Weighted Probability Distribution Voting, an introduction

Hans van Halteren
Dept. of Language and Speech
University of Nijmegen
P.O. Box 9103
6500 HD Nijmegen
The Netherlands
hvh@let.kun.nl

Abstract

This paper introduces a new machine learn-
ing technique, Weighted Probability Distribu-
tion Voting (WPDV). During learning, WPDV
determines the output class probability distri-
bution for each input feature, both atomic and
complex. During classification, WPDV takes
all input features that occur in the new in-
put and adds the corresponding probability dis-
tributions, each multiplied by a weight factor
which depends on the feature or feature type.
The output class with the highest sum is then
selected. Apart from the basic mechanism of
WPDV, the paper describes some principles for
weight selection and feature restriction. Finally,
WPDYV is shown to produce results which are
better than those of other state-of-the-art ma-
chine learning systems for several NLP tasks.

1 Introduction

Many tasks that play a role in natural language
processing can be formulated as classification
tasks, i.e. tasks in which an output, taken from
a finite set of possible values, is calculated on
the basis of a specific set of input information
units. An example is wordclass tagging, where
the input consists of features of the token to
be tagged and its context, and the output con-
sists of a wordclass tag. Classification tasks
can generally be handled relatively well with
machine learning techniques. A variety of ma-
chine learning techniques has already been ap-
plied to NLP classification tasks, e.g. decision
trees (cf. e.g. Quinlan (1993)), neural networks
(cf. e.g. Lawrence et al. (1995)), case bases (cf.
e.g. Daelemans et al. (1997) or (1999b)) and
maximum entropy models (cf. e.g. Berger et al.
(1996) or Mikheev (1998)).

Even though there are many machine learn-
ing techniques already, I believe that there is

still room for more. This belief is based primar-
ily on the results of van Halteren et al. (1998)
and (To appear), which show that a combina-
tion of the outputs of a number of wordclass
taggers yields more accurate results than the in-
dividual taggers. The method that executes this
combination most effectively is a weighted vot-
ing method, dubbed Weighted Probability Dis-
tribution Voting (WPDV). As WPDV manages
to outperform a number of existing machine
learning systems for the combination task, even
while using a rudimentary weighting scheme,
it seems worthwhile to investigate the perfor-
mance of the system at tasks other than combi-
nation. I intend to carry out this investigation
in a stepwise fashion. In the first step, I ap-
ply the system to several NLP tasks which have
been the subject of earlier machine learning ex-
periments (c.f. Daelemans et al. (1999a)), while
still using only very simple weighting schemes.
If this application shows competitive results as
well, the next step is the determination of a
procedurally clear and practically usable deter-
mination of good (but probably not optimal)
weights. At the end of this step, I will be in a po-
sition to initiate a more thorough task-oriented
comparison with the other machine learning
methods used for NLP. The third and final step
can then be the search for a theoretically mo-
tivated weight determination procedure, which
will hopefully lead to even better weights and
could give insights into WPDV’s potential for
combination or hybridization with other avail-
able algorithms.

In this paper, I introduce the basics of WPDV
and describe the results of the first step of my
investigation. I start with some background and
terminology (Section 2), and an introduction
of the two NLP tasks which I use as examples
(Section 3). After this I can explain in detail

how WPDYV works and what the special advan-
tages of the technique are (Section 4). In Sec-
tion 5, I explore the efficiency of a few elemen-
tary feature weighting systems for the two ex-
ample tasks. As WPDV models tend to be very
large, I then examine how model size can be
limited without loss of too much quality (Sec-
tion 6). Finally, I summarise the results and
indicate the immediate follow-up research on
WPDV (Section 7).

