
Typing as a means for validating feature structures

Anoop Sarkar and Shuly Wintner

Institute for Research in Cognitive Science

University of Pennsylvania

3401 Walnut St., Suite 400A

Philadelphia, PA 19104

anoop@linc.cis.upenn.edu shuly@linc.cis.upenn.edu

November 22, 1999

Abstract

We present a method for validating the consistency of feature structure speci�cations by

imposing a type discipline. A typed system facilitates a great number of compile-time checks:

many possible errors can be detected before the grammar is used for parsing. We have con-

structed a type signature for an existing broad-coverage grammar of English, and implemented

a type inference algorithm that operates on the feature structure speci�cations in the gram-

mar. The algorithm reports occurrences of incompatibility with the type signature. We have

detected a large number of errors in the grammar; four types of errors are described in the

paper.

1 Introduction

Feature structures are used by a variety of linguistic formalisms as a means for representing di�er-
ent levels of linguistic information. They are usually associated with more elementary structures
(such as phrase-structure rules or trees) to provide an additional dimension for stating linguis-
tic generalizations. A variant of feature structures, typed feature structures provide yet another
dimension for such generalizations. It is common to assume that typed feature structures have
linguistic advantages over untyped ones; and that the former are, in general, more e�cient to
process. In this paper we show how typing can assist in the validation of untyped feature structure
speci�cations.

The technique we suggest in this paper is incorporated into the XTAG grammar development
system, which is based on the Tree-Adjoining Grammar (TAG) formalism (Joshi, Levy, and Taka-
hashi, 1975), extended to include lexicalization (Schabes, Abeill�e, and Joshi, 1988) and uni�cation-
based feature structures (Vijay-Shanker and Joshi, 1991). Tree Adjoining Languages fall into the
class of mildly context-sensitive languages, and as such are more powerful than context free lan-
guages. The TAG formalism in general, and lexicalized TAGs in particular, are well-suited for
linguistic applications. As �rst shown by Joshi (1985) and Kroch and Joshi (1987), the properties
of TAGs permit one to encapsulate diverse syntactic phenomena in a very natural way.

The XTAG grammar development system makes limited use of feature structures which can be
attached to nodes in the trees that make up a grammar. Typically, feature structures in XTAG are

at: nesting of structures is very limited. Furthermore, all feature structures in XTAG are �nitely
bounded: the maximum size of a feature structure can be statically determined. During parsing,
feature structures undergo uni�cation as the trees they are associated with are combined. But

1



uni�cation in XTAG is actually highly limited: since all feature structures are bounded, uni�cation
can be thought of as an atomic operation. Feature structure speci�cations can refer to lexical items,
tree families or speci�c (lexically anchored) trees, and are declared in three di�erent formats and
three di�erent �les. This organization leaves room for several kinds of errors, inconsistencies
and typos in feature structure manipulation: unde�ned features can be referenced, paths can be
assigned unde�ned values, incompatible features can be equated, etc.

We present a method for validating the consistency of feature structure speci�cations by im-
posing a type discipline. A typed system facilitates a great number of compile-time checks: many
possible errors can be detected before the grammar is used for parsing. We have constructed a
type signature for the XTAG English grammar (The XTAG Research Group, 1998), an existing
broad-coverage lexicalized TAG grammar of English. Then, we implemented a type inference algo-
rithm that operates on the feature structure speci�cations in the grammar. The algorithm reports
occurrences of incompatibility with the type signature. We have detected a large number of errors
in the grammar; four types of errors are described in the paper.

While the method we suggest was tested on an XTAG grammar, it is in principle applicable
to any linguistic formalism that uses untyped feature structures, in particular lexical-functional
grammar (Kaplan and Bresnan, 1982).

2 The problem

The organization of an XTAG grammar is such that feature structures are speci�ed in three
di�erent components of the grammar:

� a Tree database de�nes feature structures attached to tree families

� a Syn database de�nes feature structures attached to lexically anchored trees

� a Morph database de�nes feature structures attached to (possibly in
ected) lexical entries.

