problem isNP-hard.See (Cormen et al., 1990) for a disussion.Sine the formal proof of Proposition 12 be-low will be somewhat omplex I will �rst give7This methodology of redutions was introdued in(Karp, 1972), and is also known as many-to-one redu-tion.

an informal sketh of its struture. Let graphGraph be given. Construt an alphabet A anda sample D, that is, a set of strutures D =fS0; : : : ; Sng, using A, following some reipe sothat this sample represents Graph. A onsis-tent learning funtion ' presented with D anonly onjeture grammars whose assoiated lan-guages ontain D. Using Corollary 7 it will beshown that, in order for these grammars to be in''s lass, they have to orrespond to vertex ov-ers forGraph of at most some given size. There-fore, omputing the onjeture after the last el-ement of D is input solves the deision prob-lem related to the vertex-over problem, whihis NP-omplete.8 Unfortunately, the proedurethat onverts Graph to a sample onstruts analphabet with a size linear in the size of Graph.This limits the result to the ase where there isno bound on the size of the alphabet.Proposition 12 Learning the lasses Gk-valuedfrom strutures by means of one funtion that,for eah k, is responsive and onsistent on itslass and learns its lass prudently, where thealphabet is of unbounded size, is NP-hard.Proof: The deision version of the vertex-over problem an be transformed in polyno-mial time to the problem of learning a k-valuedgrammar from strutures by means of a learn-ing funtion onsistent on that lass. That is,given a bound on the size of the vertex over,the funtion will yield a solution, or will be un-de�ned if no vertex over of that size exists.9The transformation of the initial graph to aninput sample will now be detailed. Edges arenumbered 1; : : : ; e and verties are numbered1; : : : ; v. First, for every edge i in E, we in-trodue in the input sample D the strutureba(e,ei).Let �1;�2; : : : be shorthand for ba(x,v1),ba(x,ba(x,v2)), : : :, respetively. Let the typeXi0n�i be the type assigned to vi in GF(f�ig).8In (Kanazawa, 1998), for eah of the lasses GVGk ,GLVG and GLCG two learning funtions are de�ned, onethat is onservative and one that is set-driven. Bothare responsive, prudent, and onsistent on their lass forall these lasses, so the proof of Proposition 12 and itsorollaries is diretly appliable.9Note that this does not mean that the funtion is notresponsive, sine it will only be unde�ned if the input isnot from a language from its lass.

Note that for any i; j, �i and �j are not uni�ablewhen i 6= j.10Add to the sample ba(x,�i) for all ver-ties 1 � i � v. For the two verties j; k 2V inident on edge i, add ba(ba(x,vj),ei),ba(ba(x,vk),ei).11Let the value of max, whih is the size of thedesired vertex over, be assigned to k, the max-imum number of types we want to assign to anysingle symbol in the �nal onjetured grammar.If max = 1, let k be 2. We add to D struturesof the same kind as �1; : : : suh that some sym-bols in GF(D) get assigned a number of typesthat annot be uni�ed with any other type as-signed to the same symbol. This an be doneby using a variant on the proedure for reating�-types whih uses only forward appliation in-stead of only bakward appliation. 12 To avoidluttering the proof these types will be denotedby the (possibly empty) list Filler. Add to Dstrutures suh that that in GF(D), max � 2(if max = 1, let this number be 0) Filler-typesare assigned to symbols e1, . . . , ee, max� 1 (ifmax = 1, let this number be 0) Filler-types areassigned to symbols v1, . . . , vv, and 1 Filler-type is assigned to e just if max = 1.To represent graphs in a generi way, sometypes have indies harateristi for the graph,and some onstants harateristi for the graphare also required. Vertex j is onneted tokj edges, whih are all edges whih are num-bered with some e suh that vf1(e) = efj(x) orvf2(e) = efj(x), where 1 � x � kj .Edge e is inident on the two verties i; j forwhih vf1(e) = efi(y), for some 1 � y � ki ,and vf2(e) = efj(z), for some 1 � z � kj .Let G = GF(D):10It is easy to see that, using this proedure for gene-rating n suh types, this will inrease the size of D by afator only polynomial in n.11We an also allow a single vertex in this set,this would orrespond with reexive onnetions in thegraph. We ignore this possibility for the sake of larity,sine it does not a�et the proof in any way.12A proof based on types ontaining only operator n,or only operator = is desirable sine it is more generalthan a proof based on types ontaining both operators;suh a result would then also hold for unidiretional sub-lasses of these lasses. Using the same proedure forreating the �- and Filler types reates ompliationsthat I have not yet been able to solve.