2 Classification in NLP

In most applications of machine learning sys-
tems in the area of NLP, the NLP task is recast
as a classification task, i.e. the input is pre-
sented in the form of a list of properties and the
output requested in the form of a class iden-
tifier, which must be taken from a given finite
set. A useful example is syntactic wordclass tag-
ging. Suppose we want to know which kind of
“that” is used in the sentence “They gave the
impression that trade was improving.” We can
state a number of properties of the situation,
e.g. the word is “that”, the wordclass of the
previous word is noun and the wordclass of the
next word is also noun. These properties can
then function as input to a classification system
which has been trained on a large number of
such triples. In this case, there are several pos-
sible answers, but the correct one, that “that” is
a subordinating conjunction here, has the high-
est probability given this information.’

What I have called “properties” above are
usually called “features” in the literature. How-
ever, the term “feature” is used for several other
entities as well, e.g. combinations of properties.
For clarity’s sake, I prefer to define my own ter-
minology in this paper. I call each individual
property at the input side an Indicator and the
property at the output side a Class. The list of
Indicators and the Class together form a Case,
which is the working unit in each classification
task.? Case representations tend to use abbrevi-

!Obviously, use of more information can lead to bet-
ter probability estimates. For each NLP task, there are
two choices to be made: which properties of the situa-
tion to use (and which representation of those proper-
ties), and which machine learning mechanism to use to
get from the property list to a probability estimate. This
paper deals only with the second question.

2During classification, the Class part of the Case is
unknown (at least to the system), so that the Case is a

ated forms, e.g. in the example above, the Case
consists of the Indicators {prev=N, word=that,
next=N} and the Class {pos=CONJ(sub)}.?
Any set (i.e. combination) of Indicators forms
a Feature. Features are subdivided into Atomic
Features, which contain a single Indicator, e.g.
{prev=N} or {word=that}, and Complex Fea-
tures, which contain any other number of Indi-
cators, e.g. {prev=N, next=N} or the complete
set {prev=N, word=that, next=N}. Note that
the empty set is also a possible Feature. The
final two terms are used to define groupings of
Indicators and Features and are needed for the
explanation of weighting systems below. An In-
dicator Family is a set of all the Indicators of the
same type, i.e. sharing an “x=" prefix in my In-
dicator notation, e.g. prev=N and prev=VB are
of the same Family. A Feature Family is a set
of all the Features consisting of the same com-
bination of Indicator Families, e.g. {prev=N,
next=N} and {prev=PRON, next=VB} belong
to the same Family.

In these terms, the classification task entails
finding the most probable Class (output) for
each Case on the basis of the set of Indicators
(input). There are many ways to organise the
search. An intuitively clear approach is the use
of a spatial model: every Indicator sequence is
viewed as a vector in a multi-dimensional space.
When presented with a new case, the system
can determine the probabilities for all Classes
from the location in the space. This can e.g.
be done by using divisions of the space (e.g.
Support Vectors; cf. Burges (1998)), generally
repeated to yield ever more refined position-
ing (Decision Trees; cf. e.g. Quinlan (1993)).
Another spatial approach is to look for those
training cases which are closest to the current
case (Nearest Neighbours; cf. Daelemans et al.
(1999b)).

It is also possible to take a more decom-
positional approach, in which the presence of

list of Indicators combined with “the unknown Class”.
As the unknown Class is usually not explicitly men-
tioned, the term Case is therefore also often used to refer
to the list of Indicators alone.

3In some systems, e.g. TiMBL (cf. Daelemans et al.
(1999b)), it is assumed that each Case has the same num-
ber of Indicators and that each Indicator position always
holds the same kind of information, e.g. the first posi-
tion lists the previous wordclass. In such systems the
Indicator type need not be given, resulting in lists like
{N, that, N}.

Table 1: Example Cases of the GS task.

