NP Chunking using ILP

Stasinos Konstantopoulos
Alfa-Informatica, Rijksuniversiteit Groningen
konstant@let.rug.nl

Abstract

This is to report the results of approaching the
problem of NP chunking using Inductive Logic
Programming techniques. The problem, as de-
fined in (Ramshaw and Marcus, 1995), is the
machine learning of rules that recognise non-
recursive, base NPs in text annotated with part-
of-speech tags, by tagging each word as being
‘inside’ or ‘outside’ an NP. (Consecutive NPs
are appropriately treated.)

The same input data as in the original ex-
periment is used here, but the machine learn-
ing technique is Inductive Logic Programming,
and more specifically the Progol algorithm. The
problem is formulated as the machine learning
of a Prolog predicate that will accept a part-
of-speech tagged word and its context as input
and associate it with the appropriate syntactic
tag.

1 Introduction

Text chunking amounts to identifying non-
overlapping constituents in a sentence, without
assigning internal structure to them. It is useful
either as a preprocessing stage for full parsing or
in the context of shallow parsing for information
retrieval.

A BaseNP is a bottom level, non-recursive
Noun Phrase (NP) including all the NP ele-
ments up to and including the head noun. This
way relative clause and prepositional phrase
post-modifiers are excluded and recursion is
avoided. For example, consider the following
snippet taken from the Penn TreeBank, with
the BaseNPs shown in brackets:

[Confidence] in [the pound] is widely
expected to take [another sharp dive]
if [trade figures] for [September], due
for [release] [tomorrow]...

Syntactic Tags can be used to mark a non-
overlapping partitioning of a sentence, such as
chunking. Since any given word can only be in
at most one chunk, it is enough to mark each
word with a syntactic tag, denoting the kind
of chunk it is in or marking it as not being in
any chunk. For the task of BaseNP chunking,
it is enough to assign each word the tag i if
inside and o if outside a BaseNP. A third tag
b is used to tag the first word of a Base-NP;
this is necessary in order to distinguish between
two adjacent Base-NPs and a single longer one.
According to this the example above would be
tagged as follows:

Confidence/b in/o the/b pound/i is/o
widely /o expected/o to/o take/o an-
other/b sharp/i dive/i if/o trade/b fig-
ures/i for/o September /b, due/o for/o
release/b tomorrow /b...

The advantage of reformulating the problem
in this manner is that techniques developed
for part-of-speech tagging can be readily trans-
ferred and applied to chunking. Such an exper-
iment is described in (Ramshaw and Marcus,
1995). The learning methodology used there
is Transformation-Based Error-Driven Learn-
ing, originally used to automatically construct
part-of-speech taggers. (Brill, 1995)

In this paper Inductive Logic Programming
(ILP) is used as the learning method instead.
The general setup of the experiment remains
the same, i.e. one where chunking is viewed
as a tagging rather than a bracketing prob-
lem. This is not only to compare ILP with
Transformation-Based Error-Driven Learning,
but also the performance of ILP on a tagging
task as opposed to directly bracketing (by, for
example, inducing a DCG).

2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a Ma-
chine Learning discipline. It is logic program-
ming in the sense that the target concept to be
learned is a logic programme, i.e. a set of Horn
clauses. It is inductive because the core opera-
tor used is that of induction.

Induction can be seen as the reverse of deduc-
tion. For example from the clauses

1. All humans die.

2. Sigurd is human.

the fact that Sigurd will eventually die can be
deduced. Inversely, induction uses background
knowledge (e.g. Sigurd is human) and a set of
observations or training data (e.g. Sigurd died)
to search for a hypothesis that, in conjunction
with the background knowledge, can deduce the
data. In this case all of Sigurd dies, All humans
die or Everybody dies are hypotheses that sat-
isfy this requirement, but as is intuitively obvi-
ous, they are not all equally useful or interest-
ing.

As formally defined in (Muggleton and
De Raedt, 1994, p. 635), induction constructs
a hypothesis H with the following properties:

Prior Satisfiability BA D™ FE O
Posterior Satisfiab. BAHAD™ ¥
Prior Necessity BEDT (1)
Post. Sufficiency BAHEDT

where B and D = D' U D~ are logic pro-
grammes that represent the background knowl-
edge and the training data. D, in particular,
is partitioned in the subset DT of clauses that
succeed when queried with a positive examples
and D~ that fail when queried with negative
examples.!

