
Consistent Identi�
ation in the Limit of Some of Penn andBuszkowski's Classes is NP-hardChristophe Costa Florên
io�UiL/OTS, Utre
ht University
Abstra
tIn (Buszkowski, 1987) and (Buszkowski andPenn, 1990)
ertain `dis
overy pro
edures' for
lassi
al
ategorial grammars were de�ned.These pro
edures a

ept a sequen
e of stru
-tures (strings labeled with derivational informa-tion) as input and yield a set of hypotheses inthe form of grammars.In (Kanazawa, 1998) learning fun
tions basedon these dis
overy pro
edures were studied, andit was shown that some of the
lasses asso
iatedwith these pro
edures
an be e�e
tively identi-�ed in the limit from positive data. The time
omplexity of these fun
tions however was stillleft an open question.In this paper I will show that learning fun
-tions for these
lasses that are responsive and
onsistent on their
lass and learn their
lassprudently are all NP-hard.1 Identi�
ation in the LimitIn the seminal paper (Gold, 1967) the
on
eptof identi�
ation in the limit was introdu
ed. Inthis model of learning a learning fun
tion re-
eives an endless stream of senten
es from thetarget language,
alled a text, and hypothesizesa grammar for the target language at ea
h time-step.A
lass of languages is
alled learnable if andonly if there exists a learning fun
tion su
h thatafter a �nite number of presented senten
es itguesses the right language on every text for ev-ery language from that
lass and does not devi-ate from this hypothesis. Resear
h within thisframework is known as formal learnability the-ory.In this paper only those aspe
ts of formal� I would like to thank Di
k de Jongh and Peter vanEmde-Boas for their valuable
omments.

learnability theory that are relevant to the proofof NP-hardness will be dis
ussed. See (Osher-son et al., 1997) and (Jain et al., 1999) for a
omprehensive overview of the �eld.In formal learnability theory the set
 de-notes the hypothesis spa
e, whi
h
an be any
lass of �nitary obje
ts. Members of
 are
alled grammars.The set S denotes the sample spa
e, a re
ur-sive subset of �� for some �xed �nite alphabet�. Elements of S are
alled senten
es, subsetsof S (whi
h obviously are sets of senten
es) are
alled languages.The fun
tion L maps elements of
 to subsetsof S. If G is a grammar in
, then L(G) is
alledthe language generated by (asso
iated with) G.L is also
alled the naming fun
tion. The ques-tion whether a senten
e belongs to a languagegenerated by a grammar is
alled the univer-sal membership problem. Usually, the namingfun
tion is assumed to be su
h that the univer-sal membership problem is de
idable or at leastsemi-de
idable (r.e.).1A triple h
;S;Li satisfying the above
ondi-tions is
alled a grammar system. A
lass ofgrammars is denoted G, a
lass of languages isdenoted L.I will adopt notation from (Kanazawa, 1998)and let FL denote a
lass of stru
ture languages,to be de�ned in Se
tion 3. The
orrespondingnaming fun
tion is FL(G). Learning fun
tionsare written as ', their input sequen
es as � or� . 1In fa
t, in this paper learning is assumed to takepla
e under
onditions su
h that membership is de
ida-ble and the
lass of grammars to be learned is r.e. Theseare quite natural
onditions for linguisti
ally plausiblegrammar formalisms, and very
onvenient when deal-ing with learnability issues. See (Angluin, 1980) and(Wright, 1989) for
hara
terizations of learnable
lassesunder these restri
tions.

1.1 Constraints on Learning Fun
tionsThe behaviour of learning fun
tions
an be
on-strained in a number of ways. Su
h a
onstraintis
alled restri
tive if it restri
ts the spa
e oflearnable
lasses. Only some important
on-straints relevant to this dis
ussion will be de-�ned here:De�nition 1 Consistent LearningA learning fun
tion ' is
onsistent on G iffor any L 2 L(G) and for any �nite se-quen
e hs0; : : : ; sii of elements of L, either'(hs0; : : : ; sii) is unde�ned or fs0; : : : ; sig �L('(hs0; : : : ; sii)).Informally,
onsisten
y requires that thelearning fun
tion explains all the data it seeswith its
onje
ture.De�nition 2 Prudent LearningA learning fun
tion ' learns G prudently if 'learns G and range(') � G.Prudent learners only hypothesize grammarsthat are in the
lass they are able to learn.De�nition 3 Responsive LearningA learning fun
tion ' is responsive on G iffor any L 2 L(G) and for any �nite sequen
ehs0; : : : ; sii of elements of L (fs0; : : : ; sig � L),'(hs0; : : : ; sii) is de�ned.A responsive learning fun
tion is always de-�ned, as long as the text is
onsistent with alanguage from its
lass.Given the assumptions mentioned earlier,none of these
onstraints are restri
tive.1.2 Time Complexity of LearningFun
tionsIn formal learnability theory there are no a pri-ori
onstraints on the
omputational resour
esrequired by the learning fun
tion. In (Jain etal., 1999) a whole
hapter has been devoted to
omplexity issues in identi�
ation, where it isnoted that there is a
lose relationship betweenthe
omplexity of learning and
omputational
omplexity of fun
tionals and operators. De�n-ing the latter is a
omplex problem and still ana
tive area of resear
h. It is therefore no sur-prise that only partial attempts have been madeat modeling the
omplexity of the identi�
a-tion pro
ess. Some examples are given that are

