
Weighted Probability Distribution Voting, an introductionHans van HalterenDept. of Language and SpeechUniversity of NijmegenP.O. Box 91036500 HD NijmegenThe Netherlandshvh@let.kun.nlAbstractThis paper introduces a new machine learn-ing technique, Weighted Probability Distribu-tion Voting (WPDV). During learning, WPDVdetermines the output class probability distri-bution for each input feature, both atomic andcomplex. During classi�cation, WPDV takesall input features that occur in the new in-put and adds the corresponding probability dis-tributions, each multiplied by a weight factorwhich depends on the feature or feature type.The output class with the highest sum is thenselected. Apart from the basic mechanism ofWPDV, the paper describes some principles forweight selection and feature restriction. Finally,WPDV is shown to produce results which arebetter than those of other state-of-the-art ma-chine learning systems for several NLP tasks.1 IntroductionMany tasks that play a role in natural languageprocessing can be formulated as classi�cationtasks, i.e. tasks in which an output, taken froma �nite set of possible values, is calculated onthe basis of a speci�c set of input informationunits. An example is wordclass tagging, wherethe input consists of features of the token tobe tagged and its context, and the output con-sists of a wordclass tag. Classi�cation taskscan generally be handled relatively well withmachine learning techniques. A variety of ma-chine learning techniques has already been ap-plied to NLP classi�cation tasks, e.g. decisiontrees (cf. e.g. Quinlan (1993)), neural networks(cf. e.g. Lawrence et al. (1995)), case bases (cf.e.g. Daelemans et al. (1997) or (1999b)) andmaximum entropy models (cf. e.g. Berger et al.(1996) or Mikheev (1998)).Even though there are many machine learn-ing techniques already, I believe that there is

still room for more. This belief is based primar-ily on the results of van Halteren et al. (1998)and (To appear), which show that a combina-tion of the outputs of a number of wordclasstaggers yields more accurate results than the in-dividual taggers. The method that executes thiscombination most e�ectively is a weighted vot-ing method, dubbed Weighted Probability Dis-tribution Voting (WPDV). As WPDV managesto outperform a number of existing machinelearning systems for the combination task, evenwhile using a rudimentary weighting scheme,it seems worthwhile to investigate the perfor-mance of the system at tasks other than combi-nation. I intend to carry out this investigationin a stepwise fashion. In the �rst step, I ap-ply the system to several NLP tasks which havebeen the subject of earlier machine learning ex-periments (c.f. Daelemans et al. (1999a)), whilestill using only very simple weighting schemes.If this application shows competitive results aswell, the next step is the determination of aprocedurally clear and practically usable deter-mination of good (but probably not optimal)weights. At the end of this step, I will be in a po-sition to initiate a more thorough task-orientedcomparison with the other machine learningmethods used for NLP. The third and �nal stepcan then be the search for a theoretically mo-tivated weight determination procedure, whichwill hopefully lead to even better weights andcould give insights into WPDV's potential forcombination or hybridization with other avail-able algorithms.In this paper, I introduce the basics of WPDVand describe the results of the �rst step of myinvestigation. I start with some background andterminology (Section 2), and an introductionof the two NLP tasks which I use as examples(Section 3). After this I can explain in detail



