On the Proper Treatment of Context in NL

Jan van Eijck
CWI & ILLC, Amsterdam, Uil-OTS, Utrecht

Abstract

The proper treatment of quantification in Natural
Language proposed by Richard Montague some thir-
ty years does not do proper justice to the fact that
interpretation of texts both uses context and sets up
new contexts. The dynamic turn in NL semantics is
the attempt to model this basic fact, but the use of
dynamically quantified variables introduces an un-
desirable element into this attempt. By extending
a variable-free ‘incremental dynamics’ with a flexi-
ble system of type scheme patterns and type scheme
pattern matching, we arrive at a Montague style ar-
chitecture for NL semantics that provides a proper
treatment both of quantification and of context use
and context change.

1 The Key Issue

When processing natural language text, a context is
incrementally built up of salient items, to be used
as a domain for fixing anaphoric references (with
constraints on where the referents are to be found).
This context is used and extended at the same time,
for introduction of new topics of conversation makes
the context grow, and pronouns get interpreted (re-
solved) by linking them to the existing context.

txt txt txt himf txt txt she?l txt
txt txt him? txt txt txt shefl txt
txt a man] txt txt txt hist txt

txt ‘every woman| txt txt txt herT‘
txt txt a man| txt txt his? txt txt

another? man| txt txt txt his? txt
txt a boyl txt txt his?T txt txt txt

a manl] txt ‘txt txt himselfT‘ txt
txt txt

Legend:

e 1: looking for a referent from surrounding text
or outside context.

e |: adding a new referent to the existing context.

. ‘i txt txt txt‘ : local extension of context

(the context is extended, but this extension has
limited scope).

. ‘txt txt txt T‘ : locally extended context

where antecedent may be found (the local ex-
tension of context provides additional possible
referents).

The first theories that tried to give a systematic
and more or less formal account of context dynam-
ics were Discourse Representation Theory (Kam-
p, 1981) and File Change Semantics (Heim, 1982).
Attempts to incorporate this work in mainstream
Montague style natural language semantics can be
found in (Groenendijk and Stokhof, 1990; Muskens,
1994; van Eijck, 1997; van Eijck and Kamp, 1997;
Kohlhase et al., 1996). What these attempts at in-
corporation have in common is the representation
of context as a list of variables, and use of dynam-
ic quantification over these variables as context up-
date. A serious disadvantage of dynamic quantifica-
tion is that update of a variable y makes the previous
value of y inaccessible: dynamic quantification over
named variables brings the problem of destructive
assignment in its wake.

One way of avoiding the destructive assignmen-
t problem is by dispensing with dynamic variable
names and handling argument binding in a way rem-
iniscent of the so-called De Bruijn indices from lamb-
da calculus (de Bruijn, 1980). This leads to a re-
design of the dynamic logic paradigm for handling
context and context change, as follows. In incremen-
tal dynamics (van Eijck, 2000), context gets rep-
resented as a stack of n objects: referents for the
anaphora ANAg, ..., ANA, ;. These contextual-
ly given objects need not all be different. Context
gets processed dynamically: context extensions may
be temporary. Of course, the anaphoric elements do
not occur with an index in the text, as ANA;; rather,
the choice of appropriate indices for the anaphoric
elements constitutes the process of anaphora resolu-
tion.

Text processing gets viewed as a process that adds
a number of referents (say m) to the context: after
processing the new text in a context of size n we have
a new context of size n + m. Contextual elements
that were mentioned too long ago may lose their
salience (or: drop out of the context), but we will

not make this a central issue in the present paper.

Thus, the question What do the indices in natural
language texts like (1) mean? has as its answer: just
a gloss to indicate how we suppose the anaphoric ref-
erence resolution mechanism links the pronoun from
the second sentence to the noun phrase introduced
in the first.