based on bounding the number of mind
hangesof a learner, or bounding the number of exam-ples required before the onset of
onvergen
e.These de�nitions do not seem to be dire
tlyrelated to any `
omputational' notion of
om-plexity. Ideally, su
h a
onstraint would satisfysome obvious intuitions about what
onstitutestra
tability: for example, in the worst
ase alearning fun
tion should
onverge to a
orre
tsolution in polynomial time with respe
t to thesize of the input. Su
h de�nitions are not di-re
tly appli
able, sin
e the input is not guar-anteed to be helpful, for example it
an startwith an unbounded number of presentations ofthe same senten
e. In full generality there
annever be a bound on the number of time-stepsbefore
onvergen
e, so su
h a
onstraint posesno bounds on
omputation time whatsoever.It turns out that giving a usable de�nition ofthe
omplexity of learning fun
tions is not atall easy. In this subse
tion some proposals andtheir problems will be dis
ussed, and the
hoi
efor one parti
ular de�nition will be motivated.In (Gold, 1967) a de�nition of eÆ
ien
y forlearning fun
tions known as text-eÆ
ien
y isgiven: a fun
tion ' identi�es L (text-)eÆ
ientlyjust if there exists no other fun
tion that, forevery language in L, given the same text,
on-verges at the same point as ' or at an earlierpoint.Formally this
an be simply regarded as a
onstraint. Note that this property has noth-ing to do with the
omputational
omplexity oflearning fun
tions, `faster' is de�ned stri
tly interms of length of text.Although the text-eÆ
ien
y
onstraint seemsto
orrespond to a rational learning strategy,by itself it is hardly restri
tive. Every learnable
lass is text-eÆ
iently learnable. Also, there isno dire
t
onne
tion between text-eÆ
ien
y andtime
omplexity. Text-eÆ
ien
y seems to be oflimited interest to the present dis
ussion.2Let the
omplexity of the update-time ofsome (
omputable) learning fun
tion ' be de-�ned as the number of
omputing steps it takesto learn a language, with respe
t to j�j, the sizeof the input sequen
e. In (Pitt, 1989) it was�rst noted that requiring the fun
tion to run in2In fa
t a whole se
tion devoted to this subje
t in(Osherson et al., 1986) has been
ompletely omitted fromthe se
ond edition (Jain et al., 1999).

a time polynomial with respe
t to j�j does not
onstitute a signi�
ant
onstraint, sin
e one
analways de�ne a learning fun
tion '0 that
om-bines ' with a
lo
k so that its amount of
om-puting time is bounded by a polynomial overj�j. Obviously, '0 learns the same
lass as ',and it does so in polynomial update-time.3The problem here is that without additional
onstraints on ' the `burden of
omputation'
an be shifted from the number of
omputationsthe fun
tion needs to perform to the amountof input data
onsidered by the fun
tion.4 Re-quiring the fun
tion to be
onsistent, that is,requiring that the language asso
iated with itshypothesis always
ontains rng(�), already
on-stitutes a signi�
ant
onstraint when used in
ombination with a
omplexity restri
tion (see(Barzdin, 1974)). Some monotone strategiesseem to have the same e�e
t. See (Stein, 1998)for a dis
ussion of
onsistent polynomial-timeidenti�
ation.In (Angluin, 1979),
onsistent and
onserva-tive learning with polynomial time of updating
onje
tures was proposed as a reasonable
rite-rion for eÆ
ient learning. The
onsisten
y and
onservatism requirements ensure that the up-date pro
edure really takes all input into a
-
ount. It is interesting to note that a
on-servative (and prudent) learner that is
onsis-tent on its
lass is text-eÆ
ient (see Proposition8.2.2 A, page 172 of (Osherson et al., 1986)).Therefore, the
onservative learning fun
tions'k-valued, 'least-valued and 'least-
ard de�ned in(Kanazawa, 1998) that are
onsistent on their
lass are all text-eÆ
ient. This de�nition wasapplied in (Arimura et al., 1992) to analyze the
omplexity of learning a sub
lass of
ontext-freetransformations.There does not seem to be any generally a
-
epted de�nition of what
onstitutes a tra
tablelearning fun
tion. A serious problem with An-gluin's approa
h is that it is not generally appli-
able to learning fun
tions for any given
lass,3To be more pre
ise: in (Daley and Smith, 1986) itwas shown that any unbounded monotone in
reasing up-date boundary is not by itself restri
tive.4Similar issues seem to be important in the �eld of
omputational learning theory (see (Kearns and Vazirani,1994) for an introdu
tion). The notion sample
omplex-ity from this �eld seems
losely related to the notionsof text- and data-eÆ
ien
y. There also exists a parallelwith our notion of (polynomial) update-time.

