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Abstract

In (Buszkowski, 1987) and (Buszkowski and
Penn, 1990) certain ‘discovery procedures’ for
classical categorial grammars were defined.
These procedures accept a sequence of struc-
tures (strings labeled with derivational informa-
tion) as input and yield a set of hypotheses in
the form of grammars.

In (Kanazawa, 1998) learning functions based
on these discovery procedures were studied, and
it was shown that some of the classes associated
with these procedures can be effectively identi-
fied in the limit from positive data. The time
complexity of these functions however was still
left an open question.

In this paper I will show that learning func-
tions for these classes that are responsive and
consistent on their class and learn their class
prudently are all NP-hard.

1 Identification in the Limit

In the seminal paper (Gold, 1967) the concept
of identification in the limit was introduced. In
this model of learning a learning function re-
ceives an endless stream of sentences from the
target language, called a text, and hypothesizes
a grammar for the target language at each time-
step.

A class of languages is called learnable if and
only if there exists a learning function such that
after a finite number of presented sentences it
guesses the right language on every text for ev-
ery language from that class and does not devi-
ate from this hypothesis. Research within this
framework is known as formal learnability the-
ory.

In this paper only those aspects of formal
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learnability theory that are relevant to the proof
of NP-hardness will be discussed. See (Osher-
son et al., 1997) and (Jain et al., 1999) for a
comprehensive overview of the field.

In formal learnability theory the set 2 de-
notes the hypothesis space, which can be any
class of finitary objects. Members of  are
called grammars.

The set S denotes the sample space, a recur-
sive subset of ¥* for some fixed finite alphabet
>.. Elements of S are called sentences, subsets
of S (which obviously are sets of sentences) are
called languages.

The function L maps elements of 2 to subsets
of S. If G is a grammar in €2, then L(G) is called
the language generated by (associated with) G.
L is also called the naming function. The ques-
tion whether a sentence belongs to a language
generated by a grammar is called the univer-
sal membership problem. Usually, the naming
function is assumed to be such that the univer-
sal membership problem is decidable or at least
semi-decidable (r.e.).!

A triple (Q,S,L) satisfying the above condi-
tions is called a grammar system. A class of
grammars is denoted G, a class of languages is
denoted L.

I will adopt notation from (Kanazawa, 1998)
and let F L denote a class of structure languages,
to be defined in Section 3. The corresponding
naming function is FL(G). Learning functions
are written as ¢, their input sequences as o or
T.

In fact, in this paper learning is assumed to take
place under conditions such that membership is decida-
ble and the class of grammars to be learned is r.e. These
are quite natural conditions for linguistically plausible
grammar formalisms, and very convenient when deal-
ing with learnability issues. See (Angluin, 1980) and
(Wright, 1989) for characterizations of learnable classes
under these restrictions.



1.1 Constraints on Learning Functions

The behaviour of learning functions can be con-
strained in a number of ways. Such a constraint
is called restrictive if it restricts the space of
learnable classes. Only some important con-
straints relevant to this discussion will be de-
fined here:

Definition 1 Consistent Learning

A learning function @ is consistent on G if
for any L € L(G) and for any finite se-
quence (So,...,8;) of elements of L, -either

o((sg,...,8i)) is undefined or {sg,...,s;} C
L(¢(<307 s 75i>))‘
Informally, consistency requires that the

learning function explains all the data it sees
with its conjecture.

Definition 2 Prudent Learning
A learning function @ learns G prudently if ¢
learns G and range(yp) C G.

Prudent learners only hypothesize grammars
that are in the class they are able to learn.

Definition 3 Responsive Learning

A learning function ¢ is responsive on G if
for any L € L(G) and for any finite sequence
(S0y---,84) of elements of L ({sg,...,s;} C L),
o((so,--.,8i)) is defined.

A responsive learning function is always de-
fined, as long as the text is consistent with a
language from its class.

Given the assumptions mentioned earlier,
none of these constraints are restrictive.