As an example, consider the verb \seems". This verb can anchor several trees, among which are
trees of auxiliary verbs, such as the tree �V vx, depicted in �gure 1. This tree is associated with

VP r

V3 VP�

Figure 1: An example tree

the following feature structure descriptions1 (independently of the word that happens to anchor
it):

V.t:<agr> = VP_r.b:<agr>

V.t:<assign-case> = VP_r.b:<assign-case>

V.t:<assign-comp> = VP_r.b:<assign-comp>

V.t:<displ-const set1> = VP_r.b:<displ-const set1>

1We use \handles" such as V.b or NP.t to refer to the feature structures being speci�ed. Each node in a tree
is associated with two feature structures, `top' (.t) and `bottom' (.b). Angular brackets delimit feature paths, and
slashes denote disjunctive values.

2



V.t:<mainv> = VP_r.b:<mainv>

V.t:<mode> = VP_r.b:<mode>

V.t:<neg> = VP_r.b:<neg>

V.t:<tense> = VP_r.b:<tense>

VP.t:<assign-comp> = ecm

VP.t:<compar> = -

VP.t:<displ-const set1> = -

VP_r.b:<compar> = -

VP_r.b:<conditional> = VP.t:<conditional>

VP_r.b:<perfect> = VP.t:<perfect>

VP_r.b:<progressive> = VP.t:<progressive>

When the tree �V vx is anchored by \seems", the lexicon speci�es additional constraints on the
feature structures in this tree:

seem betaVvx VP.b:<mode>=inf/nom, V.b:<mainv> = +

Finally, since \seems" is an in
ected form, the morphological database speci�es more constraints
on the node that this word instantiates:

seems seem V <agr pers> = 3,

<agr num> = sing,

<agr 3rdsing> = +,

<mode> = ind,

<tense> = pres,

<assign-comp> = ind_nil/that/rel/if/whether,

<assign-case>=nom

The actual feature structures that are associated with the lexicalized tree anchored by \seems" are
the combination of the three sets of path equations.

This organization leaves room for several kinds of errors, inconsistencies and typos in feature
structure manipulation. Nothing in the system can eliminate the following possible errors:

unde�ned features: Every grammar makes use of a �nite set of features in the feature structure
speci�cation. However, as the features do not have to be declared, certain bogus features
can be introduced unintentionally, either due to typos or because of poor maintenance of
the grammar. In a grammar that has an assign-case feature, the following statement is
probably erroneous: V.b:<asign-case> = acc

unde�ned values: The same problem can be manifested in values, rather than features. In a
grammar where nom is a valid value for the assign-case feature, the following statement is
probably erroneous: V.b:<assign-case> = non

incompatible feature equations: The grammar designer has some notion of what paths can be
equated. However, this notion is not formally de�ned, and so it is possible to �nd erroneous
path equations such as VP.b:<assign-case> = V.t:<tense>

Such cases go undetected by XTAG. Their result is always errors in parsing. For example,
the statement V.b:<asign-case> = acc was presumably supposed to constrain the grammatical
derivations to only those in which the assign-case feature had the value acc. With the typo, this
statement never causes uni�cation to fail (assuming that the feature asign-case occurs nowhere
else in the grammar); the result is over-generation.

3



On the other hand, if the statement V.b:<assign-case> = non is part of the lexical entry of
some verb, and some derivations require that certain verbs have nom as their value of assign-
case, then that verb would never be a grammatical candidate for those derivations. The result
here is under-generation.

3 Introducing typing

The problems discussed above are reminiscent of similar problems in programming languages; in
that domain, the solution lies in typing : a stricter type discipline provides means for more compile-
time checks to be performed, thus tracking potential errors as soon as possible. Fortunately, such
a solution is perfectly applicable to the case of feature structures, as typed features structures
(TFSs) are well understood (Carpenter, 1992). We brie
y survey this concept below.