sin
e both
onsisten
y and (espe
ially)
onser-vatism are restri
tive. I will therefore applyonly the restri
tions of
onsisten
y and poly-nomial update-time, sin
e this seems to bethe weakest
ombination of
onstraints that isrestri
tive and has an intuitive relation withstandard notions of
omputational
omplexity.Even this has drawba
ks: not all learnable
lasses
an be learned by a learning fun
tionthat is
onsistent on its
lass, so even this
om-plexity measure
annot be generally applied.There is also no guarantee that for a
lass that islearnable by a fun
tion
onsistent on that
lass
hara
teristi
 samples (i.e. samples that justify
onvergen
e to the right grammar)
an be giventhat are uniformly of a size polynomial in thesize of their asso
iated grammar.See (Wiehagen and Zeugmann, 1994),(Wiehagen and Zeugmann, 1995), (Stein, 1998)for dis
ussions of the relation between the
on-sisten
y
onstraint and
omplexity of learningfun
tions.2 Classi
al Categorial Grammar andStru
ture LanguagesThe
lasses de�ned in (Buszkowski, 1987) and(Buszkowski and Penn, 1990) are based on a for-malism for (�-free)
ontext-free languages
alled
lassi
al
ategorial grammar (CCG).5. In thisse
tion the relevant
on
epts of CCG will bede�ned. I will adopt notation from (Kanazawa,1998)In CCG ea
h symbol in the alphabet � getsassigned a �nite number of types. Types are
onstru
ted from primitive types by the opera-tors n and =. We let Pr denote the set of prim-itive types. The set of types Tp is de�ned asfollows:De�nition 4 The set of types Tp is the small-est set satisfying the following
onditions:1. Pr � Tp,2. if A 2 Tp and B 2 Tp, then AnB 2 Tp.3. if A 2 Tp and B 2 Tp, then B=A 2 Tp.One member t of Pr is
alled the distinguishedtype. In CCG there are only two modes of type
ombination, ba
kward appli
ation, A;AnB)5Also known as AB languages.

B, and forward appli
ation, B=A;A) B. Inboth
ases, type A is an argument, the
omplextype is a fun
tor. Grammars
onsist of typeassignments to symbols, i.e. symbol7! T , wheresymbol 2 �, and T 2 Tp.De�nition 5 A derivation of B fromA1; : : : ; An is a binary bran
hing tree thaten
odes a proof of A1; : : : ; An) B.Through the notion of derivation the asso-
iation between grammar and language is de-�ned. All stru
tures
ontained in some givenstru
ture language
orrespond to a derivationof type t based solely on the type assignments
ontained in a given grammar. The string lan-guage asso
iated with G
onsists of the strings
orresponding to all the stru
tures in its stru
-ture language, where the string
orrespondingto some derivation
onsists just of the leaves ofthat derivation.The
lass of all
ategorial grammars is de-noted CatG, the grammar system under dis
us-sion is hCatG;�F;FLi. The symbol FL is an ab-breviation of fun
tor-argument language, whi
his a stru
ture language for CCG. Stru
tures areof the form symbol, fa(s1,s2) or ba(s1,s2),where symbol 2 Pr, fa stands for forward ap-pli
ation, ba for ba
kward appli
ation and s1and s2 are also stru
tures.We will only be
on
erned with stru
ture lan-guages in the remainder of this arti
le. Thede�nition of identi�
ation in the limit (Se
tion1)
an be applied in a straightforward way byrepla
ing `language' with `stru
ture language',from a formal point of view this makes no dif-feren
e. Note that, even though stru
ture lan-guages
ontain more information than stringlanguages, learning a
lass of stru
ture lan-guages is not ne
essarily easier than learning the
orresponding
lass of string languages. Thisis be
ause the identi�
ation
riterion for stru
-ture languages is stronger than that for stringlanguages: when learning stru
ture languages,a learner must identify grammars that produ
ethe same derivations, not just the same strings.This makes learning su
h
lasses hard, from theperspe
tive of both learnability and
omplexity.All learning fun
tions in (Kanazawa, 1998)are based on the fun
tion GF. This fun
tion re-
eives a sample of stru
tures D as input andyields a set of assignments (i.e. a grammar)

alled the general form as output. It is a ho-momorphism and runs in linear time. It assignst to ea
h root node, assigns distin
t variablesto the argument nodes, and
omputes types forthe fun
tor nodes: if symbol s17! A, givenba(s1,s2)) B, s27! AnB. If symbol s17! A,given fa(s2,s1)) B, s27! B=A.Categorial types
an be treated as terms, sonatural de�nitions of substitution and uni�
a-tion apply. A substitution over a grammar isjust a substitution over all of the types
on-tained in its assignments. We state withoutproof that FL(G) � FL(�[G℄), see (Kanazawa,1998) for details.The following proposition and
orollary willbe
onvenient for the proof of NP-hardness:Proposition 6 For every stru
ture s, if s 2FL(G), then there exists a substitution � su
hthat � [GF(fsg)℄ � G.Proof (Sket
h): Sin
e s 2 FL(G), G
ontainsa set of type assignments G0 � G su
h that G0admits the derivation of type t
orrespondingwith stru
ture s. Ea
h step in a derivation
antake the form of just the following three
ases:� The stru
ture deriving type T is symbolS 2 �.� The stru
ture deriving type T is fa(s1; s2).Stru
ture s2 derives some type Tnew,stru
ture s1 derives T=Tnew. The typeTnew may be
omplex.� The stru
ture deriving type T is ba(s1; s2).Stru
ture s1 derives some type Tnew,stru
ture s2 derives TnewnT . The typeTnew may be
omplex.This indu
tive de�nition shows G0 to be equiv-alent to GF(fsg), ex
ept that primitive typesin GF(fsg) may
orrespond to
omplex ones inG0. Let � be the substitution that maps the
omplex types in G0 to the
orresponding prim-itive ones in GF(fsg). Then, � [GF(fsg)℄ = G0.Sin
e G0 � G, � [GF(fsg)℄ � G follows. �Corollary 7 For every
onsistent learningfun
tion ' learning a sub
lass of CatG and ev-ery sequen
e � for a language from that sub-
lass there exists a substitution � su
h that� [GF(�)℄ � '(�).