how WPDV works and what the special advan-tages of the technique are (Section 4). In Sec-tion 5, I explore the e�ciency of a few elemen-tary feature weighting systems for the two ex-ample tasks. As WPDV models tend to be verylarge, I then examine how model size can belimited without loss of too much quality (Sec-tion 6). Finally, I summarise the results andindicate the immediate follow-up research onWPDV (Section 7).2 Classi�cation in NLPIn most applications of machine learning sys-tems in the area of NLP, the NLP task is recastas a classi�cation task, i.e. the input is pre-sented in the form of a list of properties and theoutput requested in the form of a class iden-ti�er, which must be taken from a given �niteset. A useful example is syntactic wordclass tag-ging. Suppose we want to know which kind of\that" is used in the sentence \They gave theimpression that trade was improving." We canstate a number of properties of the situation,e.g. the word is \that", the wordclass of theprevious word is noun and the wordclass of thenext word is also noun. These properties canthen function as input to a classi�cation systemwhich has been trained on a large number ofsuch triples. In this case, there are several pos-sible answers, but the correct one, that \that" isa subordinating conjunction here, has the high-est probability given this information.1What I have called \properties" above areusually called \features" in the literature. How-ever, the term \feature" is used for several otherentities as well, e.g. combinations of properties.For clarity's sake, I prefer to de�ne my own ter-minology in this paper. I call each individualproperty at the input side an Indicator and theproperty at the output side a Class. The list ofIndicators and the Class together form a Case,which is the working unit in each classi�cationtask.2 Case representations tend to use abbrevi-1Obviously, use of more information can lead to bet-ter probability estimates. For each NLP task, there aretwo choices to be made: which properties of the situa-tion to use (and which representation of those proper-ties), and which machine learning mechanism to use toget from the property list to a probability estimate. Thispaper deals only with the second question.2During classi�cation, the Class part of the Case isunknown (at least to the system), so that the Case is a

ated forms, e.g. in the example above, the Caseconsists of the Indicators fprev=N, word=that,next=Ng and the Class fpos=CONJ(sub)g.3Any set (i.e. combination) of Indicators formsa Feature. Features are subdivided into AtomicFeatures, which contain a single Indicator, e.g.fprev=Ng or fword=thatg, and Complex Fea-tures, which contain any other number of Indi-cators, e.g. fprev=N, next=Ng or the completeset fprev=N, word=that, next=Ng. Note thatthe empty set is also a possible Feature. The�nal two terms are used to de�ne groupings ofIndicators and Features and are needed for theexplanation of weighting systems below. An In-dicator Family is a set of all the Indicators of thesame type, i.e. sharing an \x=" pre�x in my In-dicator notation, e.g. prev=N and prev=VB areof the same Family. A Feature Family is a setof all the Features consisting of the same com-bination of Indicator Families, e.g. fprev=N,next=Ng and fprev=PRON, next=VBg belongto the same Family.In these terms, the classi�cation task entails�nding the most probable Class (output) foreach Case on the basis of the set of Indicators(input). There are many ways to organise thesearch. An intuitively clear approach is the useof a spatial model: every Indicator sequence isviewed as a vector in a multi-dimensional space.When presented with a new case, the systemcan determine the probabilities for all Classesfrom the location in the space. This can e.g.be done by using divisions of the space (e.g.Support Vectors; cf. Burges (1998)), generallyrepeated to yield ever more re�ned position-ing (Decision Trees; cf. e.g. Quinlan (1993)).Another spatial approach is to look for thosetraining cases which are closest to the currentcase (Nearest Neighbours; cf. Daelemans et al.(1999b)).It is also possible to take a more decom-positional approach, in which the presence oflist of Indicators combined with \the unknown Class".As the unknown Class is usually not explicitly men-tioned, the term Case is therefore also often used to referto the list of Indicators alone.3In some systems, e.g. TiMBL (cf. Daelemans et al.(1999b)), it is assumed that each Case has the same num-ber of Indicators and that each Indicator position alwaysholds the same kind of information, e.g. the �rst posi-tion lists the previous wordclass. In such systems theIndicator type need not be given, resulting in lists likefN, that, Ng.