G :
e1 7! E1nt; Avf1(1)nt; Avf2(1)nt; F iller: : :ee 7! Eent; Avf1(e)nt; Avf2(e)nt; F illere 7! E1; : : : ; Ee; F illerv1 7! X10n�1;X11nAef1(1); : : : ;X1k1nAef1(k1); F illerv2 7! X20n�2;X21nAef2(1); : : : ;X2k2nAef2(k2); F iller: : :vv 7! Xv0 n�v;Xv1 nAefv(1); : : : ;XvkvnAefv(kv); F illerx 7! X10 ; : : : ;X1k1 ;X20 ; : : : ;X2k2 ;: : : ; : : : ;Xv0 ; : : : ;XvkvSuppose this sample D is input for 'VGk ,k = max.13 Then, by Corollary 7, for eahi; 1 � i � v, the type Xi0n�i assigned to vi hasto unify with the only types it an unify with,whih are Xi1nAefi(1) : : : XikinAefi(ki). For everysuh series of uni�ation steps a substitution ofthe form f�i Aefi(1); : : : ;�i Aefi(ki)g isobtained.At this point an index funtion for the �-subtypes in the assignments to e1, . . . , ee isneeded, sine these uni�ation steps are depen-dent on the original graph. For this purpose, letthe funtions gf1(i) and gf2(i) denote the twoverties onneted to edge i.These substitutions yield grammarG0 (theX-variables are renumbered for readability):

13We show only GF(D) instead of D sine D's prop-erties that are relevant to this disussion are muh moreaessible in this form.

G0 :
e1 7! E1nt;�gf1(1)nt;�gf2(1)nt; F iller: : :ee 7! Eent;�gf1(e)nt;�gf2(e)nt; F illere 7! E1; : : : ; Ee; F illerv1 7! X1n�1; F iller: : :vv 7! Xvn�v; F illerx 7! X1; : : : ;XvNow, in order to obtain a grammar that isk-valued (k = max), we need to unify two ofthe types assigned to ei, for all i. Sine the �-types are not uni�able, this means that eitherEint and �gf1(i)nt, or Eint and �gf2(i)nt have tobe uni�ed. This will result either in the sub-stitution f�gf1(i) Eig or in the substitutionf�gf2(i) Eig. Sine e 7! E1; : : : ; Ee, this re-sults in the assignment of either �gf1(i) or �gf2(i)to e.This uni�ation step is intended to orre-spond to inluding vertex gf1(i) or gf2(i) in thevertex-over.At this point another index funtion isneeded, this time for the �-types assignedto e. For this purpose, let the funtionsgef(1); : : : ; gef(max) denote the verties in thevertex over.The �nal output of 'VGk , if it is de�ned, isG00:

G00 :
e1 7! �gf1(1)nt;�gf2(1)nt; F iller: : :ee 7! �gf1(e)nt;�gf2(e)nt; F illere 7! �gef(1); : : : ;�gef(max); F illerv1 7! X1n�1; F iller: : :vv 7! Xvn�v; F illerx 7! X1; : : : ;XvWhether or not all types assigned to x areuni�ed has no onsequene for the struture lan-guage.The resulting grammar an be read as a so-lution by taking the set S of all the �-types

assigned to e, and adding vertex v to the solu-tion for eah vi that has type Xin�i, �i 2 S,assigned to it.Sine both the onversion from graph to inputsample and the onversion from resulting gram-mar to set of verties an be done in polynomialtime, the learning funtion has to be NP-hard.This implies that its update-time is NP-hard,sine its total omputation time issize(D)Xn=1 update-time for nth element in D;size(D) is polynomial in the size of the graph,as is the size of eah element in D.Any grammar output by suh a funtion thatis k-valued, k = max, will look like G00. Sinesuh a grammar will orrespond to a vertexover any funtion that an learn any of theselasses prudently and is responsive and onsis-tent on that lass will be able to solve the dei-sion problem related to the vertex-over prob-lem after a polynomial-time redution. �Corollary 13 (Of the proof) LearningGleast-valued from strutures by means of afuntion that is responsive and onsistent onits lass and learns its lass prudently, wherethe alphabet is of unbounded size, is NP-hard.Obviously, exatly the same proof works forlearning Gleast-valued, sine, beause of the intro-dution of the Filler-types, there annot be anygrammars obtained from D with k < max, sothe least value for k is max.Corollary 14 (Of the proof) LearningGleast-ard from strutures by means of afuntion that is responsive and onsistent onits lass and learns its lass prudently, wherethe alphabet is of unbounded size, is NP-hard.The proof works for learning Gleast-ard, sinethe k-valued grammar obtained by learningGk-valued is optimal (all symbols have k non-uni�able types assigned, reall the remark on-erning symbol x), and all optimal grammarsobtainable from D have the same ardinality.The proof of Proposition 12 annot be usedfor Gminimal. However, the relation betweenGminimal and Gleast-ard provides a di�erent routefor proving NP-hardness.