Thus, if GF(�) assigns x di�erent types tothe same symbol that are pairwise not uni�able,the
onsistent learning fun
tion '(�) assigns atleast x di�erent types to that same symbol.3 The Classes of GrammarsIn the following subse
tions de�nitions for therelevant
lasses will be given. The �rst two
lasses are espe
ially important for understand-ing the proof of NP-hardness.3.1 Rigid GrammarsA rigid grammar is a partial fun
tion from � toTp. It assigns either zero or one type to ea
hsymbol in the alphabet.We write Grigid to denote the
lass of rigidgrammars over �. The
lass fFL(G)jG 2 Grigidgis denoted FLrigid.This
lass is learnable with polynomialupdate-time, by simply unifying all types as-signed to the same symbol in the general form.The other
lasses de�ned in (Buszkowski, 1987)and (Buszkowski and Penn, 1990) are general-izations of this
lass.3.2 k-Valued GrammarsA k-valued grammar is a partial fun
tion from� to Tp. It assigns at most k types to ea
hsymbol in the alphabet.We write Gk-valued to denote the
lass of k-valued grammars over �. The
lass fFL(G)jG 2Gk-valuedg is denoted FLk-valued.Note that in the spe
ial
ase k = 1, Gk-valuedis equivalent to Grigid.The learning fun
tion 'VGk learns Gk-valuedfrom stru
tures. 6The proof of NP-hardness that we will giveapplies dire
tly to the
lass of k-valued gram-mars. The proof of this result then applies tosome of the following related
lasses.3.3 Least-Valued GrammarsA grammar G is
alled a least-valued grammarif it is least-valued with respe
t to FL(G).Let L � �F. A grammar G 2 Gk+1 -valued �Gk-valued is
alled least-valued with respe
t to Lif L � FL(G) and there is no G0 2 Gk-valued su
hthat L � FL(G0).6With this fun
tion, and the fun
tions de�ned for theother
lasses, we will denote arbitrary learning fun
tionsthat learn these
lasses, not ne
essarily the parti
ularfun
tions de�ned in (Kanazawa, 1998).

We write Gleast-valued to denote the
lassof least-valued grammars over �. The
lass fFL(G) j G 2 Gleast-valuedg is denotedFLleast-valued.The learning fun
tion 'LVG learns Gleast-valuedfrom stru
tures.3.4 Optimal GrammarsAnother extension of rigid grammars proposedby Buszkowski and Penn is the
lass of optimalgrammars. The algorithm asso
iated with this
lass, OG, is based on a generalization of uni�-
ation
alled optimal uni�
ation.We write Goptimal to denote the
lass of opti-mal grammars over �. The
lass fFL(G) j G 2Goptimalg is denoted FLoptimal.These grammars
an be obtained by unify-ing GF(D) `as mu
h as possible'. Thus, fromno G 2 OG a G0 6= G
an be obtained by uni-fying types assigned to the same symbol in G.The
lass of optimal grammars is not learnable(see (Kanazawa, 1998), Corollary 7.22). It isonly mentioned here sin
e it is a super
lass ofthe least
ardinality grammars and the minimalgrammars.3.5 Least Cardinality GrammarsWe write Gleast-
ard to denote the
lass ofleast
ardinality grammars over �. The
lassfFL(G) jG 2 Gleast-
ardg is denoted FLleast-
ard.If D is a �nite set of fun
tor-argument stru
-tures, letLCG(D) = fG 2 OG(D)j8G0 2 OG(D)(jGj � jG0j)g:Let L � �F. A grammar G is said to be ofleast
ardinality with respe
t to L if L � FL(G)and there is no grammar G0 su
h that jG0j < jGjand L � FL(G0).if G 2 LCG(D), then G is of least
ardinalitywith respe
t to D.A grammar G is
alled a least
ardinalitygrammar if G is of least
ardinality with respe
tto FL(G).The learning fun
tion 'LCG learns Gleast-
ardfrom stru
tures.3.6 Minimal GrammarsLike least
ardinality grammars, the
lass ofminimal grammars is a sub
lass of optimalgrammars. Hypothesized grammars are re-quired to be minimal a

ording to a
ertain par-tial ordering, in addition to being optimal.