The background knowledge and the data can
been seen as Prolog clauses. It consists of a
database of ground facts as well as clauses rep-
resenting prior knowledge. So, for example, one
might have:

human(sigurd) . human(gunnar).
aesir(thor). aesir(odin).
god(X) :- aesir(X).

Since D is meant to be queried only about the train-
ing examples that are available, failure denotes an ex-
plicit negative example and not the inability to prove an
example positive.

representing the background knowledge. The
data, on the other hand, is usually restricted
to ground facts in what is called the example
setting. The terms ‘examples’ and ‘data’ will
be used interchangeably to denote ground facts
representing the evidence available:

dies(sigurd).
false :- dies(thor).

Since the two prior requirements of (1) hold
in this example, the objective is to identify the
target predicate that satisfies the posterior ones.
Such a predicate is not necessarily unique, as
can be easily demonstrated by the following
three possible solutions:

1. Sigurd will die:
dies(sigurd).

2. All humans will die:
dies(X) :- human(X).

3. Everybody but Thor will die:
dies(X) :- \+ X=thor.

The set of all such hypotheses that fit the for-
mal requirements constitute a hypothesis space
from which the most appropriate answer will be
chosen.

The basis of this choice is how well it is esti-
mated to perform when queried on data unseen
during the training. From the three hypotheses
above, the first one is overfitting, meaning that
it describes the data too tightly and does not
make any generalisations. It will, for example,
fail to predict that Gunnar will also die. The
last one, on the other hand, is overgeneralising
and will wrongly predict that Odin will die. An
ILP algorithm searches through the hypothesis
space trying to strike a balance between overfit-
ting and overgeneralising.

2.1 Background Knowledge and Bias

In the mortality prediction example above, one
of the solutions was the following single-clause
prolog predicate:

dies(X) :- human(X).

the body of which consists of a predicate de-
clared as background knowledge. Although
some ILP algorithms attempt background the-
ory refinement and predicate invention, e.g.
Merlin (Bostrém, 1996; Bostrom, 1998) and

Claudien (De Raedt and Dehaspe, 1996),
the most straightforward ones employ only the
predicates defined as background knowledge to
construct the clauses of the target predicate.
The background knowledge should, therefore,
represent all the facts known about the domain
of the concept being learned. The learning task
is thus reformulated into that of deciding which
background predicates are relevant to the target
concept; and how they should be configured in
the clauses that comprise the hypothesis being
constructed.

One way to influence the outcome of the
learning process is to restrict the background
knowledge to a subset of all facts known about
the domain. Since it is represented in a declara-
tive formalism, it is easy to isolate the parts that
represent the knowledge we wish to make acces-
sible to the learning process. This way only the
relations and attributes that are a priori deemed
interesting will be explored.

This restricted background, however, still al-
lows for a variety of solutions that correctly clas-
sify the data. Besides, in some cases it might
be desirable to impose restrictions on the hy-
pothesis space without reducing the background
knowledge available. To restrict, in other words,
the ways the background predicates are config-
ured to form the hypothesis, but not the set of
predicates that can be used. For this purpose
bias is used to describe the form of the learned
clauses.

Bias can be expressed as either a preference
or a hard constraint. Preference bias is realised
through the evaluation function that quanti-
fies each learned clause’s usefulness. So one
might, for example, choose an evaluation func-
tion that favours shorter clauses over longer
ones, all other things being equal. Syntactic
bias, on the other hand, imposes constraints on
the form of the learned clauses. It is enforced
by employing a pruning algorithm that restricts
the hypothesis space by deciding whether the
path taken through the hypothesis space should
be further pursued or not. It is used to direct
the search away from uninteresting clauses, for
example ones that are longer that a predeter-
mined maximum length. (See section 2.2 below
for more on clause evaluation and pruning.)

ILP allows background knowledge and bias
to be expressed in the same terms in which

popular symbolic representations for linguistic
knowledge and algorithms are expressed. This
is of relevance to all aspects of machine learning
of natural language:

e In the context of language learning, in
which it has frequently argued that some
innate principles are needed in order to
account for language acquisition (as ar-
gued by, for example, Noam Chomsky and
Steven Pinker), background knowledge can
serve to embody the innateness hypothesis
more specifically.?

e Syntactic bias in general allows for the re-
striction of the hypothesis space within the
limits of one particular meta-theory or the-
oretical framework. From the point of view
of theoretical linguistics in particular, it
makes it possible to confine the search to
one particular formalism. This is not to ar-
gue for a particular choice, only that some
choice needs to be made.

e From the perspective of natural language
engineering, ILP offers an opportunity to
capitalise on linguistic knowledge in order
to reduce the computational cost of search-
ing the hypothesis space. Many alternative
learning schemes, by contrast, cannot make
any use of existing knowledge.