1.2 Time Complexity of Learning
Functions

In formal learnability theory there are no a pri-
ori constraints on the computational resources
required by the learning function. In (Jain et
al., 1999) a whole chapter has been devoted to
complexity issues in identification, where it is
noted that there is a close relationship between
the complexity of learning and computational
complexity of functionals and operators. Defin-
ing the latter is a complex problem and still an
active area of research. It is therefore no sur-
prise that only partial attempts have been made
at modeling the complexity of the identifica-
tion process. Some examples are given that are

based on bounding the number of mind changes
of a learner, or bounding the number of exam-
ples required before the onset of convergence.
These definitions do not seem to be directly
related to any ‘computational’ notion of com-
plexity. Ideally, such a constraint would satisfy
some obvious intuitions about what constitutes
tractability: for example, in the worst case a
learning function should converge to a correct
solution in polynomial time with respect to the
size of the input. Such definitions are not di-
rectly applicable, since the input is not guar-
anteed to be helpful, for example it can start
with an unbounded number of presentations of
the same sentence. In full generality there can
never be a bound on the number of time-steps
before convergence, so such a constraint poses
no bounds on computation time whatsoever.

It turns out that giving a usable definition of
the complexity of learning functions is not at
all easy. In this subsection some proposals and
their problems will be discussed, and the choice
for one particular definition will be motivated.

In (Gold, 1967) a definition of efficiency for
learning functions known as text-efficiency is
given: a function ¢ identifies L (text-)efficiently
just if there exists no other function that, for
every language in L, given the same text, con-
verges at the same point as ¢ or at an earlier
point.

Formally this can be simply regarded as a
constraint. Note that this property has noth-
ing to do with the computational complexity of
learning functions, ‘faster’ is defined strictly in
terms of length of text.

Although the text-efficiency constraint seems
to correspond to a rational learning strategy,
by itself it is hardly restrictive. Every learnable
class is text-efficiently learnable. Also, there is
no direct connection between text-efficiency and
time complexity. Text-efficiency seems to be of
limited interest to the present discussion.?

Let the complexity of the update-time of
some (computable) learning function ¢ be de-
fined as the number of computing steps it takes
to learn a language, with respect to |o|, the size
of the input sequence. In (Pitt, 1989) it was
first noted that requiring the function to run in

’In fact a whole section devoted to this subject in
(Osherson et al., 1986) has been completely omitted from
the second edition (Jain et al., 1999).



a time polynomial with respect to |o| does not
constitute a significant constraint, since one can
always define a learning function ¢’ that com-
bines ¢ with a clock so that its amount of com-
puting time is bounded by a polynomial over
|o|. Obviously, ¢' learns the same class as ¢,
and it does so in polynomial update-time.?

The problem here is that without additional
constraints on ¢ the ‘burden of computation’
can be shifted from the number of computations
the function needs to perform to the amount
of input data considered by the function.* Re-
quiring the function to be consistent, that is,
requiring that the language associated with its
hypothesis always contains rng(c), already con-
stitutes a significant constraint when used in
combination with a complexity restriction (see
(Barzdin, 1974)). Some monotone strategies
seem to have the same effect. See (Stein, 1998)
for a discussion of consistent polynomial-time
identification.

In (Angluin, 1979), consistent and conserva-
tive learning with polynomial time of updating
conjectures was proposed as a reasonable crite-
rion for efficient learning. The consistency and
conservatism requirements ensure that the up-
date procedure really takes all input into ac-
count. It is interesting to note that a con-
servative (and prudent) learner that is consis-
tent on its class is text-efficient (see Proposition
8.2.2 A, page 172 of (Osherson et al., 1986)).
Therefore, the conservative learning functions
Pk-valueds Pleast-valued ANd Pleast-card defined in
(Kanazawa, 1998) that are consistent on their
class are all text-efficient. This definition was
applied in (Arimura et al., 1992) to analyze the
complexity of learning a subclass of context-free
transformations.

There does not seem to be any generally ac-
cepted definition of what constitutes a tractable
learning function. A serious problem with An-
gluin’s approach is that it is not generally appli-
cable to learning functions for any given class,

*To be more precise: in (Daley and Smith, 1986) it
was shown that any unbounded monotone increasing up-
date boundary is not by itself restrictive.