We write Gminimal to denote the
lass of min-imal grammars over �. The
lass fFL(G) jG 2Gminimalg is denoted FLminimal.The following proposition will be useful lateron:Proposition 8 (Kanazawa, 1998) If a gram-mar G is of least
ardinality with respe
t to L,then G is minimal with respe
t to L.Whether or not Gminimal is learnable fromstru
tures is, as far as we know, still an openquestion. Kanazawa
onje
tures it is learnable(see (Kanazawa, 1998), Se
tion 7.3).4 The ProofIn order to prove NP-hardness of an algorith-mi
 problem L, it suÆ
es to show that thereexists a polynomial-time redu
tion from an NP-
omplete problem L0 to L.7 We will presentsu
h a redu
tion using the vertex-
over prob-lem, a well-known NP-hard problem from the�eld of operations resear
h.De�nition 9 Let G = (V;E) be an undire
tedgraph, where V is a set of verti
es and E is aset of edges, represented as tuples of verti
es. Avertex
over of G is a subset V 0 � V su
h thatif (u; v) 2 E, then u 2 V 0 or v 2 V 0 (or both).That is, ea
h vertex `
overs' its in
ident edges,and a vertex
over for G is a set of verti
es that
overs all the edges in E. The size of a vertex
over is the number of verti
es in it.The vertex-
over problem is the problem of�nding a vertex
over of minimum size (
alledan optimal vertex
over) in a given graph.The vertex
over problem
an be restated as ade
ision problem: does a vertex
over of givensize k exist for some given graph?Proposition 10 The de
ision problem relatedto the vertex-
over problem is NP-
omplete.Proposition 11 The vertex-
over problem isNP-hard.See (Cormen et al., 1990) for a dis
ussion.Sin
e the formal proof of Proposition 12 be-low will be somewhat
omplex I will �rst give7This methodology of redu
tions was introdu
ed in(Karp, 1972), and is also known as many-to-one redu
-tion.

an informal sket
h of its stru
ture. Let graphGraph be given. Constru
t an alphabet A anda sample D, that is, a set of stru
tures D =fS0; : : : ; Sng, using A, following some re
ipe sothat this sample represents Graph. A
onsis-tent learning fun
tion ' presented with D
anonly
onje
ture grammars whose asso
iated lan-guages
ontain D. Using Corollary 7 it will beshown that, in order for these grammars to be in''s
lass, they have to
orrespond to vertex
ov-ers forGraph of at most some given size. There-fore,
omputing the
onje
ture after the last el-ement of D is input solves the de
ision prob-lem related to the vertex-
over problem, whi
his NP-
omplete.8 Unfortunately, the pro
edurethat
onverts Graph to a sample
onstru
ts analphabet with a size linear in the size of Graph.This limits the result to the
ase where there isno bound on the size of the alphabet.Proposition 12 Learning the
lasses Gk-valuedfrom stru
tures by means of one fun
tion that,for ea
h k, is responsive and
onsistent on its
lass and learns its
lass prudently, where thealphabet is of unbounded size, is NP-hard.Proof: The de
ision version of the vertex-
over problem
an be transformed in polyno-mial time to the problem of learning a k-valuedgrammar from stru
tures by means of a learn-ing fun
tion
onsistent on that
lass. That is,given a bound on the size of the vertex
over,the fun
tion will yield a solution, or will be un-de�ned if no vertex
over of that size exists.9The transformation of the initial graph to aninput sample will now be detailed. Edges arenumbered 1; : : : ; e and verti
es are numbered1; : : : ; v. First, for every edge i in E, we in-trodu
e in the input sample D the stru
tureba(e,ei).Let �1;�2; : : : be shorthand for ba(x,v1),ba(x,ba(x,v2)), : : :, respe
tively. Let the typeXi0n�i be the type assigned to vi in GF(f�ig).8In (Kanazawa, 1998), for ea
h of the
lasses GVGk ,GLVG and GLCG two learning fun
tions are de�ned, onethat is
onservative and one that is set-driven. Bothare responsive, prudent, and
onsistent on their
lass forall these
lasses, so the proof of Proposition 12 and its
orollaries is dire
tly appli
able.9Note that this does not mean that the fun
tion is notresponsive, sin
e it will only be unde�ned if the input isnot from a language from its
lass.

Note that for any i; j, �i and �j are not uni�ablewhen i 6= j.10Add to the sample ba(x,�i) for all ver-ti
es 1 � i � v. For the two verti
es j; k 2V in
ident on edge i, add ba(ba(x,vj),ei),ba(ba(x,vk),ei).11Let the value of max, whi
h is the size of thedesired vertex
over, be assigned to k, the max-imum number of types we want to assign to anysingle symbol in the �nal
onje
tured grammar.If max = 1, let k be 2. We add to D stru
turesof the same kind as �1; : : : su
h that some sym-bols in GF(D) get assigned a number of typesthat
annot be uni�ed with any other type as-signed to the same symbol. This
an be doneby using a variant on the pro
edure for
reating�-types whi
h uses only forward appli
ation in-stead of only ba
kward appli
ation. 12 To avoid
luttering the proof these types will be denotedby the (possibly empty) list Filler. Add to Dstru
tures su
h that that in GF(D), max � 2(if max = 1, let this number be 0) Filler-typesare assigned to symbols e1, . . . , ee, max� 1 (ifmax = 1, let this number be 0) Filler-types areassigned to symbols v1, . . . , vv, and 1 Filler-type is assigned to e just if max = 1.To represent graphs in a generi
 way, sometypes have indi
es
hara
teristi
 for the graph,and some
onstants
hara
teristi
 for the graphare also required. Vertex j is
onne
ted tokj edges, whi
h are all edges whi
h are num-bered with some e su
h that vf1(e) = efj(x) orvf2(e) = efj(x), where 1 � x � kj .Edge e is in
ident on the two verti
es i; j forwhi
h vf1(e) = efi(y), for some 1 � y � ki ,and vf2(e) = efj(z), for some 1 � z � kj .Let G = GF(D):10It is easy to see that, using this pro
edure for gene-rating n su
h types, this will in
rease the size of D by afa
tor only polynomial in n.11We
an also allow a single vertex in this set,this would
orrespond with re
exive
onne
tions in thegraph. We ignore this possibility for the sake of
larity,sin
e it does not a�e
t the proof in any way.12A proof based on types
ontaining only operator n,or only operator = is desirable sin
e it is more generalthan a proof based on types
ontaining both operators;su
h a result would then also hold for unidire
tional sub-
lasses of these
lasses. Using the same pro
edure for
reating the �- and Filler types
reates
ompli
ationsthat I have not yet been able to solve.