Typed feature structures are de�ned over a signature consisting of a set of of types (Types) and
a set of features (Feats). Types are partially ordered by subsumption (denoted `v'). The least
upper bound with respect to subsumption of t1 and t2 is denoted t1 t t2. Each type is associated
with a set of appropriate features through a function Aprrop : Types � Feats ! Types. The
appropriate values of a feature f in a type t have to be of speci�ed (appropriate) types. Features
are inherited by subtypes: whenever f is appropriate for a type t, it is also appropriate for all the
types t' such that t v t'. The most general type for which a feature f is appropriate is Intro(f).

Figure 2 graphically depicts a type signature, where greater (more speci�c) types are presented
higher, and the appropriateness speci�cation is displayed above the types. For example, for every
feature structure of type verb the feature assign-case is appropriate, with values that are at least
of type cases : Approp(verb;assign-case) = cases.

assign-case 7! cases case 7! cases
verb noun nom acc none

sign cases

?

Figure 2: A simple type signature

A formal introduction to the theory of typed feature structures can be found in Carpenter
(1992). Informally, a typed feature structure over a signature hTypes;v;Feats; Appropi di�ers
from an untyped feature structure in two aspects:

� a TFS has a type

� the value of each feature is a TFS { there is no need in atoms in a typed system.

A TFS A whose type it t is well-typed i�:

� every feature f in A is such that Approp(t; f) is de�ned

� every feature f in A has value of type t' such that Approp(t; f) v t'

� all the substructures of A are well-typed

It is totally well-typed if, in addition,

4



� every feature f such that Approp(t; f) is de�ned occurs in A.

In other words, a TFS is totally well-typed if it has all and only the features that are appropriate
for its type, with appropriate values, and the same holds for all its sub-structures.

Totally well-typed TFSs are informative and e�cient to process. However, it might be prac-
tically di�cult for the grammar writer to specify the full information such a structure encodes.
To overcome this problem, type inference algorithms have been devised than enable a system to
automatically infer a totally well-typed typed feature structure from a partial description. Partial
descriptions can specify:

� the type of a TFS: V.t:verb

� a variable, referring to a TFS: VP.b:assign-case:X

� a path equation: VP.b:assign-case = NP.t:case

� a feature{value pair: NP.b:case:acc

� a conjunction of descriptions: V.t:(sign,assign-case:none)

The inferred feature structure is the most general TFS which is consistent with the partial
description. The inference fails i� the description is inconsistent (i.e., describes no feature struc-
ture). See �gure 3 for some examples of partial descriptions and the TFSs they induce, based on
the signature of �gure 2.

� V.t:verb

V.t =

�
verb
assign-case :

�
cases

��

� VP.b:assign-case:X

VP.b =

�
verb
assign-case :

�
cases

��

� VP.b:assign-case = NP.t:case

VP.b NP.t�
verb
assign-case : 1

�
cases

�
� �

noun
case : 1

�

� NP.b:case:acc

NP.b =

�
noun
case :

�
acc

��

� V.t:(sign,assign-case:none)

V.t =

�
verb
assign-case :

�
none

��

Figure 3: Inferred TFSs

5



4 Implementation

In order to validate feature structure speci�cations in XTAG we have implemented the type infer-
ence algorithm suggested by Carpenter (1992, chapter 6). We have manually constructed a type
signature suitable for the current use of feature structures in the XTAG grammar of English (The
XTAG Research Group, 1998). Then, we applied the type inference algorithm to all the feature
structure speci�cations of the grammar, such that each feature structure was expanded with respect
to the signature. We brie
y discuss this process below.

4.1 Type inference

The type-inference algorithm was implemented in C, augmented by Lex and Yacc; this is an
adaptation of the implementation used in another system, Amalia, which includes a compiler
for uni�cation grammars based on typed feature structures (Wintner and Francez, 1999). The
algorithm is schematically depicted in �gure 4.