*Similar issues seem to be important in the field of
computational learning theory (see (Kearns and Vazirani,
1994) for an introduction). The notion sample complez-
ity from this field seems closely related to the notions
of text- and data-efficiency. There also exists a parallel
with our notion of (polynomial) update-time.

since both consistency and (especially) conser-
vatism are restrictive. [ will therefore apply
only the restrictions of consistency and poly-
nomial update-time, since this seems to be
the weakest combination of constraints that is
restrictive and has an intuitive relation with
standard notions of computational complexity.
Even this has drawbacks: not all learnable
classes can be learned by a learning function
that is consistent on its class, so even this com-
plexity measure cannot be generally applied.
There is also no guarantee that for a class that is
learnable by a function consistent on that class
characteristic samples (i.e. samples that justify
convergence to the right grammar) can be given
that are uniformly of a size polynomial in the
size of their associated grammar.

See (Wiehagen and Zeugmann, 1994),
(Wiehagen and Zeugmann, 1995), (Stein, 1998)
for discussions of the relation between the con-
sistency constraint and complexity of learning
functions.

2 Classical Categorial Grammar and
Structure Languages

The classes defined in (Buszkowski, 1987) and
(Buszkowski and Penn, 1990) are based on a for-
malism for (e-free) context-free languages called
classical categorial grammar (CCG).%. In this
section the relevant concepts of CCG will be
defined. T will adopt notation from (Kanazawa,
1998)

In CCG each symbol in the alphabet ¥ gets
assigned a finite number of types. Types are
constructed from primitive types by the opera-
tors \ and /. We let Pr denote the set of prim-
itive types. The set of types Tp is defined as
follows:

Definition 4 The set of types Tp is the small-
est set satisfying the following conditions:

1. Pr C Tp,

2. if A€ Tp and B € Tp, then A\B € Tp.
3. if A€ Tp and B € Tp, then B/A € Tp.
One member ¢ of Pr is called the distinguished

type. In CCG there are only two modes of type
combination, backward application, A, A\B =

% Also known as AB languages.



B, and forward application, B/A,A = B. In
both cases, type A is an argument, the complex
type is a functor. Grammars consist of type
assignments to symbols, i.e. symbol— T', where
symbol € 3, and T € Tp.

Definition 5 A  derivation of B from
Aq,..., A, s a binary branching tree that
encodes a proof of Ay,..., A, = B.

Through the notion of derivation the asso-
ciation between grammar and language is de-
fined. All structures contained in some given
structure language correspond to a derivation
of type t based solely on the type assignments
contained in a given grammar. The string lan-
guage associated with G consists of the strings
corresponding to all the structures in its struc-
ture language, where the string corresponding
to some derivation consists just of the leaves of
that derivation.

The class of all categorial grammars is de-
noted CatG, the grammar system under discus-
sion is (CatG, ¥, FL). The symbol FL is an ab-
breviation of functor-argument language, which
is a structure language for CCG. Structures are
of the form symbol, fa(s1,s2) or ba(sl,s2),
where symbol € Pr, fa stands for forward ap-
plication, ba for backward application and s1
and s2 are also structures.

We will only be concerned with structure lan-
guages in the remainder of this article. The
definition of identification in the limit (Section
1) can be applied in a straightforward way by
replacing ‘language’ with ‘structure language’,
from a formal point of view this makes no dif-
ference. Note that, even though structure lan-
guages contain more information than string
languages, learning a class of structure lan-
guages is not necessarily easier than learning the
corresponding class of string languages. This
is because the identification criterion for struc-
ture languages is stronger than that for string
languages: when learning structure languages,
a learner must identify grammars that produce
the same derivations, not just the same strings.
This makes learning such classes hard, from the
perspective of both learnability and complexity.

All learning functions in (Kanazawa, 1998)
are based on the function GF. This function re-
ceives a sample of structures D as input and
yields a set of assignments (i.e. a grammar)

called the general form as output. It is a ho-
momorphism and runs in linear time. It assigns
t to each root node, assigns distinct variables
to the argument nodes, and computes types for
the functor nodes: if symbol si— A, given
ba(sl,s2) = B, s2— A\B. If symbol s1— A,
given fa(s2,s1) = B, s2— B/A.