Table 1: Example Cases of the GS task.Prev3 Prev2 Prev1 Focus Next1 Next2 Next3 Class= h e a r t s 0A:b o o k i n g 0kt i e s = = = 0z= = a f a r = 1fTable 2: Example Cases of the TAG task.Prev2 Prev1 Focus Next1 Next2 Class(ambiguous) (ambiguous) (ambiguous)= SQSO VB VBG NN VBNNS BEZ TO/IN BE VBN/VBD TONP HVZ VB/VBN/VBD RP/IN AT VBN= = PP3 MD RN PP3all possible Features in a new Case is deter-mined and used in a parametrized calculationto yield the desired probabilities. The calcula-tion is usually based on an underlying statisticalmodel, e.g. assuming that the atomic featuresare independent allows a simple multiplicationof feature-dependent parameters (Naive Bayes;cf. e.g. Gale et al. (1993)). As the atomic fea-tures are hardly ever independent, more com-plicated models tend to yield better results (e.g.Maximum Entropy; cf. Mikheev (1998)).There are yet other approaches, which do notfall as conveniently in my general classi�cation.Neural Network approaches are best seen as agroup, yet the class of a speci�c system maydepend on the network topology. The SNOWsystem is an example of a hybrid approach,combining spatial division with neural networkmethods (cf. Roth and Zelenko (1998)).WPDV follows the decompositional approachbut deviates in that it has no obvious underlyingstatistical model, as will become clear below.3 Example NLP TasksThe experiments described in this paper arebased on two NLP tasks, viz. grapheme tophoneme conversion with stress, and wordclasstag selection. These two tasks have earlier beenstudied by Daelemans et al. (1999a)). I usethe same Case collections and Features as areused in that paper, but, instead of using cross-validation, I only use a single 90%{10% split

into training material and test material.4 These�xed training and test sets are used in severalexperiments with WPDV using di�erent pa-rameter settings and also, for comparison, withTiMBL (Daelemans et al., 1999b).In the grapheme-to-phoneme-with-stress task(GS), the system has to suggest the pronun-ciation of an English grapheme in a speci�cword and indicate whether it should be stressed.The Case collection is derived from the CELEXdatabase (cf. Baayen et al. (1993)). The Indi-cators are the grapheme in question and up tothree previous and three next graphemes (seeTable 1). These Indicators have up to 42 dif-ferent values (see Table 4 below). The outputconsists of one of 159 Classes in which phonemeand stress information are combined. The train-ing set consists of 608K and the test set of 68KCases.In the wordclass tag selection task (TAG), thesystem has to select a tag from the LOB tagsetfor a word in an English sentence. The Casecollection is derived from the tagged LOB cor-pus (cf. Johansson (1986)). The Indicators arethe potential tags of the focus word, the cor-rect tags for the previous two words and thepotential tags of the next two words (Table 2).5The disambiguated Indicator tags have up to4The training sets I use consist of parts b to j, thetest sets of part a of the respective collections.5This is an easier task than the normal tagging task,as the tags for the previous two positions are the correctones rather than the ones predicted by the tagger.



Table 3: An example of WPDV classi�cation.Feature Class Weight Weights xprobabilities probabilitiesCS DT WPR IN CS DT WPR INfprev=NN, word=that, next=NNg 0.56 0.34 0.10 0.00 6 3.36 2.04 0.60 0.00fprev=NN, word=thatg 0.62 0.02 0.36 0.00 2 1.24 0.04 0.72 0.00fprev=NN, next=NNg 0.00 0.01 0.00 0.50 2 0.00 0.02 0.00 1.00fword=that, next=NNg 0.22 0.74 0.01 0.00 2 0.44 1.48 0.02 0.00fprev=NNg 0.02 0.00 0.01 0.28 1 0.02 0.00 0.01 0.28fword=thatg 0.65 0.20 0.12 0.00 1 0.65 0.20 0.12 0.00fnext=NNg 0.00 0.03 0.00 0.11 1 0.00 0.03 0.00 0.11fg 0.02 0.01 0.00 0.11 0.01 0.00 0.00 0.00 0.00Total 5.71 3.81 1.47 1.39170 values and the undisambiguated ones up to497 (see Table 5 below). The output is one ofthe 169 LOB tags. The training set consists of941K and the test set of 105K Cases.4 WPDV modelsWhen presented with a Case, WPDV has to es-timate the likelihood of the possible Classes onthe basis of the Indicators present in that Case.How it does this exactly is best explained byway of an example. Let us return to the ex-ample mentioned above, viz. the determinationof the most likely wordclass for \that" when itis both preceded and followed by a noun. Interms of the LOB tagset, the Case at handbecomes fprev=NN, word=that, next=NNg.6WPDV �rst lists which combinations of Indi-cators, i.e. which Features, are present in thecurrent Case. There are eight of these, whichare shown in the �rst column of Table 3. Foreach of these Features, WPDV then takes theprobability distribution over the various Classesas determined from those Cases in the trainingmaterial which contain the Feature in question.Obviously, all Classes are taken into considera-tion in this process, but in this example we willconcentrate on four of them, viz. the three tagsmost often observed for \that", CS (subordinat-ing conjunction), DT (determiner) and WPR(wh-pronoun), and one which is found often be-tween two nouns, IN (preposition). Columns 2to 5 of the table show the probabilities for theseClasses, given each Feature. After the eight dis-tributions are known, WPDV adds the proba-bilities for each Class, using weights to give themore informative Features more in
uence in the6NN is the LOB tag used for common nouns.