Prev3 | Prev2 | Prevl | Focus | Nextl | Next2 | Next3 || Class
= h e a r t S 0A:
b 0 0 k i n g 0k
t 1 e S = = = 0z
= = a f a r = 1f
Table 2: Example Cases of the TAG task.
Prev2 | Prevl Focus Next1 Next2 Class
(ambiguous) (ambiguous) | (ambiguous)
= SQSO VB VBG NN VB
NNS BEZ TO/IN BE VBN/VBD TO
NP HVZ | VB/VBN/VBD RP/IN AT VBN
= = PP3 MD RN PP3

all possible Features in a new Case is deter-
mined and used in a parametrized calculation
to yield the desired probabilities. The calcula-
tion is usually based on an underlying statistical
model, e.g. assuming that the atomic features
are independent allows a simple multiplication
of feature-dependent parameters (Naive Bayes;
cf. e.g. Gale et al. (1993)). As the atomic fea-
tures are hardly ever independent, more com-
plicated models tend to yield better results (e.g.
Maximum Entropy; cf. Mikheev (1998)).

There are yet other approaches, which do not
fall as conveniently in my general classification.
Neural Network approaches are best seen as a
group, yet the class of a specific system may
depend on the network topology. The SNOW
system is an example of a hybrid approach,
combining spatial division with neural network
methods (cf. Roth and Zelenko (1998)).

WPDV follows the decompositional approach
but deviates in that it has no obvious underlying
statistical model, as will become clear below.

3 Example NLP Tasks

The experiments described in this paper are
based on two NLP tasks, viz. grapheme to
phoneme conversion with stress, and wordclass
tag selection. These two tasks have earlier been
studied by Daelemans et al. (1999a)). I use
the same Case collections and Features as are
used in that paper, but, instead of using cross-
validation, I only use a single 90% 10% split

into training material and test material.* These
fixed training and test sets are used in several
experiments with WPDV using different pa-
rameter settings and also, for comparison, with
TiMBL (Daelemans et al., 1999b).

In the grapheme-to-phoneme-with-stress task
(GS), the system has to suggest the pronun-
ciation of an KEnglish grapheme in a specific
word and indicate whether it should be stressed.
The Case collection is derived from the CELEX
database (cf. Baayen et al. (1993)). The Indi-
cators are the grapheme in question and up to
three previous and three next graphemes (see
Table 1). These Indicators have up to 42 dif-
ferent values (see Table 4 below). The output
consists of one of 159 Classes in which phoneme
and stress information are combined. The train-
ing set consists of 608K and the test set of 68K
Cases.

In the wordclass tag selection task (TAG), the
system has to select a tag from the LOB tagset
for a word in an English sentence. The Case
collection is derived from the tagged LOB cor-
pus (cf. Johansson (1986)). The Indicators are
the potential tags of the focus word, the cor-
rect tags for the previous two words and the
potential tags of the next two words (Table 2).°
The disambiguated Indicator tags have up to

“The training sets I use consist of parts b to j, the
test sets of part a of the respective collections.

>This is an easier task than the normal tagging task,
as the tags for the previous two positions are the correct
ones rather than the ones predicted by the tagger.

Table 3: An example of WPDYV classification.

Feature Class Weight Weights x
probabilities probabilities

CS | DT | WPR IN CS | DT | WPR IN
{prev=NN, word=that, next=NN} || 0.56 | 0.34 0.10 | 0.00 6 || 3.36 | 2.04 0.60 | 0.00
{prev=NN, word=that} 0.62 | 0.02 0.36 | 0.00 2 || 1.24 | 0.04 0.72 | 0.00
{prev=NN, next=NN} 0.00 | 0.01 0.00 | 0.50 2 || 0.00 | 0.02 0.00 | 1.00
{word=that, next=NN} 0.22 | 0.74 0.01 | 0.00 2] 044 | 148 0.02 | 0.00
{prev=NN} 0.02 | 0.00 0.01 | 0.28 1 0.02 | 0.00 0.01 | 0.28
{word=that} 0.65 | 0.20 0.12 | 0.00 1| 065 | 0.20 0.12 | 0.00
{next=NN} 0.00 | 0.03 0.00 | 0.11 1 (| 0.00 | 0.03 0.00 | 0.11
{} 0.02 | 0.01 0.00 | 0.11 0.01 || 0.00 | 0.00 0.00 | 0.00
Total 5.71 | 3.81 1.47 | 1.39

170 values and the undisambiguated ones up to
497 (see Table 5 below). The output is one of
the 169 LOB tags. The training set consists of
941K and the test set of 105K Cases.