Categorial types can be treated as terms, so
natural definitions of substitution and unifica-
tion apply. A substitution over a grammar is
just a substitution over all of the types con-
tained in its assignments. We state without
proof that FL(G) C FL(0[G]), see (Kanazawa,
1998) for details.

The following proposition and corollary will
be convenient for the proof of NP-hardness:

Proposition 6 For every structure s, if s €
FL(QG), then there exists a substitution T such
that T[GF({s})] C G.

Proof (Sketch): Since s € FL(G), G contains
a set of type assignments G’ C G such that G’
admits the derivation of type ¢ corresponding
with structure s. Each step in a derivation can
take the form of just the following three cases:

e The structure deriving type 1" is symbol
SeX.

e The structure deriving type 7" is fa(sl, s2).
Structure s2 derives some type Tnew,
structure sl derives T'/Tnew. The type
Tnew may be complex.

e The structure deriving type T" is ba(s1, s2).
Structure sl derives some type Tnew,
structure s2 derives T'new\T. The type
Tnew may be complex.

This inductive definition shows G’ to be equiv-
alent to GF({s}), except that primitive types
in GF({s}) may correspond to complex ones in
G'. Let 7 be the substitution that maps the
complex types in G’ to the corresponding prim-
itive ones in GF({s}). Then, 7[GF({s})] = G'.
Since G' C G, 7[GF({s})] C G follows. O

Corollary 7 For every consistent learning
function ¢ learning a subclass of CatG and ev-
ery sequence o for a language from that sub-
class there exists a substitution T such that

T[GF ()] C ¢(0).



Thus, if GF(o) assigns z different types to
the same symbol that are pairwise not unifiable,
the consistent learning function ¢(o) assigns at
least = different types to that same symbol.

3 The Classes of Grammars

In the following subsections definitions for the
relevant classes will be given. The first two
classes are especially important for understand-
ing the proof of NP-hardness.

3.1 Rigid Grammars

A rigid grammar is a partial function from ¥ to
Tp. It assigns either zero or one type to each
symbol in the alphabet.

We write Gigia to denote the class of rigid
grammars over 3. The class {FL(GQ)|G € Gyigia}
is denoted F Ligiq.

This class is learnable with polynomial
update-time, by simply unifying all types as-
signed to the same symbol in the general form.
The other classes defined in (Buszkowski, 1987)
and (Buszkowski and Penn, 1990) are general-
izations of this class.

3.2 k-Valued Grammars

A k-valued grammar is a partial function from
> to Tp. It assigns at most k types to each
symbol in the alphabet.

We write Gi_valueq t0 denote the class of k-
valued grammars over .. The class {FL(G)|G €
gk—valued} is denoted FLj_yaled-

Note that in the special case k = 1, Gi_valued
is equivalent to Grigiq.

The learning function ¢vg, learns Gj_valued
from structures. °

The proof of NP-hardness that we will give
applies directly to the class of k-valued gram-
mars. The proof of this result then applies to
some of the following related classes.

3.3 Least-Valued Grammars

A grammar G is called a least-valued grammar
if it is least-valued with respect to FL(G).

Let L € ¥, A grammar G € Gri1 valued —
Gr-valued 18 called least-valued with respect to L
if L C FL(G) and there is no G' € G_valued such
that L C FL(G").

SWith this function, and the functions defined for the
other classes, we will denote arbitrary learning functions
that learn these classes, not necessarily the particular
functions defined in (Kanazawa, 1998).

We write Gleast-valued t0 denote the class
of least-valued grammars over 3. The
class {FL(G) ‘ G € gleast—valued} is denoted
fﬁleast—valued-

The learning function gy learns Gieast-valued
from structures.

3.4 Optimal Grammars

Another extension of rigid grammars proposed
by Buszkowski and Penn is the class of optimal
grammars. The algorithm associated with this
class, OG, is based on a generalization of unifi-
cation called optimal unification.

We write Goptimal to denote the class of opti-
mal grammars over ¥. The class {FL(G) | G €
goptimal} is denoted fﬁoptimal-

These grammars can be obtained by unify-
ing GF(D) ‘as much as possible’. Thus, from
no G € OG a G' # G can be obtained by uni-
fying types assigned to the same symbol in G.
The class of optimal grammars is not learnable
(see (Kanazawa, 1998), Corollary 7.22). Tt is
only mentioned here since it is a superclass of
the least cardinality grammars and the minimal
grammars.