This is, of course, not to argue that control
over the feature set, constraint satisfaction and
bias cannot be implemented in statistical or
distributed-computation approaches to machine
learning. The qualitative difference that ILP
makes is the ability to express those in an ex-
plicit and symbolic formalism (Prolog clauses)
that is — for reasons independent from its being
employed by ILP — considered to be particularly
suitable for knowledge representation.

2.2 Searching the Hypothesis Space

The strategy around which ILP algorithms are
built is an adaption of the general sequential
covering technique, that iterates through steps

2Tt should be emphasised that our interest in mod-
elling some aspects of human acquisition does not extend
to every aspect of the psychological problem. We do not
aim at simulating children’s acquisition, but only claim
that the ILP paradigm provides a framework in which
putatively innate principles could be readily expressed.

of increasingly wider coverage until some ter-
mination criterion —typically depending on the
performance of the current solution— is satis-
fied.

In its ILP incarnation each such iteration con-
structs a new clause that covers some positive
examples that are not explained by the current
theory. The individual clauses are constructed
by searching through the hypothesis space. This
requires that the hypothesis space is (at least
partially) ordered and a transversal operator is
defined. Both completeness and efficiency are
desirable qualities of the search algorithm cho-
sen, but generally not simultaneously achiev-
able. For example an operator that alphabeti-
cally enumerates the whole space, imposes a, to-
tal ordering and guarantees completeness, but is
not efficient. ILP algorithms typically structure
the hypothesis space along the general-specific
axis instead. This means that the search pro-
ceeds from a maximally specific clause towards
a more general one or vice versa. The generic
specific-to-general ILP algorithm can then be
outlined as follows:

1. Pick a positive example.

2. Search between the positive example and
the maximally general clause by:

(a) Applying the generalisation operator
to the clause under consideration.

(b) Checking if the resulting clause satis-
fies all syntactic bias constrains and if
yes,

(c) Evaluating it using the evaluation
Sfunction.

and iterating until the clause under consid-
eration is evaluated as useful enough.

3. Append the newly constructed clause to
the theory and remove from the positive
examples pool the ones covered by the up-
dated theory.

4. if the termination criterion is not satisfied,
re-iterate.

where the major choices to be made are the eval-
uation function, the termination criterion and
the (generalising or specialising) traverse oper-
ator.

The evaluation function is used to measure
a constructed clause’s ‘usefulness’. Its primary

function is to achieve the ‘golden section’ be-
tween overgeneralising and overfitting, while at
the same time applying preference bias, as men-
tioned above. Let P be the number of posi-
tive examples covered by a clause and N the
number of negative ones (incorrectly) covered
by that clause. Then one might use as evalua-
tion function a simple coverage function P — N,
the Laplace function % or some function
that also applies preference bias towards shorter
clauses, e.g. P— N —L+1, where L is the num-

ber of literals in the clause.

More complex approaches to evaluation in-
clude computing the Bayesian probability that a
hypothesis is correct given the data (Muggleton
and De Raedt, 1994, p. 651) or the m-estimate
(Dzeroski and Bratko, 1992). The former fa-
cilitates learning from positive examples only;
the latter is targeted to handling noisy data,
i.e. data such that there is no theory satisfy-
ing eq. (1) either because they break the prior
requirements or because there is no interesting
hypothesis that satisfies the posterior ones. (In
the sense that the hypothesis that simply enu-
merates all positive examples is not interesting.)

When learning from consistent data the ter-
mination criterion is that all positives are cov-
ered. When handling noisy data, though, the
objective is a ‘high enough’ number of positives
covered without covering ‘too many’ negatives.
The exact parameter values vary between appli-
cations and domains and reflect a prior estima-
tion of the noisiness of the data.

Any deductive inference rule mapping a con-
junction of clauses T onto a conjunction of
clauses D such that T' E D, can be seen as a spe-
cialisation rule, from the point of view where T’
is some theory that can be used to explain not
only D, but other datasets as well. Inversely,
any inductive inference rule mapping D onto T
is a generalisation rule, since the result is a the-
ory that can be used to explain D, but not only
D, and so is more general than D. This is con-
sistent with viewing induction as the inverse of
deduction, as put forward in the beginning of
this section.