G :
e1 7! E1nt; Avf1(1)nt; Avf2(1)nt; F iller: : :ee 7! Eent; Avf1(e)nt; Avf2(e)nt; F illere 7! E1; : : : ; Ee; F illerv1 7! X10n�1;X11nAef1(1); : : : ;X1k1nAef1(k1); F illerv2 7! X20n�2;X21nAef2(1); : : : ;X2k2nAef2(k2); F iller: : :vv 7! Xv0 n�v;Xv1 nAefv(1); : : : ;XvkvnAefv(kv); F illerx 7! X10 ; : : : ;X1k1 ;X20 ; : : : ;X2k2 ;: : : ; : : : ;Xv0 ; : : : ;XvkvSuppose this sample D is input for 'VGk ,k = max.13 Then, by Corollary 7, for ea
hi; 1 � i � v, the type Xi0n�i assigned to vi hasto unify with the only types it
an unify with,whi
h are Xi1nAefi(1) : : : XikinAefi(ki). For everysu
h series of uni�
ation steps a substitution ofthe form f�i Aefi(1); : : : ;�i Aefi(ki)g isobtained.At this point an index fun
tion for the �-subtypes in the assignments to e1, . . . , ee isneeded, sin
e these uni�
ation steps are depen-dent on the original graph. For this purpose, letthe fun
tions gf1(i) and gf2(i) denote the twoverti
es
onne
ted to edge i.These substitutions yield grammarG0 (theX-variables are renumbered for readability):

13We show only GF(D) instead of D sin
e D's prop-erties that are relevant to this dis
ussion are mu
h morea

essible in this form.

G0 :
e1 7! E1nt;�gf1(1)nt;�gf2(1)nt; F iller: : :ee 7! Eent;�gf1(e)nt;�gf2(e)nt; F illere 7! E1; : : : ; Ee; F illerv1 7! X1n�1; F iller: : :vv 7! Xvn�v; F illerx 7! X1; : : : ;XvNow, in order to obtain a grammar that isk-valued (k = max), we need to unify two ofthe types assigned to ei, for all i. Sin
e the �-types are not uni�able, this means that eitherEint and �gf1(i)nt, or Eint and �gf2(i)nt have tobe uni�ed. This will result either in the sub-stitution f�gf1(i) Eig or in the substitutionf�gf2(i) Eig. Sin
e e 7! E1; : : : ; Ee, this re-sults in the assignment of either �gf1(i) or �gf2(i)to e.This uni�
ation step is intended to
orre-spond to in
luding vertex gf1(i) or gf2(i) in thevertex-
over.At this point another index fun
tion isneeded, this time for the �-types assignedto e. For this purpose, let the fun
tionsgef(1); : : : ; gef(max) denote the verti
es in thevertex
over.The �nal output of 'VGk , if it is de�ned, isG00:

G00 :
e1 7! �gf1(1)nt;�gf2(1)nt; F iller: : :ee 7! �gf1(e)nt;�gf2(e)nt; F illere 7! �gef(1); : : : ;�gef(max); F illerv1 7! X1n�1; F iller: : :vv 7! Xvn�v; F illerx 7! X1; : : : ;XvWhether or not all types assigned to x areuni�ed has no
onsequen
e for the stru
ture lan-guage.The resulting grammar
an be read as a so-lution by taking the set S of all the �-types