3.5 Least Cardinality Grammars

We write Gieast-card t0 denote the class of
least cardinality grammars over . The class
{FL(G) | G € Gieast-cara} is denoted FLieast-card-

If D is a finite set of functor-argument struc-
tures, let

LCG(D) = {G € OG(D)VG' € OG(D)(|G] < |G'])}-

Let L C ¥F. A grammar G is said to be of
least cardinality with respect to L if L C FL(G)
and there is no grammar G’ such that |G'| < |G|
and L C FL(G").

if G € LOG(D), then G is of least cardinality
with respect to D.

A grammar G is called a least cardinality
grammar if G is of least cardinality with respect
to FL(G).

The learning function prcq learns Gieast-card
from structures.

3.6 Minimal Grammars

Like least cardinality grammars, the class of
minimal grammars is a subclass of optimal
grammars. Hypothesized grammars are re-
quired to be minimal according to a certain par-
tial ordering, in addition to being optimal.



We write Gninimal t0 denote the class of min-
imal grammars over X. The class {FL(G) | G €
gminimal} is denoted F Lminimal-

The following proposition will be useful later
on:

Proposition 8 (Kanazawa, 1998) If a gram-
mar G is of least cardinality with respect to L,
then G is minimal with respect to L.

Whether or not Guinimal 1S learnable from
structures is, as far as we know, still an open
question. Kanazawa conjectures it is learnable
(see (Kanazawa, 1998), Section 7.3).

4 The Proof

In order to prove NP-hardness of an algorith-
mic problem L, it suffices to show that there
exists a polynomial-time reduction from an NP-
complete problem L' to L.7 We will present
such a reduction using the vertex-cover prob-
lem, a well-known NP-hard problem from the
field of operations research.

Definition 9 Let G = (V, E) be an undirected
graph, where V is a set of vertices and E is a
set of edges, represented as tuples of vertices. A
vertex cover of G is a subset V' C V such that
if (u,v) € E, then u € V' or v € V' (or both).
That s, each vertex ‘covers’ its incident edges,
and a vertex cover for G is a set of vertices that
covers all the edges in E. The size of a vertex
cover is the number of vertices in it.

The vertex-cover problem is the problem of
finding a vertex cover of minimum size (called
an optimal vertex cover) in a given graph.

The vertex cover problem can be restated as a
decision problem: does a vertex cover of given
size k exist for some given graph?

Proposition 10 The decision problem related
to the vertex-cover problem is NP-complete.

Proposition 11 The wvertez-cover problem is
NP-hard.

See (Cormen et al., 1990) for a discussion.
Since the formal proof of Proposition 12 be-
low will be somewhat complex I will first give

"This methodology of reductions was introduced in
(Karp, 1972), and is also known as many-to-one reduc-
tion.

an informal sketch of its structure. Let graph
Graph be given. Construct an alphabet A and
a sample D, that is, a set of structures D =
{So,...,Sn}, using A, following some recipe so
that this sample represents Graph. A consis-
tent learning function ¢ presented with D can
only conjecture grammars whose associated lan-
guages contain D. Using Corollary 7 it will be
shown that, in order for these grammars to be in
©’s class, they have to correspond to vertex cov-
ers for Graph of at most some given size. There-
fore, computing the conjecture after the last el-
ement of D is input solves the decision prob-
lem related to the vertex-cover problem, which
is NP-complete.® Unfortunately, the procedure
that converts Graph to a sample constructs an
alphabet with a size linear in the size of Graph.
This limits the result to the case where there is
no bound on the size of the alphabet.

Proposition 12 Learning the classes G yalued
from structures by means of one function that,
for each k, is responsive and consistent on its
class and learns its class prudently, where the
alphabet is of unbounded size, is NP-hard.

Proof: The decision version of the vertex-
cover problem can be transformed in polyno-
mial time to the problem of learning a k-valued
grammar from structures by means of a learn-
ing function consistent on that class. That is,
given a bound on the size of the vertex cover,
the function will yield a solution, or will be un-
defined if no vertex cover of that size exists.”