In this sense, given two clauses 7" and D such
that T'F D, then we can say that 7" is more gen-
eral than D. This way inverse entailment can
be used as the generalisation operator required
for the search. In practice this means picking

a deductive inference operator, such as resolu-
tion for example, and defining an operator that
performs the inverse inference step. (See (Mug-
gleton, 1995) and (Mitchell, 1997, chapt. 10) for
the inverse resolution operator so derived.)

A simpler and more computationally-
efficient inference rule, however, is that of
f-subsumption. Let A and B be clauses
expressed as sets of literals; if there is a substi-
tution @ such that A9 C B, then A #-subsumes
B.

f-subsumption is efficient, but not as com-
plete as resolution. If A #-subsumes B, then
A B as well, but the reverse is not true. Con-
sider, for example, the following clauses:

(A) human(X) :- father_of(Y,X),
human (Y) .
(B) human(X) :- father_of(Y,X),

father_of(Z,Y), human(Z).

Although A + B (by simply applying A twice),
there is no variable substitution € such that
A6 C B.

Using 6@-subsumption to search (in ei-
ther direction) between a given clause
{H,~B1,—Bs,...,nB,} and the most general
clause {H} (where H contains no ground
terms) effectively means searching through the
space of all possible subsets of {—B;} for the
best body for the clause being constructed.
There is, however, one complication: there are
several intermediate generalisations between
keeping a ground body literal and dropping
it. Any number of its argument terms may be
replaced by a new variable. The range of the
variables introduced must also be restricted by
having it appear in some other literal or even a
new literal introduced for this purpose.

The search can be organised as a generate-
and-test search between the most general clause
(only variable arguments in the head and no
body literals) and the least general generalisa-
tion (lgg) of an example. The head of the lgg
is the original example where all ground terms
have been replaced by variables. The body con-
sists of ground and unground literals, such that
the lgg is a syntactically valid clause that ex-
plains the example. One way to derive the lgg
is by repeatedly applying the inverse resolution
operator to the example until all ground terms

are replaced by variables, the range of which is
appropriately restricted by the body literals.

The objective of the search is to find the sub-
set of the body literals found in the lgg, such
that a clause with only those literals in its body
scores best according to the evaluation function.
The search space can be traversed using any
search strategy, preferably the one performing
the most informed search based on the back-
ground knowledge available. Since the clauses
so generated are not guaranteed to be syntacti-
cally valid, they need to be tested against the
syntactic bias. This is performed by a prun-
ing algorithm that forces the search strategy to
backtrack whenever a clause is generated that
does not conform to the syntactic bias specifi-
cations.

3 Syntactic Tagging with Aleph

Aleph is a machine learner developed at Ox-
ford University, implementing the Progol algo-
rithm (Muggleton, 1995). It performs a general-
to-specific search between the empty-bodied
clause and the lgg, as described above. The task
of syntactic tagging has been set up for Aleph
by declaring the target theory to be a prolog
predicate that relates a word and its context
to a syntactic tag. The words to the left are
part-of-speech and syntactically tagged whereas
the right context is only part-of-speech tagged.
Once constructed, such a predicate can be used
in a left-to-right pass along a sentence that has
been pre-processed by a part-of-speech tagger.

Let us assume that the relevant context ex-
tends three words to the left and three words to
the right of the word being tagged. The target
predicate would then be:

tag/4 (+left_context, +word,
+right_context, ?syntactic_tag).

The contexts are lists of terms, each term
representing a word. The left context terms
hold the part-of-speech tag, the actual word-
form and the syntactic tag. The right context
terms, on the other hand, only carry part-of-
speech tags and word-forms. The word to be
tagged is also represented as a term holding its
part-of-speech tag and word-form. Examples of
these two kinds of word terms are:

w(confidence,nn,i).
w(widely,rb).

where the two part-of-speech tags stand for
‘common noun, singular’ and ‘adverb’. The
tagset used here is the one in the Penn Tree-
Bank — from which the dataset was extracted
— described at length in (Santorini, 1990). The
syntactic tag is simply one of b, i or o, as ex-
plained in section 1. In this manner one exam-
ple can be constructed from each word in the
dataset:

tag([w(confidence,nn,i),w(in,in,o0)],
w(the,dt),
[w(pound,nn) ,w(is,vbz),
w(widely,rb)], b).