Let ' be a omputable funtion for a lass Lthat learns L onsistently. Then the learningfuntion '0 for a lass L0;L � L0 that learns L0onsistently has a time omplexity that is thesame as, or worse than, the time omplexity of'. From this and Proposition 8 the followingproposition is straightforward:Proposition 15 Learning Gminimal by means ofa funtion that is responsive and onsistent onGminimal and learns Gminimal prudently, wherethe size of the alphabet is unbounded, is NP-hard.A proof of NP-hardness gives evidene for theintratability of a problem. After suh a proofhas been given it is natural to ask whether suha problem is NP-omplete. In order to proveNP-ompleteness of a problem L that has beenshown to be NP-hard, one needs to show thatL 2 NP. This would imply that there exists analgorithm that veri�es solutions for L in poly-nomial time. Normally this is the `easy' part ofan NP-ompleteness proof.In this ase, however, it is not at all learwhat suh algorithms are supposed to do, letalone whether they exist. Their task, amongother things, is heking whether the grammaris onsistent with the input sequene, whether itis in the right lass, and whether the grammaris justi�ed in giving its onjeture. Obviouslythe last task is the most problemati.Cheking onsisteny is polynomial in jDj(sine membership is deidable in polynomialtime for ontext-free struture languages), butit is not even lear whether for all ' learningany of the lasses under disussion, jDj may beexponential in jGj for some G in ''s lass.Cheking whether a grammar is k-valued, oroptimal, an obviously be done in polynomialtime, but even heking whether grammar Gan be derived from grammar G0 by uni�ationmay not be so simple. De�ning this riterionand proving existene of a polynomial time veri-�ation algorithm is expeted to be muh harderthan the proof of Proposition 12.An interesting question is whether there ex-ist (non-trivial) learnable sublasses of thelasses under disussion for whih polynomial-time onsistent learning algorithms do exist.1414Obviously, onsistently learning any superlass ofthe lasses under disussion is an NP-hard problem.

A neessary (but not suÆient) ondition forsuh a lass would be that vertex-over prob-lems annot be reast as learning problems inpolynomial time. It is easy to see that this re-quires a lass de�nition that is not (ruially)based on the number of type assignments in thegrammar.5 Conlusion and Further ResearhIn this paper it is shown that learning any of thelasses Gleast-valued, Gleast-ard, and Gminimal fromstrutures by means of a learning funtion thatis onsistent on its lass is NP-hard. The resultfor the lasses Gk-valued is weaker: one funtionthat an learn these lasses for eah k and isonsistent on its lass is NP-hard. It is an openquestion whether there exist polynomial-timelearning funtions for Gk-valued for eah k sep-arately, although I feel it is unlikely. Showingintratability for k = 2 would imply intratabil-ity for all k > 1, sine Gk-valued � Gk+1-valued.Note that these results hold just under the as-sumption that there is no bound on the size ofthe alphabet. It is an open question whetherthere exists a proof with an alphabet of someonstant size.It is a well-known fat that learning funtionsfor any learnable lass without onsisteny- andmonotoniity onstraints an be transformed tolearning funtions that have polynomial update-time using a trivial proedure (see Subsetion1.2). It is an open question whether there exist`intelligent' inonsistent learning funtions thathave polynomial update-time for the lasses un-der disussion.Sine the relation between struture languageand string language is so lear-ut, it is ingeneral easy to transfer results from one tothe other. In (Kanazawa, 1998) some resultsonerning learnability of lasses of struturelanguages were used to obtain learnability re-sults for the orresponding lasses of string lan-guages. It might be possible to do the same withomplexity results, i.e. obtain an NP-hardnessresult for learning Gleast-valued from strings, forexample.Note that the proof of Proposition 15 nielydemonstrates that omplexity results an be ob-tained even for lasses for whih learnability isstill an open question.The proof of Proposition 12 relies on a sub-