The transformation of the initial graph to an
input sample will now be detailed. Edges are
numbered 1,....e and vertices are numbered
1,...,v. First, for every edge ¢ in FE, we in-
troduce in the input sample D the structure
ba(e,e;).

Let Xq,X,,... be shorthand for ba(x,vy),
ba(x,ba(x,vy)), ..., respectively. Let the type
X\I'; be the type assigned to v; in GF({%;}).

81n (Kanazawa, 1998), for each of the classes Gvg,,
Giva and Gr.cg two learning functions are defined, one
that is conservative and one that is set-driven. Both
are responsive, prudent, and consistent on their class for
all these classes, so the proof of Proposition 12 and its
corollaries is directly applicable.

9Note that this does not mean that the function is not
respounsive, since it will only be undefined if the input is
not from a language from its class.



Note that for any ¢, 7, I'; and I'; are not unifiable
when i # 5.'°

Add to the sample ba(x,>;) for all ver-
tices 1 < 7 < v. For the two vertices j,k €
V' incident on edge 4, add ba(ba(x,v;),e;),
ba(ba(x,vy),e;).!!

Let the value of maz, which is the size of the
desired vertex cover, be assigned to k, the max-
imum number of types we want to assign to any
single symbol in the final conjectured grammar.
If max = 1, let k be 2. We add to D structures
of the same kind as 31,... such that some sym-
bols in GF(D) get assigned a number of types
that cannot be unified with any other type as-
signed to the same symbol. This can be done
by using a variant on the procedure for creating
Y-types which uses only forward application in-
stead of only backward application. 2 To avoid
cluttering the proof these types will be denoted
by the (possibly empty) list Filler. Add to D
structures such that that in GF(D), mazx — 2
(if maz = 1, let this number be 0) Filler-types
are assigned to symbols eq, ..., e., maz — 1 (if
max = 1, let this number be 0) Filler-types are
assigned to symbols vy, ..., v,, and 1 Filler-
type is assigned to e just if maz = 1.

To represent graphs in a generic way, some
types have indices characteristic for the graph,
and some constants characteristic for the graph
are also required. Vertex j is connected to
k; edges, which are all edges which are num-
bered with some e such that vfi(e) = ef;(z) or
vfa(e) = efj(x), where 1 <z < k;.

Edge e is incident on the two vertices 4, j for
which vfi(e) = efi(y), for some 1 <y < k; ,
and vfo(e) = efj(z), for some 1 < z < k;.

Let G = GF(D):

107t is easy to see that, using this procedure for gene-
rating n such types, this will increase the size of D by a
factor only polynomial in n.

"We can also allow a single vertex in this set,
this would correspond with reflexive connections in the
graph. We ignore this possibility for the sake of clarity,
since it does not affect the proof in any way.

"2 A proof based on types containing only operator \,
or only operator / is desirable since it is more general
than a proof based on types containing both operators;
such a result would then also hold for unidirectional sub-
classes of these classes. Using the same procedure for
creating the X- and Fliller types creates complications
that I have not yet been able to solve.

ey El\t, Avfl(l)\t’ Avfzm\t,Filler
€ Ee\t, A7,f1 (e)\t, A’I}fg(e)\t7 Filler
e — k..., E,, Filler
vy = X(])\Fl,Xf\Aefllm),---,
X%I\Ae,h(kl)v Filler
G - vy Xg\FQaXIQ\Aefg(I)a"'a
: X%Q\Ae'fz(kQ),leler
Vy X(’I)}\FvaXi)\Aef,,(l)a---a
X}ij \Aefﬂ(k,,)a Filler
x = X},... ,X]L ,
X§,..., X7,
Xy X]

Suppose this sample D is input for ¢vg,,
k = maxz.'> Then, by Corollary 7, for each
1,1 <1 < v, the type Xé\Fi assigned to v; has
to unify with the only types it can unify with,
which are X{:\Aefim e Xlii\Aefi(ki)' For every
such series of unification steps a substitution of
the form {F, — Aefi(]),...,I‘,; — Aefi(ki)} is
obtained.