4 WPDV models

When presented with a Case, WPDV has to es-
timate the likelihood of the possible Classes on
the basis of the Indicators present in that Case.
How it does this exactly is best explained by
way of an example. Let us return to the ex-
ample mentioned above, viz. the determination
of the most likely wordclass for “that” when it
is both preceded and followed by a noun. In
terms of the LOB tagset, the Case at hand
becomes {prev=NN, word=that, next=NN}.®
WPDV first lists which combinations of Indi-
cators, i.e. which Features, are present in the
current Case. There are eight of these, which
are shown in the first column of Table 3. For
each of these Features, WPDV then takes the
probability distribution over the various Classes
as determined from those Cases in the training
material which contain the Feature in question.
Obviously, all Classes are taken into considera-
tion in this process, but in this example we will
concentrate on four of them, viz. the three tags
most often observed for “that”, CS (subordinat-
ing conjunction), DT (determiner) and WPR
(wh-pronoun), and one which is found often be-
tween two nouns, IN (preposition). Columns 2
to 5 of the table show the probabilities for these
Classes, given each Feature. After the eight dis-
tributions are known, WPDV adds the proba-
bilities for each Class, using weights to give the
more informative Features more influence in the

NN is the LOB tag used for common nouns.

decision. In this example, we follow van Hal-
teren et al. (To appear) where the simple as-
sumption is used that weight can be based on
the number of Indicators in the Feature and that
a weight of N! for a Feature with N Indicators is
sufficient to make the larger Features dominate
the smaller ones. This leads to the weights in
column 6 of the table and the weighted distri-
butions in columns 7 to 10. The result of the
weighted addition is shown at the bottom of the
table. The highest sum is found for the Class
CS, which is therefore selected as being the most
likely Class.”

As becomes clear from the example, a WPDV
model uses two interrelated, but separate, com-
ponents to estimate Class likelihoods, viz. the
probability distributions and the weights. The
first component can be derived straightfor-
wardly from the training data, as it merely con-
sists of the number of times each Class is ob-
served with each Feature. WPDV does not need
a generating probabilistic model which approxi-
mates the observed distributions (like e.g. Max-
imum Entropy), but uses the observed prob-
ability distributions themselves, which can be
stored in the form of absolute counts. This type
of storage has two special advantages. First of
all, it is a trivial task to implement incremen-
tal learning.® Secondly, the presence of abso-

"In this particular example, the WPDV mechanism
appears to go through a great deal of work, just to ar-
rive at the same result as the distribution for the full
Case ({prev=NN, word=that next=NN}) would have
provided. However, the full Case may not be present
in the training material, or at least not often enough to
yield reliable statistics.

8 Although optimal weights may have to be recalcu-
lated.

Table 4: Properties of the Indicators in the GS
task.

Indicator | Number | Information | Gain
Family of values Gain Ratio
Prev3 42 0.28 0.07
Prev2 42 0.40 0.10
Prevl 42 0.91 0.21
Focus 41 3.09 0.72
Nextl 42 0.95 0.23
Next2 40 0.47 0.12
Next3 38 0.31 0.08

lute counts leaves open the possibility of total
cross-validation on the training data: when test-
ing (or determining weights), the current case
can be conceptually removed from the training
set by subtracting one from the corresponding
Class count and the total count for each Fea-
ture.” There is, however, also a disadvantage to
storing counts for all observed Features. As the
number of Features grows exponentially in the
number of Indicator types, the size of the proba-
bility distribution component of the model can
quickly grow too large for practical use. Be-
low, I will examine some strategies to restrict
the Features actually used, and hence the model
size.