lass of languages that an all be identi�ed withsequenes that have a length polynomial in thesize of their assoiated grammars. This is notneessarily true for any arbitrary language inthe lass, so data-omplexity issues may makethe omplexity of learning these lasses evenworse than Proposition 12 suggests.Instead of investigating the omplexity oflearning for eah distint lass on an individ-ual basis, it would be nie to have insightsinto the diret relation between omplexity andsome strutural properties of learnable lasses.This would be an interesting topi for futureresearh.Analyzing these lasses in terms of intrinsiomplexity (see (Freivalds et al., 1995)) wouldyield insights into the relation between theseand other lasses, and into the struture of theomplexity hierarhy of learnable lasses in gen-eral.ReferenesD. Angluin. 1979. Finding ommon patterns toa set of strings. In Proeedings of the 11thAnnual Symposium on Theory of Computing,pages 130{141.D. Angluin. 1980. Finding patterns ommon toa set of strings. Journal of Computer SystemSienes, 21:46{62.Hiroki Arimura, Hiroki Ishizaka, and TakeshiShinohara. 1992. Polynomial time infereneof a sublass of ontext-free transformations.In Proeedings of the Fifth Annual ACMWorkshop on Computational Learning The-ory, pages 136{143, Pittsburgh, Pennsylva-nia, 27{29 July. ACM Press.J. Barzdin. 1974. Indutive inferene of au-tomata, funtions and programs. In Proeed-ings International Congres of Math., pages455{460, Vanouver.W. Buszkowski and G. Penn. 1990. Categorialgrammars determined from linguisti data byuni�ation. Studia Logia, 49:431{454.W. Buszkowski. 1987. Disovery proedures forategorial grammars. In E. Klein and J. vanBenthem, editors, Categories, Polymorphismand Uni�ation. University of Amsterdam.Thomas H. Cormen, Charles E. Leiserson, andRonald L. Rivest. 1990. Introdution to Algo-rithms. MIT Press, Cambridge, Mass., eigh-teenth edition.

R. Daley and C. Smith. 1986. On the omplex-ity of indutive inferene. Information andControl, 69:12{40.R. Freivalds, E. Kinber, and C. Smith. 1995.On the intrinsi omplexity of learning. InPaul Vit�anyi, editor, Seond European Con-ferene on Computational Learning Theory,volume 904 of Leture Notes in Arti�ial In-telligene, pages 154{168. Springer-Verlag.E. M. Gold. 1967. Language identi�ation inthe limit. Information and Control, 10:447{474.Sanjay Jain, Daniel Osherson, James Royer,and Arun Sharma. 1999. Systems that Learn:An Introdution to Learning Theory. TheMIT Press, Cambridge, MA., seond edition.M. Kanazawa. 1998. Learnable Classes of Cat-egorial Grammars. CSLI Publiations, Stan-ford University.Rihard M. Karp. 1972. Reduibility amongombinatorial problems. In Raymond E.Miller and James W. Thather, editors, Com-plexity of Computer Computations. PlenumPress.Mihael J. Kearns and Umesh V. Vazirani.1994. An Introdution to ComputationalLearning Theory. Cambridge, Mass.: MITPress.D. N. Osherson, M. Stob, and S. Weinstein.1986. Systems that Learn: An Introdution toLearning Theory for Cognitive and ComputerSientists. MIT Press, Cambridge, MA.D. N. Osherson, D. de Jongh, E. Martin, andS. Weinstein. 1997. Formal learning theory.In (van Benthem and ter Meulen, 1997). El-sevier Siene B.V.L. Pitt. 1989. Indutive inferene, dfas, andomputational omplexity. In K. P. Jantke,editor, Proeedings of International Work-shop on Analogial and Indutive Inferene,number 397 in Leture Notes in ComputerSiene, pages 18{44.Werner Stein. 1998. Consistent polynominalidenti�ation in the limit. In AlgorithmiLearning Theory (ALT), volume 1501 of Le-ture Notes in Computer Siene, pages 424{438, Berlin. Springer-Verlag.J. van Benthem and A. ter Meulen, editors.1997. Handbook of Logi and Language. El-sevier Siene B.V.R. Wiehagen and T. Zeugmann. 1994. Ignoring

data may be the only way to learn eÆiently.Journal of Experimental and Theoretial Ar-ti�ial Intelligene, 6:131{144.R. Wiehagen and T. Zeugmann. 1995. Learn-ing and onsisteny. In K. P. Jantke andS. Lange, editors, Algorithmi Learning forKnowledge-Based Systems, Leture Notesin Arti�ial Intelligene 961, pages 1{24.Springer-Verlag.Keith Wright. 1989. Identi�ation of unions oflanguages drawn from an identi�able lass.In The 1989 Workshop on ComputationalLearning Theory, pages 328{333. San Mateo,Calif.: Morgan Kaufmann.