Given a description of a feature structure (such as the ones exempli�ed in �gure 3), the program
attempts to construct the most general TFS that satis�es the description. At the �rst stage, a
graph representation of a TFS satisfying the partial description is constructed. Then, the function
infer is called (see �gure 4). In the algorithm, we abuse `fs ' to denote both a TFS and its
root node. The infer procedure calls infer1 and, if successful, fill. We take care of possible
reentrancies (and, in principle, cycles) in the feature structure by marking nodes as \visited", so
that they are not processed more than once by any of the procedures.

Given a typed feature structure fs of type t, infer1 checks all the outgoing edges of fs. First,
for every such edge labeled f , Intro(f) is computed. The result is uni�ed with t: this ensures
that the type of fs is the most general type that is appropriate for all the features that occur in
fs. Note that this step can fail: if fs has a feature f such that t and Intro(f) are inconsistent, the
uni�cation fails. This rules out occurrences of inappropriate features.

The next step guarantees that the value of each feature f in fs is appropriate. If t1 is the actual
type of the node which is the value of an f -labeled edge, and t2 is the appropriate value for the
value of f , then t1 and t2 must be consistent { otherwise, a failure is signaled.

Finally, the last step in infer1 calls this procedure recursively, for each substructure of fs. This
guarantees that substructures are well-typed as well.

The third procedure, fill, simply adds features whenever a TFS is not total. For each added
feature, the most general TFS of the appropriate type is constructed as the feature's value. This
step can never fail.

From the description above it should be clear how type inference detects inconsistencies of
the kind described in section 2. Unde�ned features and values are immediately detected by the
procedures that construct the graph representation of TFSs. Then, if an inappropriate feature is
used in some TFS, infer1 would signal an error in its �rst step. If an inappropriate value is used
for some feature, an error will be signaled in the second step of infer1. Finally, if two \unrelated"
paths are equated in a description, type inference will assign a type for the end of each paths, and
these types are likely to be inconsistent; their uni�cation (by infer1) will fail and an error will be
signaled.

Type inference is applied o�-line, before the grammar is used for parsing. As is the case with
other o�-line applications, e�ciency is not a critical issue. However, it is worth noting that for the
grammar we checked (in which, admittedly, feature structures are 
at and relatively small), the
validation procedure is highly e�cient. As a benchmark, we checked the consistency of 1000 trees,
each consisting of two to fourteen nodes. The input �le, whose size approached 1MB, contained
over 33000 path equations. Validating the consistency of the benchmark trees took less than 33
seconds { more than a thousand path equations per second.

6



infer (fs): boolean

mark all nodes in fs as unvisited;

if not (infer1(fs)) return FALSE;

mark all nodes in fs as unvisited;

fill(fs);

return TRUE;

infer1 (fs ): boolean

if fs is marked as visited, return TRUE;

mark fs as visited;

let t be the type of fs ;

for each feature f occuring in fs,

let t0 be t t Intro(f);
if t0 = >, return FALSE; else, set t to t0;

set the type of fs to t;

for each feature f occuring in fs,

let dtr be the value of f in fs ;

let t1 be the type of dtr;

let t2 be Approp(t; f);
if t2 6v t1,

let t0 be t1 t t2;

if t0 = >, return FALSE; else set the type of dtr to t0;

for each feature f occuring in fs,

let dtr be the value of f in fs ;

if not infer1(dtr), return FALSE;

return TRUE;

fill (fs): void

if fs is marked as visited, return TRUE;

mark fs as visited;

let t be the type of fs ;

for each feature f not occuring in fs such that r = Approp(t; f) is defined,

add the feature f to fs with a single node of type r as its value;

for each feature f occuring in fs,

let dtr be the value of f in fs ; fill(dtr);

Figure 4: Type inference algorithm

7



4.2 The signature

The signature for the English grammar was constructed manually, by observing the use of feature
equations in the grammar and consulting its documentation (The XTAG Research Group, 1998).
As noted above, most feature structures used in the grammar are 
at, but the number of features
in the topmost level is relatively high. Using the meta-language of the ALE system (Carpenter
and Penn, 1994), the constructed signature is listed in �gure 5.

bot sub [sign,agrs,persons,gens,nums,cases,bool,comps,constituents,modes,sel-modes,tenses,conjs,rel-prons,puncts,
bals,containss,structs,terms].