Negative data is constructed by simply flip-
ping the syntactic tag in a positive example. For
this purpose, b and i tags are taken to be in
the same ‘class’ of tags, i.e. the class of tags
that mark words inside a BaseNP. Substituting
one for the other might generate too many false
negatives, which is avoided by always choosing a
tag from a different class to generate a negative
example with. When flipping an o tag, one of
b or i is chosen at random. This way the pos-
itive example above would yield the following
negative one:

tag([w(confidence,nn,i),w(in,in,o0)],
w(the,dt),
[w(pound,nn) ,w(is,vbz),
w(widely,rb)], o).

The background knowledge consists of meth-
ods to access the context lists. The

prevli_s/2 (7List, ?SyntTag)
prev2_s/2 (?List, ?SyntTag)
prev3_s/2 (?List, ?SyntTag)

previ_t/2 (?List, ?PoSTag)
prev2_t/2 (?List, ?PoSTag)
prev3_t/2 (?List, ?PoSTag)

predicates associate syntactic- and part-of-
speech tags with the first, second and third word
in the List argument, which represents the left
context. Only part-of-speech tags are avail-
able for the right-hand-side, though, so only the
next?_t/2 collection is defined:

nextl_t/2 (?List, ?PoSTag)
next2_t/2 (?List, ?PoSTag)
next3_t/2 (7List, ?PoSTag)

Positive Examples

Predicted Rejected Percentage
Baseline 76500 17873 81.1%
Theory 86040 8333 91.2%

Negative Examples

Predicted Rejected Percentage

Baseline 4240 90133 95.5%

Theory 4308 90065 95.4%

Table 1: Syntactic Tagging Results

A naive/2 tagging predicate is also defined,
which simply matches each part-of-speech to its
most common syntactic tag:

naive/2 (?PoSTag, ?SyntTag)

Its definition is based on frequencies derived
from the training set. When used as the base-
line theory it scores remarkably well, especially
w.r.t. accuracy, (see results, below) and so it is
deemed to hold important information.

4 Results

The setup described above was trained on a
data set of 922 examples. The evaluation func-
tion used was the Laplace function mentioned
in section 2.2. The theory learned consisted of
59 clauses. Thirty-four of those cover most of
the examples and capture generalisations. The
remaining 25 cover only one example each and
are exact replications of positive examples that
where too exceptional to be covered by any
other clause.

The precision and recall of the learned pred-
icate when tested on unseen positive and neg-
ative examples, can be seen in table 1. The
baseline is the performance of the ‘naive’ pred-
icate:

tag(_, P, _, S) :- naive(P, S).

One thing to be noted about these results is
that perfect part-of-speech tagging is assumed,
which will generally not be the case. More accu-
rate figures can be obtained by testing against
input pre-processed through a part-of-speech
tagger, rather than using the tags provided in
the corpus.

It should also be stressed that these predi-
cates are relations and not functions, meaning
that a predicate might succeed with more that

one syntactic tag matching a particular con-
text. This way backtracking will allow more
than one syntactic tags to be tried, hoping that
the syntactic tags on the right context will dis-
ambiguate. But one should note that the per-
centages given on table 1 have to be interpreted
accordingly, i.e. the figures on the first part of
the table mean that for 91.2% of the testing
data the predicate succeeded with the correct
tag, but it might have also succeeded with an
incorrect one; the figures on the second part in-
dicate how often that happened. They can be
seen as metrics relating to recall and precision
respectively, but are not immediately compa-
rable to the recall and precision of a tagging
function.

Using the learned predicate to bracket sen-
tences will yield multiple ‘parses’. This is a
rather undesirable effect, since it means that
parse selection must be employed and some of
the gain in speed and simplicity of not using a
full parser will be lost. Biasing the algorithm
towards learning a function rather than a rela-
tion is likely to produce more useful results, de-
spite the fact that the recall rating would drop.
(See also section 5 below on the difficulties of
implementing bias with the current setup.)

5 Conclusions and Further Work

One problem to be noted with the experiment
conducted is the absence of syntactic bias. It is
difficult to specify syntactic bias because of the
way the data is represented: by breaking up
the sentence bracketing task into that of tag-
ging individual words, the theory constructed
is, in a way, ‘distributed’. In other words, it
is not easy (or even possible) to clearly iden-
tify the role of each clause, and the bracketing
is the effect of the interaction between clauses
rather than the result of the application of the
appropriate clause for each particular case.
From the above it is clear that theory frame-
work rules like, for example, “each XP must in-
clude a head X” cannot be easily represented as
syntactic bias in the current setup. As already
argued in section 2, however, providing an intu-
itive formalism to declare syntactic bias is one
of the strongest points of ILP and if it is not
possible to take advantage of it, the very choice
of ILP for the task is questionable. Therefore,
in order to further pursue the application of ILP

on syntactic tagging, it would be necessary to
develop methodologies or even automated tools
to simplify the process of transforming known
cross-linguistic generalisations to syntactic bias
appropriate for this domain.