At this point an index function for the I'-
subtypes in the assignments to e;, ..., e, is
needed, since these unification steps are depen-
dent on the original graph. For this purpose, let
the functions gf;(i) and gf2(i) denote the two
vertices connected to edge 1.

These substitutions yield grammar G’ (the X-
variables are renumbered for readability):

13We show only GF(D) instead of D since D’s prop-
erties that are relevant to this discussion are much more
accessible in this form.



er — Ei\t, Fgf1(1)\t, Fgf2(1)\t,F1}ller
€ > Ee\t, Fgfl(e)\t, Fgfz(e)\t, Filler
e — Fi,...,E,, Filler
G
vy X]\Fl,Filler
v, +— X"\I'y, Filler

x = X' ... XV

Now, in order to obtain a grammar that is
k-valued (k = mazx), we need to unify two of
the types assigned to e;, for all 4. Since the I'-
types are not unifiable, this means that either
E;\t and Fgfl(z')\ta or E;\t and th(i)\t have to
be unified. This will result either in the sub-
stitution {I'yz ;) < E;} or in the substitution
{Lyssi) < Ei}. Since e = Eu, ..., F,, this re-
sults in the assignment of either I'j ¢ ;) or I'yy, ;)
to e.

This unification step is intended to corre-
spond to including vertex g fi (i) or g f2(i) in the
vertex-cover.

At this point another index function is
needed, this time for the I'-types assigned
to e. For this purpose, let the functions
gef(1),...,gef(max) denote the vertices in the
vertex cover.

The final output of ¢vg,, if it is defined, is
G":

er = Lo\t Typm\t, Filler
S F!Jf1(e)\ta Fng(e)\t, Filler
e — Fgef(l),... ’Fgef(mam)aF'ille’r

G" :
X\TI'y, Filler

vy, — XU\, Filler

x = X'...,XV

Whether or not all types assigned to x are
unified has no consequence for the structure lan-
guage.

The resulting grammar can be read as a so-
lution by taking the set S of all the I'-types

assigned to e, and adding vertex v to the solu-
tion for each v; that has type X\I';, I'; € S,
assigned to it.

Since both the conversion from graph to input
sample and the conversion from resulting gram-
mar to set of vertices can be done in polynomial
time, the learning function has to be NP-hard.
This implies that its update-time is NP-hard,
since its total computation time is

size(D)
Z update-time for n'" element in D,

n=1

size(D) is polynomial in the size of the graph,
as is the size of each element in D.

Any grammar output by such a function that
is k-valued, k = maz, will look like G”. Since
such a grammar will correspond to a vertex
cover any function that can learn any of these
classes prudently and is responsive and consis-
tent on that class will be able to solve the deci-
sion problem related to the vertex-cover prob-
lem after a polynomial-time reduction. ]

Corollary 13 (Of the proof)  Learning
Gleast-valued Jrom structures by means of a
function that is responsive and consistent on
its class and learns its class prudently, where
the alphabet is of unbounded size, is NP-hard.

Obviously, exactly the same proof works for
learning Gieast-valued, Since, because of the intro-
duction of the Filler-types, there cannot be any
grammars obtained from D with k < maz, so
the least value for k is mazx.

Corollary 14 (Of the proof)  Learning
Gleast-card from  structures by means of a
function that is responsive and consistent on
its class and learns its class prudently, where
the alphabet is of unbounded size, is NP-hard.

The proof works for learning Gieast-card, Since
the k-valued grammar obtained by learning
Gk-valued 18 optimal (all symbols have k non-
unifiable types assigned, recall the remark con-
cerning symbol x), and all optimal grammars
obtainable from D have the same cardinality.

The proof of Proposition 12 cannot be used
for Gminimal. However, the relation between
Gminimal and Gieast-card Provides a different route
for proving NP-hardness.



Let ¢ be a computable function for a class £
that learns £ consistently. Then the learning
function ¢’ for a class £, £ C L' that learns £’
consistently has a time complexity that is the
same as, or worse than, the time complexity of
. From this and Proposition 8 the following
proposition is straightforward:

Proposition 15 Learning Gminimal by means of
a function that is responsive and consistent on
Gminimal and learns Gminimal prudently, where
the size of the alphabet is unbounded, is NP-
hard.