1 A man' walked in. He; smiled.

An anaphoric context is just a stack of n object-
s available as antecedents in future discourse. In-
troducing a new topic of conversation extends the
anaphoric context by putting a new object on top of
the context stack. The dynamic existential quantifi-
er 3 gets interpreted as the action of putting a new
object on top of the context stack. If the size of the
context is known, there is no need to indicate the
register that gets bound by 3. If the context is ¢,
and its size is n, then ¢ has the form (¢, ... ,cn_1),
and the next register the one that gets bound by
4 —is ¢,.

A central idea is that the dynamic quantifier does
not name the variable that it binds, but that dynam-
ic quantification is always quantification in context.
If a context is given, the interpretation of 3 is just:
introduce a next topic of conversation, and add it to
the context.

2 Types for Incremental Dynamics

A typed version of DRT and DPL can be built on
basic types e for entities and T for state transitions.
The shift from ¢ (truth values) to T' (state transition-
s) constitutes the dynamic turn in natural language
semantics. The state transitions can themselves be
viewed as relations between states, so in a more fine-
grained set-up, with basic types for ¢ for truth val-
ues and s for states, state transitions are of type
s —=s—t.

A typed version of incremental dynamics (hence-
forth: ID) will use basic types e for entities, ¢ for
truth values, and types for contexts of arbitrary fi-
nite sizes. We view the natural number k£ in Von
Neumann style as k = {0,... ,k —1}, and we use [k]
for the type of a context consisting of k elements.
E.g., 5 = [5] is the type of an index function into a
context of length 5, and [5] — [8] — ¢ the type of a
stack transition that extends a stack of length 5 by 3
positions to a stack of length 8. We will abbreviate
this type as (5,3). Here is the definition of the type
system:

N =
Type =

0|1‘2‘
e|t|N|[N]|Type = Type

Abbreviation: use (N, Ns) for

[N]] — [N] +N2] — .

3 Index Variables and Type Schemes

To represent a context of arbitrary size ¢ index vari-
ables are used. (i,3) is the type scheme of a stack
transition that extends a stack of length ¢ by 3 po-
sitions. To represent extension of context by an in-
determinate number of elements, we add numerical
variables. (i + 1, J) is the type scheme pattern of a
stack transition that extends a non-empty context
by J positions.

To generalize over stack transitions, we introduce
type schemes. A type scheme is a type with index
variables in it. Thus, (i + 1,2) is (abbreviated no-
tation for) a type scheme. It describes the general
form of a stack transition that increments a stack of
at least size 1 by 2 positions. Examples:

e i — [i] is the type of an index (function) into a
context,

e i+ 1 — [i + 1] is the type of an index into a
non-empty context,

e i+1— (i+1,2) the type of an index into a
stack transformer with a non-empty input that
puts 2 new items on the stack.

We use >T' as an abbreviation for an index into T,
leaving the type of the index to be understood from
the context of use.

4 Pattern Variables and Type
Scheme Patterns

We distinguish between index variables and pattern
variables. We use 14, j, k for index variables, I, J, K
for pattern variables.

A type containing pattern variables is called a type
pattern. A type scheme containing pattern variables
is called a type scheme pattern.

e i+1— (i+1,J) is the type scheme pattern of
an index into a stack transformer with a non-
empty input that puts J new items on the stack.

Replacing the pattern variables in a type (scheme)
pattern instantiates the type (scheme) pattern to
a type (scheme).

e K := 3 instantiates the type pattern (3, K) to
the type (3, 3).

e J := 2 instantiates the type scheme pattern i +
1 — (i+1,J) to the type scheme i +1 — (i +
1,2).

5 Pattern Variables Versus Index
Variables

e Pattern variables (Pvar) are variables that s-
tand proxy for natural numbers. Full instan-
tiation of a type (scheme) pattern involves re-
placement of all pattern variables by (names of)
natural numbers.

e Type patterns and type scheme patterns are
used to express patterns of types or patterns
of type schemes. E.g., (i, .J) is the pattern of all
stack transitions that extend the stack by J el-
ements. Instantiations of (i,.J) are (i,0), (i, 1)
(,2), and so on.