While the probability distribution component
(when not too large) can be constructed easily,
the weight component is more of a challenge.
For tasks with more varied Indicator sets than
those found in the tagger combination task (van
Halteren et al., To appear), the use of a weight
of N! for all Features of size N proves too sim-
plistic, as will become clear in the following sec-
tion.

5 Weights for WPDV

The second component of a WPDV model, the
set of Feature weights, determines how the var-
ious probability distributions have to be com-
bined into a single Class likelihood estimate.
The question, then, is how to find weights which
lead to a good performance for each NLP (or
other) task. Intuitively, the weight for a Fea-
ture should increase with the amount of knowl-

9This same trick could of course be used in all systems
where absolute counts are stored. However, it is only
valid if no other part of the model, e.g. the parametriza-
tion, has made use of the removed case, e.g. TiMBL
stores absolute counts, but also uses the training set to
calculate Indicator weights.

Table 5: Properties of the Indicators in the TAG
task.

Indicator | Number | Information | Gain
Family of values Gain Ratio
Prev2 169 0.43 0.08
Prevl 170 1.40 0.27
Focus 497 4.99 0.84
Next1 489 1.51 0.26
Next2 478 0.59 0.10

edge it contributes to the determination of the
correct Class, its Informativity. We can dis-
tinguish at least two major factors in a Fea-
ture’s Informativity. The first is its Decisive-
ness, the degree to which the presence of a Fea-
ture reduces the difficulty of choice within the
Class set. This is closely related to the notion
of Information Gain, which measures the dif-
ference between the entropy of the choice with
and without knowledge of the presence of the
Feature (cf. Quinlan (1986) and (1993)), and
we could therefore attempt to use Information
Gain as our Decisiveness factor. The second
factor is the Reliability of the information con-
tributed by the Feature, i.e. how closely the
probability distribution which is observed in the
training data models the actual probability dis-
tribution. Apart from the fact that Reliability
increases with the number of observed instances
of the Feature, it is as yet unclear how it should
be measured. This is especially problematic for
very low numbers of instances, a common prob-
lem for machine learning systems dealing with
NLP data (the Sparse Data Problem). Further-
more, it is also far from clear how Decisiveness
and Reliability can be combined into an Infor-
mativity measure from which we can calculate
good weights.

Given the absence of a theoretically likely
weight determination system, it is necessary
to start with intuitively likely approximations.
One of these has already been described above:
use a weight of N! for each Feature of size N,
so that more information weighs more heavily
than less information. For the tagger combi-
nation task, this works surprisingly well (van
Halteren et al., To appear). However, in that
task, the Indicator Families are of roughly the
same importance. This is not the case for the
GS and TAG tasks, where some Indicator Fam-
ilies, especially the focus, contribute much more

Table 6: Accuracy measurements for various
WPDV weighting schemes.

GS | TAG

Baseline: TiMBL 93.58 | 97.86
WPDV with weight =

1 91.50 97.68

N! 93.44 | 96.92

1 % I1;(10 * GainRatio(I)) 92.71 | 98.15

N! %1, (10 + GainRatio(I)) | 93.82 | 97.94

information than others, as becomes clear from
Tables 4 and 5. Here, it seems useful to increase
the weight when the ingredients of the Feature
consist of more informative Indicator Families.
For these initial experiments, I opt for a factor
proportional to the Indicator Family’s Gain Ra-
tio, a normalising derivative of the Information
Gain value on the basis of the entropy of the
Indicator (cf. Quinlan (1993) or Daelemans et
al. (1999b)).

Some results of experiments based on size-
and ingredient-dependent weights are shown in
Table 6. The first line gives the accuracy of
TiMBL for the two tasks, so that it can serve
as a baseline to compete with. The other lines
list accuracy measurements for WPDV, for ex-
periments with or without a size-dependent fac-
tor (i.e. with or without multiplication by NI)
and with or without an ingredient-dependent
factor (i.e. with or without multiplication by
the product of the Gain Ratio’s of the included
Indicator Families, each multiplied by 10). For
both tasks, addition of an ingredient-dependent
factor leads to a significant improvement, as ex-
pected. Rather unexpected, on the other hand,
is that the size-dependent factor is only useful
for the GS task. For TAG, its inclusion is even
detrimental.