sign sub [n_or_v,p_or_n,p_or_v_or_comp,n_or_comp]
intro [wh:bool,assign-comp:comps,rel-pron:rel-prons,trace:bot,equiv:bool,compar:bool,super:bool,neg:bool].

n_or_v sub [noun,verb] intro [agr:agrs,conj:conjs,control:bot,punct:puncts,compar:bool,displ-const:constituents].
p_or_n sub [p,noun].
p_or_v_or_comp sub [p_or_v,v_or_comp] intro [assign-case:cases].
p_or_v sub [p,verb] intro [assign-case:cases].
v_or_comp sub[verb,comp] intro [comp:comps].
n_or_comp sub[noun,comp] intro [select-mode:sel-modes].

verb sub [s] intro [inv:bool,mainv:bool,assign-comp:comps,tense:tenses,invlink:bot,mode:modes,
passive:bool,conditional:bool,perfect:bool,progressive:bool,contr:bool].

noun sub [] intro [case:cases,definite:bool,const:bool,rel-clause:bool,pron:bool,quan:bool,card:bool,
decreas:bool,gerund:bool,refl:bool,gen:gens,predet:bot,compl:bool].

p sub [].
comp sub [] intro [select-mode:sel-modes].
s sub [] intro [extracted:bool,disc-conj:bool].

agrs sub [] intro [num:nums,pers:persons,3rdsing:bool].
persons sub [1,2,3].

1 sub []. 2 sub []. 3 sub [].
gens sub [fem,masc,neuter].

fem sub []. masc sub []. neuter sub [].
nums sub [plur,sing].

plur sub []. sing sub [].
cases sub [nom,acc,gen,none].

nom sub []. acc sub []. gen sub []. none sub [].
bool sub [+,-].

+ sub []. - sub [].
comps sub [that,whether,if,for,ecm,rel,inf_nil,ind_nil,ppart_nil,none,nil].
that sub []. whether sub []. if sub []. for sub []. ecm sub [].
rel sub []. inf_nil sub []. ind_nil sub []. ppart_nil sub []. nil sub [].

constituents sub [] intro [set1:bool].
modes sub [base,ind_inf_ppart_ger,imp,nom,prep,subjunt].

base sub []. imp sub []. prep sub []. subjunt sub [].
ind_inf_ppart_ger sub [ind_or_inf,ppart_or_ger].

ind_or_inf sub [ind,inf].
ind sub []. inf sub [].

ppart_or_ger sub [ppart,ger].
ppart sub []. ger sub [].

sel-modes sub [ind_inf_ppart_ger].
tenses sub [pres,past].

pres sub []. past sub [].
conjs sub [and,or,but,to,disc,scolon_or_comma_or_nil].

scolon_or_comma_or_nil sub [scolon,comma,nil]. and sub []. or sub []. but sub []. comma sub [].
scolon sub []. to sub []. disc sub [].

puncts sub [] intro [bal:bals,contains:containss,struct:structs,term:terms].
bals sub [dquote,squote,paren,nil].

dquote sub []. squote sub []. paren sub [].
containss sub [] intro [colon:bool,dash:bool,dquote:bool,scolon:bool,squote:bool].
structs sub [dash,colon,scolon_or_comma_or_nil].

dash sub []. colon sub [].
terms sub [per,qmark,excl,nil].

per sub []. qmark sub []. excl sub [].
rel-prons sub [ppart_or_ger,adj-clause].

adj-clause sub [].

Figure 5: The underlying signature of the XTAG English grammar

8



4.3 Results

Applying the type inference algorithm to the XTAG English grammar, we have validated the
consistency of all feature structures speci�ed in the grammar. We have been able to detect a great
number of errors, which we discuss in this section. The errors can be classi�ed to four di�erent
types: ambiguous names; typos; undocumented features; and plain errors.