decision. In this example, we follow van Hal-teren et al. (To appear) where the simple as-sumption is used that weight can be based onthe number of Indicators in the Feature and thata weight of N! for a Feature with N Indicators issu�cient to make the larger Features dominatethe smaller ones. This leads to the weights incolumn 6 of the table and the weighted distri-butions in columns 7 to 10. The result of theweighted addition is shown at the bottom of thetable. The highest sum is found for the ClassCS, which is therefore selected as being the mostlikely Class.7As becomes clear from the example, a WPDVmodel uses two interrelated, but separate, com-ponents to estimate Class likelihoods, viz. theprobability distributions and the weights. The�rst component can be derived straightfor-wardly from the training data, as it merely con-sists of the number of times each Class is ob-served with each Feature. WPDV does not needa generating probabilistic model which approxi-mates the observed distributions (like e.g. Max-imum Entropy), but uses the observed prob-ability distributions themselves, which can bestored in the form of absolute counts. This typeof storage has two special advantages. First ofall, it is a trivial task to implement incremen-tal learning.8 Secondly, the presence of abso-7In this particular example, the WPDV mechanismappears to go through a great deal of work, just to ar-rive at the same result as the distribution for the fullCase (fprev=NN, word=that next=NNg) would haveprovided. However, the full Case may not be presentin the training material, or at least not often enough toyield reliable statistics.8Although optimal weights may have to be recalcu-lated.



Table 4: Properties of the Indicators in the GStask. Indicator Number Information GainFamily of values Gain RatioPrev3 42 0.28 0.07Prev2 42 0.40 0.10Prev1 42 0.91 0.21Focus 41 3.09 0.72Next1 42 0.95 0.23Next2 40 0.47 0.12Next3 38 0.31 0.08lute counts leaves open the possibility of totalcross-validation on the training data: when test-ing (or determining weights), the current casecan be conceptually removed from the trainingset by subtracting one from the correspondingClass count and the total count for each Fea-ture.9 There is, however, also a disadvantage tostoring counts for all observed Features. As thenumber of Features grows exponentially in thenumber of Indicator types, the size of the proba-bility distribution component of the model canquickly grow too large for practical use. Be-low, I will examine some strategies to restrictthe Features actually used, and hence the modelsize.While the probability distribution component(when not too large) can be constructed easily,the weight component is more of a challenge.For tasks with more varied Indicator sets thanthose found in the tagger combination task (vanHalteren et al., To appear), the use of a weightof N! for all Features of size N proves too sim-plistic, as will become clear in the following sec-tion.5 Weights for WPDVThe second component of a WPDV model, theset of Feature weights, determines how the var-ious probability distributions have to be com-bined into a single Class likelihood estimate.The question, then, is how to �nd weights whichlead to a good performance for each NLP (orother) task. Intuitively, the weight for a Fea-ture should increase with the amount of knowl-9This same trick could of course be used in all systemswhere absolute counts are stored. However, it is onlyvalid if no other part of the model, e.g. the parametriza-tion, has made use of the removed case, e.g. TiMBLstores absolute counts, but also uses the training set tocalculate Indicator weights.