The results in Table 6 show that WPDV, even
using first approximation weights again man-
ages to outperform TiMBL.!'® Given the sta-
tus of TiMBL, this places WPDV at the level
of state-of-the-art or better. However, it is

"We have to point out that we have only run our
experiments with a single training—test split, and that
WPDV’s high score might therefore be a lucky coinci-
dence. However, as an anonymous reviewer remarked,
the results of TiMBL reported on GS and TAG (Daele-
mans et al., 1997) on various partitionings show standard
deviations that seem to suggest that our conclusion is
valid.

also clear that weight determination is task-
dependent. It will be necessary to investi-
gate the effects of different weights thoroughly
(cf. van Halteren (Submitted)). Although the
WPDV algorithm allows weights per individual
Feature, technical as well as theoretical consid-
erations suggest that, for the time being, it is
better to use Feature and/or Indicator Family-
based weights. These can be determined either
on the basis of training set properties, as above,
or by hill-climbing methods.!'’ However, hill-
climbing (like other optimization strategies) as-
sumes a correlation between accuracy on the
training set and the test set, so that the pres-
ence of such a correlation will also have to be
investigated. Once it becomes clear what the
(near-)optimal weights are, it is hopefully pos-
sible to relate these to measurable properties of
the training data or, alternatively, held-out tun-
ing data. If this is indeed the case, it may even
be possible to take the step from Feature Family
weights to weights for individual Features.

6 Reducing WPDYV model size

A disadvantage of WPDV is the size of its mod-
els. When unrestricted, the number of Features
quickly runs into the millions (e.g. 4,133,507
for TAG and 5,855,259 for GS). Since only a
small number of Features is active for a spe-
cific Case, the execution time remains accept-
able. The memory requirements, however, do
not. During training, memory needs are es-
pecially high (e.g. up to 480Mb for TAG and
750Mb for GS); during classification, the data
can be stored more efficiently (e.g. 125Mb for
TAG and 200Mb for GS), but the requirements
still tax the capabilities of the average machine.
The question, then, is how we can reduce model
size without losing too much classification accu-
racy. The most likely answer lies in the observa-
tion that there is bound to be redundancy in the
Feature set, i.e. that there are Features which
are not really needed because the information
they contribute is the same as that provided by
other Features. As the number of Features is
too large to identify combinations of Features
which are mutually redundant, it will be neces-

"1n hill-climbing, systematic variations of a weight
vector are tested. The best-performing vector is selected
and the process is repeated until a maximum accuracy
is reached.

Table 7: The effects of Feature size limitation.

-d Number of | Score(GS) || -d Number of | Score(TAG)
Features(GS) Features(TAG)
7 5.855.250 93.82
6 5,642,052 93.82
-5 4,468,737 93.32 || -5 4,133,507 98.15
-4 2,132,021 90.42 || -4 3,071,207 98.16
-3 377,286 82.36 || -3 1,712,743 98.11
-2 17,895 68.88 || -2 204,183 97.31
-1 259 49.02 | -1 1,778 93.66
1,3,5,7 2,909,573 93.79 | 1.3,5 2,072,638 97.98
Table 8: The effects of Feature frequency limitation.
-f Number of | Score(GS) Number of | Score(TAG)
Features(GS) Features(TAG)
1 5,855,259 93.82 4,133,507 98.15
2 3,975,716 92.19 1,375,699 98.00
3 2,649,930 91.56 850,011 97.91
) 1,710,624 90.46 496,933 97.90
10 898,068 88.45 253,753 97.38

sary to use properties of individual Features as
a basis for their elimination.