A related issue is that the theory is not as
human-readable as one might expect for a logic
programme, making the task of qualitatively
evaluating the result much more difficult that it
would be if the theory was a DCG or some other
more intuitively appealing formalism. Work in
this direction would involve developing tools to
extract the information in a theory thus con-
structed and reformulated in a more human-
readable form.

The other important limitation encountered
stems not from ILP, but from syntactic tag-
ging itself. Syntactic tagging as it stands, can
only partition a sentence into non-overlapping
chunks, thus making recursive theories unrep-
resentable. This renders the technique inap-
plicable to the much more interesting task of
top-level NP chunking, since top-level NPs will
inevitably contain smaller ones in preposition
phrases or relative clauses.

One way in which recursion could be cir-
cumvented would be to break up the task in a
bottom-up fashion. A number of tagging predi-
cates would then be induced and parsing would
proceed by repeated steps of recognising con-
stituents and replacing them with a head node
symbol. For example consider our original ex-
ample,

[[Confidence] in [the pound]] is widely
expected to take [another sharp dive]
if [[trade figures] for [September]]...

where higher-level NP bracketing is also
marked. This could be syntactically tagged
in two stages, the first one of which would be
BaseNP chunking. Then all BaseNPs found are
replaced by a label and in the new tagging prob-
lem these labels are treated as nouns:

[BaseNP/nn in BaseNP/nn]| is widely
expected to take BaseNP/nn if
[BaseNP /nns for BaseNP/nnp]...

This will, of course, only work for a limited,
pre-determined recursion length and is prone
to over-generalise (since some aspects of the
BaseNP that could be relevant are hidden from

the top-layer tagger) but may be sufficient for
the purposes of information retrieval or as a pre-
processing stage before full parsing.

6 The TMR-LCG Project.

This work is part of the EU funded Learning
Computational Grammars project (LCG). The
objective is the better understanding of the way
various machine learning techniques perform on
a shared task. This task is recognising the
boundaries and internal structure of NPs.

LCG participants investigate how a variety
of machine learning approaches can be applied
to the shared task, make comparisons and draw
conclusions on their applicability to the domain
of learning natural language syntax.

References

Henrik Bostrom. 1996. Theory-guided induc-
tion of logic programs by inference of regu-
lar languages. In Proceedings of the 13th In-
ternational Conference on Machine Learning,
pages 46-53. Morgan Kaufmann.

Henrik Bostrom. 1998. Predicate invention and
learning from positive examples only. In Pro-
ceedings of the Tenth Furopean Conference on
Machine Learning, pages 226—237. Springer
Verlag.

Eric Brill. 1995. Transformation-based error-
driven learning and natural language process-
ing: A case study in part-of-speech tagging.
Computational Linguistics, 21(4):543-66.

Luc De Raedt and Luc Dehaspe. 1996. Clausal
discovery. Technical Report CW 238, De-
partment of Computing Science, K.U.Leuven,
Leuven.

Sasho Dzeroski and I. Bratko. 1992. Han-
dling noise in Inductive Logic Programming.
In Proceedings of the Second International
Workshop on Inductive Logic Programming,
Japan. Institute for New Generation Comput-
ing.

Tom Mitchell. 1997. Machine Learning. Mc-
Graw Hill, second edition.

Stephen Muggleton and Luc De Raedt. 1994.
Inductive Logic Programming: Theory and
methods. Journal of Logic Programming,
19(20):629-679. Updated version of techni-
cal report CW 178, May 1993, Department
of Computing Science, K.U. Leuven.

Stephen H. Muggleton. 1995. Inverse entail-
ment and Progol. New Generation Comput-
ing, 13:245-286.

Lance A. Ramshaw and Mitchell P. Marcus.
1995. Text chunking using transformation-
based learning. In Proceedings of the Third
ACL Workshop on Very Large Corpora. As-
sociation for Computational Linguistics.

Beatrice Santorini. 1990. Part-of-speech tag-
ging guidelines for the Penn Treebank
project. Technical report, The Penn Tree-
bank Project. 3rd Revision, 2nd Printing
(Feb. 1995).