Table 5: Properties of the Indicators in the TAGtask. Indicator Number Information GainFamily of values Gain RatioPrev2 169 0.43 0.08Prev1 170 1.40 0.27Focus 497 4.99 0.84Next1 489 1.51 0.26Next2 478 0.59 0.10edge it contributes to the determination of thecorrect Class, its Informativity. We can dis-tinguish at least two major factors in a Fea-ture's Informativity. The �rst is its Decisive-ness, the degree to which the presence of a Fea-ture reduces the di�culty of choice within theClass set. This is closely related to the notionof Information Gain, which measures the dif-ference between the entropy of the choice withand without knowledge of the presence of theFeature (cf. Quinlan (1986) and (1993)), andwe could therefore attempt to use InformationGain as our Decisiveness factor. The secondfactor is the Reliability of the information con-tributed by the Feature, i.e. how closely theprobability distribution which is observed in thetraining data models the actual probability dis-tribution. Apart from the fact that Reliabilityincreases with the number of observed instancesof the Feature, it is as yet unclear how it shouldbe measured. This is especially problematic forvery low numbers of instances, a common prob-lem for machine learning systems dealing withNLP data (the Sparse Data Problem). Further-more, it is also far from clear how Decisivenessand Reliability can be combined into an Infor-mativity measure from which we can calculategood weights.Given the absence of a theoretically likelyweight determination system, it is necessaryto start with intuitively likely approximations.One of these has already been described above:use a weight of N! for each Feature of size N,so that more information weighs more heavilythan less information. For the tagger combi-nation task, this works surprisingly well (vanHalteren et al., To appear). However, in thattask, the Indicator Families are of roughly thesame importance. This is not the case for theGS and TAG tasks, where some Indicator Fam-ilies, especially the focus, contribute much more



Table 6: Accuracy measurements for variousWPDV weighting schemes. GS TAGBaseline: TiMBL 93.58 97.86WPDV with weight =1 91.50 97.68N ! 93.44 96.921 ��I(10 �GainRatio(I)) 92.71 98.15N ! � �I(10 �GainRatio(I)) 93.82 97.94information than others, as becomes clear fromTables 4 and 5. Here, it seems useful to increasethe weight when the ingredients of the Featureconsist of more informative Indicator Families.For these initial experiments, I opt for a factorproportional to the Indicator Family's Gain Ra-tio, a normalising derivative of the InformationGain value on the basis of the entropy of theIndicator (cf. Quinlan (1993) or Daelemans etal. (1999b)).Some results of experiments based on size-and ingredient-dependent weights are shown inTable 6. The �rst line gives the accuracy ofTiMBL for the two tasks, so that it can serveas a baseline to compete with. The other lineslist accuracy measurements for WPDV, for ex-periments with or without a size-dependent fac-tor (i.e. with or without multiplication by N!)and with or without an ingredient-dependentfactor (i.e. with or without multiplication bythe product of the Gain Ratio's of the includedIndicator Families, each multiplied by 10). Forboth tasks, addition of an ingredient-dependentfactor leads to a signi�cant improvement, as ex-pected. Rather unexpected, on the other hand,is that the size-dependent factor is only usefulfor the GS task. For TAG, its inclusion is evendetrimental.The results in Table 6 show that WPDV, evenusing �rst approximation weights again man-ages to outperform TiMBL.10 Given the sta-tus of TiMBL, this places WPDV at the levelof state-of-the-art or better. However, it is10We have to point out that we have only run ourexperiments with a single training{test split, and thatWPDV's high score might therefore be a lucky coinci-dence. However, as an anonymous reviewer remarked,the results of TiMBL reported on GS and TAG (Daele-mans et al., 1997) on various partitionings show standarddeviations that seem to suggest that our conclusion isvalid.