assigned to e, and adding vertex v to the solu-tion for ea
h vi that has type Xin�i, �i 2 S,assigned to it.Sin
e both the
onversion from graph to inputsample and the
onversion from resulting gram-mar to set of verti
es
an be done in polynomialtime, the learning fun
tion has to be NP-hard.This implies that its update-time is NP-hard,sin
e its total
omputation time issize(D)Xn=1 update-time for nth element in D;size(D) is polynomial in the size of the graph,as is the size of ea
h element in D.Any grammar output by su
h a fun
tion thatis k-valued, k = max, will look like G00. Sin
esu
h a grammar will
orrespond to a vertex
over any fun
tion that
an learn any of these
lasses prudently and is responsive and
onsis-tent on that
lass will be able to solve the de
i-sion problem related to the vertex-
over prob-lem after a polynomial-time redu
tion. �Corollary 13 (Of the proof) LearningGleast-valued from stru
tures by means of afun
tion that is responsive and
onsistent onits
lass and learns its
lass prudently, wherethe alphabet is of unbounded size, is NP-hard.Obviously, exa
tly the same proof works forlearning Gleast-valued, sin
e, be
ause of the intro-du
tion of the Filler-types, there
annot be anygrammars obtained from D with k < max, sothe least value for k is max.Corollary 14 (Of the proof) LearningGleast-
ard from stru
tures by means of afun
tion that is responsive and
onsistent onits
lass and learns its
lass prudently, wherethe alphabet is of unbounded size, is NP-hard.The proof works for learning Gleast-
ard, sin
ethe k-valued grammar obtained by learningGk-valued is optimal (all symbols have k non-uni�able types assigned, re
all the remark
on-
erning symbol x), and all optimal grammarsobtainable from D have the same
ardinality.The proof of Proposition 12
annot be usedfor Gminimal. However, the relation betweenGminimal and Gleast-
ard provides a di�erent routefor proving NP-hardness.

Let ' be a
omputable fun
tion for a
lass Lthat learns L
onsistently. Then the learningfun
tion '0 for a
lass L0;L � L0 that learns L0
onsistently has a time
omplexity that is thesame as, or worse than, the time
omplexity of'. From this and Proposition 8 the followingproposition is straightforward:Proposition 15 Learning Gminimal by means ofa fun
tion that is responsive and
onsistent onGminimal and learns Gminimal prudently, wherethe size of the alphabet is unbounded, is NP-hard.A proof of NP-hardness gives eviden
e for theintra
tability of a problem. After su
h a proofhas been given it is natural to ask whether su
ha problem is NP-
omplete. In order to proveNP-
ompleteness of a problem L that has beenshown to be NP-hard, one needs to show thatL 2 NP. This would imply that there exists analgorithm that veri�es solutions for L in poly-nomial time. Normally this is the `easy' part ofan NP-
ompleteness proof.In this
ase, however, it is not at all
learwhat su
h algorithms are supposed to do, letalone whether they exist. Their task, amongother things, is
he
king whether the grammaris
onsistent with the input sequen
e, whether itis in the right
lass, and whether the grammaris justi�ed in giving its
onje
ture. Obviouslythe last task is the most problemati
.Che
king
onsisten
y is polynomial in jDj(sin
e membership is de
idable in polynomialtime for
ontext-free stru
ture languages), butit is not even
lear whether for all ' learningany of the
lasses under dis
ussion, jDj may beexponential in jGj for some G in ''s
lass.Che
king whether a grammar is k-valued, oroptimal,
an obviously be done in polynomialtime, but even
he
king whether grammar G
an be derived from grammar G0 by uni�
ationmay not be so simple. De�ning this
riterionand proving existen
e of a polynomial time veri-�
ation algorithm is expe
ted to be mu
h harderthan the proof of Proposition 12.An interesting question is whether there ex-ist (non-trivial) learnable sub
lasses of the
lasses under dis
ussion for whi
h polynomial-time
onsistent learning algorithms do exist.1414Obviously,
onsistently learning any super
lass ofthe
lasses under dis
ussion is an NP-hard problem.

A ne
essary (but not suÆ
ient)
ondition forsu
h a
lass would be that vertex-
over prob-lems
annot be re
ast as learning problems inpolynomial time. It is easy to see that this re-quires a
lass de�nition that is not (
ru
ially)based on the number of type assignments in thegrammar.5 Con
lusion and Further Resear
hIn this paper it is shown that learning any of the
lasses Gleast-valued, Gleast-
ard, and Gminimal fromstru
tures by means of a learning fun
tion thatis
onsistent on its
lass is NP-hard. The resultfor the
lasses Gk-valued is weaker: one fun
tionthat
an learn these
lasses for ea
h k and is
onsistent on its
lass is NP-hard. It is an openquestion whether there exist polynomial-timelearning fun
tions for Gk-valued for ea
h k sep-arately, although I feel it is unlikely. Showingintra
tability for k = 2 would imply intra
tabil-ity for all k > 1, sin
e Gk-valued � Gk+1-valued.Note that these results hold just under the as-sumption that there is no bound on the size ofthe alphabet. It is an open question whetherthere exists a proof with an alphabet of some
onstant size.It is a well-known fa
t that learning fun
tionsfor any learnable
lass without
onsisten
y- andmonotoni
ity
onstraints
an be transformed tolearning fun
tions that have polynomial update-time using a trivial pro
edure (see Subse
tion1.2). It is an open question whether there exist`intelligent' in
onsistent learning fun
tions thathave polynomial update-time for the
lasses un-der dis
ussion.Sin
e the relation between stru
ture languageand string language is so
lear-
ut, it is ingeneral easy to transfer results from one tothe other. In (Kanazawa, 1998) some results
on
erning learnability of
lasses of stru
turelanguages were used to obtain learnability re-sults for the
orresponding
lasses of string lan-guages. It might be possible to do the same with
omplexity results, i.e. obtain an NP-hardnessresult for learning Gleast-valued from strings, forexample.Note that the proof of Proposition 15 ni
elydemonstrates that
omplexity results
an be ob-tained even for
lasses for whi
h learnability isstill an open question.The proof of Proposition 12 relies on a sub-