The current WPDV implementation has sev-
eral parameters to specify reasons for Feature
elimination (or rather selection). The first pa-
rameter (-d) limits the size (dimensionality) of
the Features, i.e. only Features consisting of
the specified numbers of Indicators are to be
used in the model. It allows specification of a
maximum (e.g. -d:-3 states that Features can
contain at most 3 Indicators), a minimum (e.g.
-d:4- states Features must have at least 4 Indi-
cators) or a range (e.g. -d:2-4 allows features
with 2 to 4 Indicators), but it is also possible
to specify a list of sizes (e.g. -d:1,2,4,6). The
effects of size limitation for GS and TAG are
shown in Table 7. For GS, a maximum size
does not appear to be the best choice. High
maxima do not yield any useful model size re-
duction and lower maxima lead to high quality
loss. A spread-out size selection appears to be
better, as -d:1,3,5,7 produces a model about half
the size of the full model with virtually the same
quality. For TAG, the situation is reversed, as
-d:1,3,5 loses too much quality, but a maximum
of 3 produces a model which is still almost as
good as the full model.

Another option is a frequency threshold on
Features (-f). In this case, a Feature has to
be observed a certain number of times in the
training data in order to be used in the model,
e.g. -f:3 means it has to be present at least
3 times. Measurements for GS and TAG (Ta-
ble 8) show that frequency thresholds are an ef-
ficient way to reduce model size, but may be too
coarse-grained to keep quality loss under control
(cf. Daelemans et al. (1999a) for similar obser-
vations with memory based learning).

A final option is an Informativity threshold
(-1). Since it is as yet unclear what Informa-
tivity is exactly (see above), this is currently
implemented as an entropy-based threshold. A
parameter setting of -i:0.2 means that the en-
tropy of the Class probability distribution with
that Feature is allowed to be at most 0.2 times
the entropy over all cases. Measurements for
GS and TAG (Table 9) show that this inter-
pretation of Informativity is practically useless.
At higher thresholds, the model size decreases
practically nothing and at the first substantial
drop, the quality plummets as well.

For both GS and TAG, the most effective way
to reduce model size and keep quality loss in
bounds is by limiting the Feature size. How-

Table 9: The effects of Feature entropy limitation.

-1 Number of | Score(GS) Number of | Score(TAG)
Features(GS) Features(TAG)

1.0 9,855,259 93.82 4,133,507 98.15

0.5 5,776,574 93.82 4,089,727 98.14

0.2 5,287,570 92.83 3,933,620 98.10

0.1 4,529,645 89.28 3,714,652 97.82

ever, the nature of the optimal size limitation
differs between the two. Whether this can be
explained from the nature of the data will have
to be looked into at a later time. Furthermore,
it should theoretically be possible to use the In-
formativity of Features for their selection. The
substitution of entropy for Informativity does
not work out, but such a use will certainly have
to be investigated as soon as a more workable
definition of Informativity is available. What-
ever the means of limitation, it appears that, for
the tasks studied here, it is possible to produce a
qualitatively acceptable model of less than half
the size of the full model.

7 Conclusion

After having proved its state-of-the-art qual-
ity on the tagger combination task in ear-
lier experiments (van Halteren et al., To ap-
pear), Weighted Probability Distribution Vot-
ing shows competitive results for two further
NLP tasks. For both Grapheme to Phoneme
with Stress and Part-of-Speech Tagging, it
yields a more accurate classification of unseen
data than the memory-based TiMBL system,
which itself was shown to perform better than
or comparable to the Decision Tree system C5.0
(cf. Daelemans et al. (1999a)). It has yet to
be determined how WPDV compares to other
high-quality methods (e.g. Maximum Entropy)
for these two tasks, as well as how it performs on
other tasks, but we can already conclude that it
is of sufficient quality to continue the investiga-
tion of WPDV models. For now, this investiga-
tion should focus on two areas:

e The primary problem for WPDV modelling
is the determination of good weights for
any specific task. Future research will have
to show whether these can be calculated
on the basis of an Informativity measure or
whether more heuristic approaches such as

hill-climbing are needed. In the latter case
it will also have to be investigated how well
the weight-accuracy functions on training
and test data correlate, i.e. whether we can
determine where training stops and over-
training starts.