Ambiguous names This is an obvious error, but one that is not easy to track without the typing
mechanism that we discuss in this paper. As the grammar has been developed by as many as a
dozen developers, during a period of more than a decade, such errors are probably unavoidable.
Speci�cally, a single name is used for two di�erent features or values, with completely di�erent
intentions in mind. We have found several such errors in the grammar.

The feature gen was used for two purposes: in nouns, it referred to the gender, and took values
such as masc, fem or neuter ; in pronouns, it was a boolean feature denoting genitive case. We
even found a few cases where the values of these incompatible features were equated. As another
example, the value nom was used to denote both nominative case, where it was an appropriate
value for the case feature; and to denote a nominal predicate, where it was the appropriate value
of the mode feature. Of course, these two feature have nothing to do with each other and should
never be equated (hence, should never have the same value). Finally, values such as nil or none
were used abundantly for a variety of purposes.

Typos Another type of errors that are very di�cult to track otherwise are plain typos. The best
example is probably a feature that occured about 80 percent of the time as relpron and the rest
of the time as rel-pron:

S_r.t:<relpron> = NP_w.t:<rel-pron>

Undocumented features We have encountered a great number of features and values which
were not mentioned in the technical report documenting the grammar. Some of them turned out to
be remnants of old analyses that were obsolete; others indicated a need in better documentation.

Some features that were omitted from the grammar due to the validation procedure include
predet, disc-conj, 3rdsing, among others. Of course, the less features the grammar is using,
the more e�cient uni�cation (and, hence, parsing) becomes.

Other cases necessitated updates of the grammar documentation. For example, the feature
displ-const was documented as taking boolean values, but turned out to be a complex feature,
with a substructure under the feature set1. The feature gen (in its gender use) was de�ned at
the top level of nouns, whereas it should have been under the agr feature.

Other errors Finally, some errors are plain mistakes of the grammar designer. For example,
the speci�cation

S_r.t:<assign-case> = NP_w.t:<assign-case>

implies that assign-case is appropriate for nouns, which is of course wrong; the speci�cation

S_r.t:<case> = nom

implies that sentences have case;

V.t:<refl> = V_r.b:<refl>

implies that verbs can be reflexive; etc. A slightly more complex case is triggered by the speci�-
cation

9



D_r.b:<punct bal> = Punct_1.t:<punct>

This should have been either

D_r.b:<punct> = Punct_1.t:<punct>

or

D_r.b:<punct bal> = Punct_1.t:<punct bal>

4.4 Additional advantages

Since the feature structure validation procedure practically expands path equations to (most gen-
eral) totally well-typed feature structures, we have implemented a mode in which the system
outputs the expanded TFSs. Users can thus have a better idea of what feature structures are
associated with tree nodes, both because all the features are present, and because typing adds
information that was unavailable in the untyped speci�cation.

As an example, consider the following speci�cation:

PP.b:<wh> = NP.b:<wh>

PP.b:<assign-case> = nom

PP.b:<assign-case> = N.t:<case>

NP.b:<agr> = N.t:<agr>

NP.b:<case> = N.t:<case>

N.t:<case> = nom/acc

When it is expanded by the system, the following TFS is output for PP.b:

PP.b:

[52]p_or_v_or_comp(

wh:[184]bool,

assign-comp:[54]comps,

rel-pron:[55]rel-prons,

trace:[56]bot,

equiv:[57]bool,

compar:[58]bool,

super:[59]bool,

neg:[60]bool,

assign-case:[304]nom)

Note that the type of this TFS was set to p or v or comp, indicating that there is not su�cient
information for the type inference procedure to distinguish between these three types. Many
features that are not explicitly mentioned are added by the inference procedure, with their \default"
(most general) values.