lass of languages that
an all be identi�ed withsequen
es that have a length polynomial in thesize of their asso
iated grammars. This is notne
essarily true for any arbitrary language inthe
lass, so data-
omplexity issues may makethe
omplexity of learning these
lasses evenworse than Proposition 12 suggests.Instead of investigating the
omplexity oflearning for ea
h distin
t
lass on an individ-ual basis, it would be ni
e to have insightsinto the dire
t relation between
omplexity andsome stru
tural properties of learnable
lasses.This would be an interesting topi
 for futureresear
h.Analyzing these
lasses in terms of intrinsi

omplexity (see (Freivalds et al., 1995)) wouldyield insights into the relation between theseand other
lasses, and into the stru
ture of the
omplexity hierar
hy of learnable
lasses in gen-eral.Referen
esD. Angluin. 1979. Finding
ommon patterns toa set of strings. In Pro
eedings of the 11thAnnual Symposium on Theory of Computing,pages 130{141.D. Angluin. 1980. Finding patterns
ommon toa set of strings. Journal of Computer SystemS
ien
es, 21:46{62.Hiroki Arimura, Hiroki Ishizaka, and TakeshiShinohara. 1992. Polynomial time inferen
eof a sub
lass of
ontext-free transformations.In Pro
eedings of the Fifth Annual ACMWorkshop on Computational Learning The-ory, pages 136{143, Pittsburgh, Pennsylva-nia, 27{29 July. ACM Press.J. Barzdin. 1974. Indu
tive inferen
e of au-tomata, fun
tions and programs. In Pro
eed-ings International Congres of Math., pages455{460, Van
ouver.W. Buszkowski and G. Penn. 1990. Categorialgrammars determined from linguisti
 data byuni�
ation. Studia Logi
a, 49:431{454.W. Buszkowski. 1987. Dis
overy pro
edures for
ategorial grammars. In E. Klein and J. vanBenthem, editors, Categories, Polymorphismand Uni�
ation. University of Amsterdam.Thomas H. Cormen, Charles E. Leiserson, andRonald L. Rivest. 1990. Introdu
tion to Algo-rithms. MIT Press, Cambridge, Mass., eigh-teenth edition.

R. Daley and C. Smith. 1986. On the
omplex-ity of indu
tive inferen
e. Information andControl, 69:12{40.R. Freivalds, E. Kinber, and C. Smith. 1995.On the intrinsi

omplexity of learning. InPaul Vit�anyi, editor, Se
ond European Con-feren
e on Computational Learning Theory,volume 904 of Le
ture Notes in Arti�
ial In-telligen
e, pages 154{168. Springer-Verlag.E. M. Gold. 1967. Language identi�
ation inthe limit. Information and Control, 10:447{474.Sanjay Jain, Daniel Osherson, James Royer,and Arun Sharma. 1999. Systems that Learn:An Introdu
tion to Learning Theory. TheMIT Press, Cambridge, MA., se
ond edition.M. Kanazawa. 1998. Learnable Classes of Cat-egorial Grammars. CSLI Publi
ations, Stan-ford University.Ri
hard M. Karp. 1972. Redu
ibility among
ombinatorial problems. In Raymond E.Miller and James W. That
her, editors, Com-plexity of Computer Computations. PlenumPress.Mi
hael J. Kearns and Umesh V. Vazirani.1994. An Introdu
tion to ComputationalLearning Theory. Cambridge, Mass.: MITPress.D. N. Osherson, M. Stob, and S. Weinstein.1986. Systems that Learn: An Introdu
tion toLearning Theory for Cognitive and ComputerS
ientists. MIT Press, Cambridge, MA.D. N. Osherson, D. de Jongh, E. Martin, andS. Weinstein. 1997. Formal learning theory.In (van Benthem and ter Meulen, 1997). El-sevier S
ien
e B.V.L. Pitt. 1989. Indu
tive inferen
e, dfas, and
omputational
omplexity. In K. P. Jantke,editor, Pro
eedings of International Work-shop on Analogi
al and Indu
tive Inferen
e,number 397 in Le
ture Notes in ComputerS
ien
e, pages 18{44.Werner Stein. 1998. Consistent polynominalidenti�
ation in the limit. In Algorithmi
Learning Theory (ALT), volume 1501 of Le
-ture Notes in Computer S
ien
e, pages 424{438, Berlin. Springer-Verlag.J. van Benthem and A. ter Meulen, editors.1997. Handbook of Logi
 and Language. El-sevier S
ien
e B.V.R. Wiehagen and T. Zeugmann. 1994. Ignoring

data may be the only way to learn eÆ
iently.Journal of Experimental and Theoreti
al Ar-ti�
ial Intelligen
e, 6:131{144.R. Wiehagen and T. Zeugmann. 1995. Learn-ing and
onsisten
y. In K. P. Jantke andS. Lange, editors, Algorithmi
 Learning forKnowledge-Based Systems, Le
ture Notesin Arti�
ial Intelligen
e 961, pages 1{24.Springer-Verlag.Keith Wright. 1989. Identi�
ation of unions oflanguages drawn from an identi�able
lass.In The 1989 Workshop on ComputationalLearning Theory, pages 328{333. San Mateo,Calif.: Morgan Kaufmann.