e Another matter which has to be looked
into more closely is the reduction of model
size. For the current tasks, the memory re-
quirements are still acceptable. However,
when the number of values per Indicator in-
creases or, more problematically, the num-
ber of Indicators grows larger, we will need
some (preferably structured) Feature selec-
tion mechanism. A Feature-size-based se-
lection is easiest and may be sufficient, but
the best selection method proves to be task-
dependent and future study will have to
show whether it can be based on measur-
able properties of the data.

Once these fundamental questions have been
answered satisfactorily, the WPDV implemen-
tation can be extended with automatic train-
ing procedures and made available more widely.
At that time, it can also be compared more
thoroughly to the other state-of-the-art ma-
chine learning systems, using various criteria
such as accuracy, speed, memory use and user-
friendliness. 1 fully expect this comparison to
show that WPDV deserves to become part of
the standard machine learning toolbox and to
be used on many more tasks, both in NLP and
elsewhere.

References

R. H. Baayen, R. Piepenbrock, and H. van Rijn.
1993. The CELEX lexical data base on CD-
ROM. Linguistic Data Consortium, Philadel-
phia, PA.

Adam Berger, Stephen Della Pietra, and Vin-

cent Della Pietra. 1996. Maximum entropy
approach to natural language processing.
Computational Linguistics, 22(1).

C.J.C. Burges. 1998. A tutorial on support vec-
tor machines for pattern recognition. Data
mining and knowledge discovery, 2(2).

W. Daelemans, A. Van den Bosch, and A. Wei-
jters. 1997. 1GTree: using trees for com-
pression and classification in lazy learning
algorithms. Artificial Intelligence Review,
11:407-423.

W. Daelemans, A. Van den Bosch, and J. Za-
vrel. 1999a. Forgetting exceptions is harm-
ful in language learning. Machine Learning,
Special issue on Natural Language Learning,
34:11 41.

W. Daelemans, J. Zavrel, K. Van der Sloot, and
A. Van den Bosch. 1999b. TiMBL: Tilburg
Memory Based Learner, version 2.0, reference
manual. Technical Report ILK-9901, ILK,
Tilburg University.

W. Gale, K. Church, and D. Yarowsky. 1993. A
method for disambiguating word senses in a
large corpus. Computing in the Humanities,
1:415-439.

H. van Halteren, J. Zavrel, and W. Daele-
mans. 1998. Improving data-driven word-
class tagging by system combination. In Proc.
COLING/ACLY8, pages 491 497, Montreal,
Canada, August 10-14.

H. van Halteren, J. Zavrel, and W. Daele-
mans. To appear. Improving accuracy in
NLP through combination of machine learn-
ing systems. Computational Linguistics.

H. van Halteren. Submitted. Systematic inves-
tigation of a parameter space: weights for

WPDV models.

S. Johansson. 1986. The tagged LOB Corpus:
User’s Manual. Norwegian Computing Cen-
tre for the Humanities, Bergen, Norway.

S. Lawrence, C.L. Giles, and Fong S. 1995.
On the applicability of neural network and
machine learning methodologies to natu-
ral language processing. Technical Report
UMIACS-TR-95-64 and CS-TR-3479, UMI-
ACS, University of Maryland.

A. Mikheev. 1998. Feature lattices for max-
imum entropy models. In Proc. COL-
ING/ACLYS, pages 848-854, Montreal,
Canada, August 10-14.

J.R. Quinlan. 1986. Induction of Decision
Trees. Machine Learning, 1:81 206.

J.R. Quinlan. 1993. c4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, San Ma-
teo, CA.

D. Roth and D. Zelenko. 1998. Part of speech
tagging using a network of linear separators.
In Proc. COLING/ACLY8, pages 1136 1142,
Montreal, Canada, August 10-14.