The node N.t is associated with a TFS, parts of which are:

[289]noun(

wh:[290]bool,

agr:[298]agrs(

num:[118]nums,

pers:[119]persons),

conj:[299]conjs,

control:[300]bot,

10



displ-const:[302]constituents(

set1:[153]bool),

case:[304],

definite:[305]bool,

const:[306]bool,

rel-clause:[307]bool,

pron:[308]bool,

quan:[309]bool,

card:[310]bool,

decreas:[311]bool,

gerund:[312]bool,

refl:[313]bool,

gen:[314]gens,

compl:[316]bool)

It is worth noting that the type of this TFS was correctly inferred to be noun; and that the case
feature is reentrant with the assign-case feature of the PP.b node (through the reentrancy tag
[304]), thus restricting it to nom, although the speci�cation listed a disjunctive value, nom/acc.

5 Further research

We have described in this paper a method for validating the consistency of feature structure
speci�cations in grammars that incorporate untyped feature structures. While the use of feature
structures in XTAG is very limited, especially due to the fact that all feature structures are �nitely
bounded, the method we describe is applicable to feature structure based grammatical formalisms
in general; in particular, it will be interesting to test it on broad coverage grammars that are based
on unbounded feature structures, such as LFG grammars. Unfortunately, we did not have access
to such grammars, but such an application is de�nitely feasible.

We have applied type inference only statically; feature structures that are created at parse-
time are not validated. However, modifying the uni�cation algorithm currently used in XTAG, it
is possible to use TFSs in the grammar and apply type inference at run-time. This will enable
detection of more errors at run-time; provide for better representation of feature structures; and
possibly for more e�cient uni�cations. In a new implementation of XTAG, currently under devel-
opment (Sarkar, 1999), feature structure speci�cations are not evaluated as structures are being
constructed; rather, they are deferred to the �nal stage of processing, when only valid trees remain.
We plan to apply type inference to the resulting feature structures in this implementation, so that
run-time errors can be detected as well.

References

Carpenter, Bob. 1992. The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

Carpenter, Bob and Gerald Penn. 1994. ALE 2.0 user's guide. Technical report, Laboratory for
Computational Linguistics, Philosophy Department, Carnegie Mellon University, Pittsburgh,
PA 15213, December.

Joshi, Aravind K. 1985. Tree Adjoining Grammars: How much context Sensitivity is required to
provide a reasonable structural description. In D. Dowty, I. Karttunen, and A. Zwicky, editors,
Natural Language Parsing. Cambridge University Press, Cambridge, U.K., pages 206{250.

11



Joshi, Aravind K., L. Levy, and M. Takahashi. 1975. Tree Adjunct Grammars. Journal of
Computer and System Sciences.

Kaplan, Ronald and Joan Bresnan. 1982. Lexical functional grammar: A formal system for
grammatical representation. In J. Bresnan, editor, The Mental Representation of Grammatical
Relations. MIT Press, Cambridge, Mass., pages 173{281.

Kroch, Anthony S. and Aravind K. Joshi. 1987. Analyzing Extraposition in a Tree Adjoining
Grammar. In G. Huck and A. Ojeda, editors, Discontinuous Constituents, Syntax and Seman-
tics, volume 20. Academic Press.

Sarkar, Anoop. 1999. Combining structural and statistical information: Relevance for e�cient
processing. Presented at the Seminar on E�cient Processing with High-Level Grammatical
Formalisms, Schloss Dagstuhl, Germany, October.

Schabes, Yves, Anne Abeill�e, and Aravind K. Joshi. 1988. Parsing strategies with `lexicalized'
grammars: Application to Tree Ad joining Grammars. In Proceedings of the 12th International
Conference on Computational Linguistics (COLING'88), Budapest, Hungary, August.

The XTAG Research Group. 1998. A lexicalized tree adjoining grammar for English. IRCS Report
98{18, Institue for Research in Cognitive Science, University of Pennsylvania, 3401 Walnut St,
Suite 400A, Philadelphia, PA 19104, August.

Vijay-Shanker, K. and Aravind K. Joshi. 1991. Uni�cation Based Tree Adjoining Grammars. In
J. Wedekind, editor, Uni�cation-based Grammars. MIT Press, Cambridge, Massachusetts.

Wintner, Shuly and Nissim Francez. 1999. E�cient implementation of uni�cation-based grammars.
Journal of Language and Computation, 1(1):53{92, April.

12