A proof of NP-hardness gives evidence for the
intractability of a problem. After such a proof
has been given it is natural to ask whether such
a problem is NP-complete. In order to prove
NP-completeness of a problem L that has been
shown to be NP-hard, one needs to show that
L € NP. This would imply that there exists an
algorithm that verifies solutions for L in poly-
nomial time. Normally this is the ‘easy’ part of
an NP-completeness proof.

In this case, however, it is not at all clear
what such algorithms are supposed to do, let
alone whether they exist. Their task, among
other things, is checking whether the grammar
is consistent with the input sequence, whether it
is in the right class, and whether the grammar
is justified in giving its conjecture. Obviously
the last task is the most problematic.

Checking consistency is polynomial in |D]
(since membership is decidable in polynomial
time for context-free structure languages), but
it is not even clear whether for all ¢ learning
any of the classes under discussion, |D| may be
exponential in |G| for some G in ¢’s class.

Checking whether a grammar is k-valued, or
optimal, can obviously be done in polynomial
time, but even checking whether grammar G
can be derived from grammar G’ by unification
may not be so simple. Defining this criterion
and proving existence of a polynomial time veri-
fication algorithm is expected to be much harder
than the proof of Proposition 12.

An interesting question is whether there ex-
ist (non-trivial) learnable subclasses of the
classes under discussion for which polynomial-
time consistent learning algorithms do exist.!*

" Obviously, consistently learning any superclass of
the classes under discussion is an NP-hard problem.

A necessary (but not sufficient) condition for
such a class would be that vertex-cover prob-
lems cannot be recast as learning problems in
polynomial time. It is easy to see that this re-
quires a class definition that is not (crucially)
based on the number of type assignments in the
grammar.

5 Conclusion and Further Research

In this paper it is shown that learning any of the
classes Gieast-valueds Gleast-cards aNd Gminimal from
structures by means of a learning function that
is consistent on its class is NP-hard. The result
for the classes Gi_valued 1S Weaker: one function
that can learn these classes for each k and is
consistent on its class is NP-hard. It is an open
question whether there exist polynomial-time
learning functions for G yaueqa for each k sep-
arately, although I feel it is unlikely. Showing
intractability for £ = 2 would imply intractabil-
ity for all £ > 1, since Gi valnea C gk—l—l—valued-
Note that these results hold just under the as-
sumption that there is no bound on the size of
the alphabet. It is an open question whether
there exists a proof with an alphabet of some
constant size.

It is a well-known fact that learning functions
for any learnable class without consistency- and
monotonicity constraints can be transformed to
learning functions that have polynomial update-
time using a trivial procedure (see Subsection
1.2). Tt is an open question whether there exist
‘intelligent’ inconsistent learning functions that
have polynomial update-time for the classes un-
der discussion.

Since the relation between structure language
and string language is so clear-cut, it is in
general easy to transfer results from one to
the other. In (Kanazawa, 1998) some results
concerning learnability of classes of structure
languages were used to obtain learnability re-
sults for the corresponding classes of string lan-
guages. It might be possible to do the same with
complexity results, i.e. obtain an NP-hardness
result for learning Gieast-valued from strings, for
example.

Note that the proof of Proposition 15 nicely
demonstrates that complexity results can be ob-
tained even for classes for which learnability is
still an open question.

The proof of Proposition 12 relies on a sub-



class of languages that can all be identified with
sequences that have a length polynomial in the
size of their associated grammars. This is not
necessarily true for any arbitrary language in
the class, so data-complexity issues may make
the complexity of learning these classes even
worse than Proposition 12 suggests.

Instead of investigating the complexity of
learning for each distinct class on an individ-
ual basis, it would be nice to have insights
into the direct relation between complexity and
some structural properties of learnable classes.
This would be an interesting topic for future
research.

Analyzing these classes in terms of intrinsic
complexity (see (Freivalds et al., 1995)) would
yield insights into the relation between these
and other classes, and into the structure of the
complexity hierarchy of learnable classes in gen-
eral.
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