also clear that weight determination is task-dependent. It will be necessary to investi-gate the e�ects of di�erent weights thoroughly(cf. van Halteren (Submitted)). Although theWPDV algorithm allows weights per individualFeature, technical as well as theoretical consid-erations suggest that, for the time being, it isbetter to use Feature and/or Indicator Family-based weights. These can be determined eitheron the basis of training set properties, as above,or by hill-climbing methods.11 However, hill-climbing (like other optimization strategies) as-sumes a correlation between accuracy on thetraining set and the test set, so that the pres-ence of such a correlation will also have to beinvestigated. Once it becomes clear what the(near-)optimal weights are, it is hopefully pos-sible to relate these to measurable properties ofthe training data or, alternatively, held-out tun-ing data. If this is indeed the case, it may evenbe possible to take the step from Feature Familyweights to weights for individual Features.6 Reducing WPDV model sizeA disadvantage of WPDV is the size of its mod-els. When unrestricted, the number of Featuresquickly runs into the millions (e.g. 4,133,507for TAG and 5,855,259 for GS). Since only asmall number of Features is active for a spe-ci�c Case, the execution time remains accept-able. The memory requirements, however, donot. During training, memory needs are es-pecially high (e.g. up to 480Mb for TAG and750Mb for GS); during classi�cation, the datacan be stored more e�ciently (e.g. 125Mb forTAG and 200Mb for GS), but the requirementsstill tax the capabilities of the average machine.The question, then, is how we can reduce modelsize without losing too much classi�cation accu-racy. The most likely answer lies in the observa-tion that there is bound to be redundancy in theFeature set, i.e. that there are Features whichare not really needed because the informationthey contribute is the same as that provided byother Features. As the number of Features istoo large to identify combinations of Featureswhich are mutually redundant, it will be neces-11In hill-climbing, systematic variations of a weightvector are tested. The best-performing vector is selectedand the process is repeated until a maximum accuracyis reached.



Table 7: The e�ects of Feature size limitation.-d Number of Score(GS) -d Number of Score(TAG)Features(GS) Features(TAG)-7 5,855,259 93.82-6 5,642,052 93.82-5 4,468,737 93.32 -5 4,133,507 98.15-4 2,132,021 90.42 -4 3,571,207 98.16-3 377,286 82.36 -3 1,712,743 98.11-2 17,895 68.88 -2 204,183 97.31-1 259 49.02 -1 1,778 93.661,3,5,7 2,909,573 93.79 1,3,5 2,072,638 97.98Table 8: The e�ects of Feature frequency limitation.-f Number of Score(GS) Number of Score(TAG)Features(GS) Features(TAG)1 5,855,259 93.82 4,133,507 98.152 3,975,716 92.19 1,375,699 98.003 2,649,930 91.56 850,011 97.915 1,710,624 90.46 496,933 97.9010 898,068 88.45 253,753 97.38sary to use properties of individual Features asa basis for their elimination.The current WPDV implementation has sev-eral parameters to specify reasons for Featureelimination (or rather selection). The �rst pa-rameter (-d) limits the size (dimensionality) ofthe Features, i.e. only Features consisting ofthe speci�ed numbers of Indicators are to beused in the model. It allows speci�cation of amaximum (e.g. -d:-3 states that Features cancontain at most 3 Indicators), a minimum (e.g.-d:4- states Features must have at least 4 Indi-cators) or a range (e.g. -d:2-4 allows featureswith 2 to 4 Indicators), but it is also possibleto specify a list of sizes (e.g. -d:1,2,4,6). Thee�ects of size limitation for GS and TAG areshown in Table 7. For GS, a maximum sizedoes not appear to be the best choice. Highmaxima do not yield any useful model size re-duction and lower maxima lead to high qualityloss. A spread-out size selection appears to bebetter, as -d:1,3,5,7 produces a model about halfthe size of the full model with virtually the samequality. For TAG, the situation is reversed, as-d:1,3,5 loses too much quality, but a maximumof 3 produces a model which is still almost asgood as the full model.

Another option is a frequency threshold onFeatures (-f). In this case, a Feature has tobe observed a certain number of times in thetraining data in order to be used in the model,e.g. -f:3 means it has to be present at least3 times. Measurements for GS and TAG (Ta-ble 8) show that frequency thresholds are an ef-�cient way to reduce model size, but may be toocoarse-grained to keep quality loss under control(cf. Daelemans et al. (1999a) for similar obser-vations with memory based learning).A �nal option is an Informativity threshold(-i). Since it is as yet unclear what Informa-tivity is exactly (see above), this is currentlyimplemented as an entropy-based threshold. Aparameter setting of -i:0.2 means that the en-tropy of the Class probability distribution withthat Feature is allowed to be at most 0.2 timesthe entropy over all cases. Measurements forGS and TAG (Table 9) show that this inter-pretation of Informativity is practically useless.At higher thresholds, the model size decreasespractically nothing and at the �rst substantialdrop, the quality plummets as well.For both GS and TAG, the most e�ective wayto reduce model size and keep quality loss inbounds is by limiting the Feature size. How-



Table 9: The e�ects of Feature entropy limitation.-i Number of Score(GS) Number of Score(TAG)Features(GS) Features(TAG)1.0 5,855,259 93.82 4,133,507 98.150.5 5,776,574 93.82 4,089,727 98.140.2 5,287,570 92.83 3,933,620 98.100.1 4,529,645 89.28 3,714,652 97.82ever, the nature of the optimal size limitationdi�ers between the two. Whether this can beexplained from the nature of the data will haveto be looked into at a later time. Furthermore,it should theoretically be possible to use the In-formativity of Features for their selection. Thesubstitution of entropy for Informativity doesnot work out, but such a use will certainly haveto be investigated as soon as a more workablede�nition of Informativity is available. What-ever the means of limitation, it appears that, forthe tasks studied here, it is possible to produce aqualitatively acceptable model of less than halfthe size of the full model.7 ConclusionAfter having proved its state-of-the-art qual-ity on the tagger combination task in ear-lier experiments (van Halteren et al., To ap-pear), Weighted Probability Distribution Vot-ing shows competitive results for two furtherNLP tasks. For both Grapheme to Phonemewith Stress and Part-of-Speech Tagging, ityields a more accurate classi�cation of unseendata than the memory-based TiMBL system,which itself was shown to perform better thanor comparable to the Decision Tree system C5.0(cf. Daelemans et al. (1999a)). It has yet tobe determined how WPDV compares to otherhigh-quality methods (e.g. Maximum Entropy)for these two tasks, as well as how it performs onother tasks, but we can already conclude that itis of su�cient quality to continue the investiga-tion of WPDV models. For now, this investiga-tion should focus on two areas:� The primary problem for WPDV modellingis the determination of good weights forany speci�c task. Future research will haveto show whether these can be calculatedon the basis of an Informativity measure orwhether more heuristic approaches such as

hill-climbing are needed. In the latter caseit will also have to be investigated how wellthe weight-accuracy functions on trainingand test data correlate, i.e. whether we candetermine where training stops and over-training starts.� Another matter which has to be lookedinto more closely is the reduction of modelsize. For the current tasks, the memory re-quirements are still acceptable. However,when the number of values per Indicator in-creases or, more problematically, the num-ber of Indicators grows larger, we will needsome (preferably structured) Feature selec-tion mechanism. A Feature-size-based se-lection is easiest and may be su�cient, butthe best selection method proves to be task-dependent and future study will have toshow whether it can be based on measur-able properties of the data.Once these fundamental questions have beenanswered satisfactorily, the WPDV implemen-tation can be extended with automatic train-ing procedures and made available more widely.At that time, it can also be compared morethoroughly to the other state-of-the-art ma-chine learning systems, using various criteriasuch as accuracy, speed, memory use and user-friendliness. I fully expect this comparison toshow that WPDV deserves to become part ofthe standard machine learning toolbox and tobe used on many more tasks, both in NLP andelsewhere.ReferencesR. H. Baayen, R. Piepenbrock, and H. van Rijn.1993. The CELEX lexical data base on CD-ROM. Linguistic Data Consortium, Philadel-phia, PA.Adam Berger, Stephen Della Pietra, and Vin-
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