3

e Index variables (Ivar) are variables that may oc-
cur in the type schemes that result from ful-
ly instantiating the pattern variables in a type
scheme pattern. (i,1) is the type scheme of a
stack transition that extends the stack by one
position.

6 Type Scheme Patterns: Definition

N == 0|1]2]---
Type == e]|t|N|[N]| Type = Type
Num ::= N |Pvar|Num; + Num,
Nexp := Num | Ivar + Num
Tsp == et
| Nexp | [Nexp]
| Tsp— Tsp

e A type (scheme) T is an instantiation of a type
(scheme) pattern T" if there is a pattern variable
substitution ¢ such that T'=T"¢. In this case,
o will map all pattern variables in T to natural
numbers.

e A type scheme pattern T is more general than
a scheme T if there is a substitution o for the
index and pattern variables such that 7' = T'o.

e Thus, i — (4,2) is more general than j + 1 —
(j+1,2), for the substitution {i := j+1} trans-
forms the former into the latter.

e Substitution o is an mgu (most general unifier)
of type schemes T and T" if

— there is a substitution o such that To =
T'o,

— every substitution 6 such that T = 76 is
such that T'o is more general than 74.

7 Unification of Numerical Terms:
Caution!

We are not interested in the term model generated
from the natural numbers by the operation +, but in
the natural numbers themselves. In the term model,
(1+4), (441) and (2 + 3) are all different, while in
fact all these terms denote the same natural number.

If we work in the term model, we can unify
(N+ M)~ (K + L), with N, M, K, L all variables,
by means of N := K, M := L, but for the natural
numbers this substitution may well be wrong, for
as we know, decomposition of natural numbers into
summands is not unique.

We must conclude that unification of numerical
terms will only work in special cases: we call terms
that can be unified unifying pairs, pairs that cannot
failing pairs. Caution: in-between cases exist!

8 Simplified Forms of Numerical
Term Pairs
If Nexp; and Nexp, are numerical terms, then the

pair Nexp; =~ Nexp, can be written in a canonical
form as follows:

e Collect all natural numbers occuring in the lhs
term and add them up, giving n.

e Collect all natural numbers occuring in the rhs
term and add them up, giving m.

e Subtract the difference |n — m/| from both sides
of the pair.

e If Ihs and rhs both consist of more than a single
variable, delete all variables that occur on both
sides.

With this recipe, a pair Nexp, ~ Nexp, can al-
ways be simplified to one of the following forms (the
variables v; and w; range over index and pattern
variables, with each term containing at most one in-
dex variable; if lhs and rhs both consist of more than
a single variable then they have no variables in com-
mon):

e n~m, withn>0,m2>0.

o vy +---+uv, &k, withn>0,k>0,

e k~v +- -+ v, withn>0,k>0,

e U+ -+ U, KW+t Wiy,

with (n > 0,m > 0)

e v+ v, Rw + -+ wy, + K,
with (n > 0,m > 0,k > 0)

e v+ -Fu,+hkxw + -+ W,
with (n > 0,m > 0,k > 0)
9 Failing Pairs
e A pair of the form n &~ m fails if n # m.

e A pair of the form v ~ wy + -+ + wy, + k,
with k& > 0 fails if v occurs among the w;.

e A pair of the form vy + -+ v, + k ~ w,
with £ > 0 fails if w occurs among the v;.

10 Unifying pairs, With Their
Substitutions

We use € for the empty substitution (the substitution
that maps every term to itself).

v R W
v'rzwvzw qu‘éw

k~w

{w:=k}

vk
{v:=k}
VR W+ Wy

{vi=w +- +wy}
M+t RWw

{w:=v1 + - +v,}

v # w;
w Z v;

VREW Wy + v # w,
{vi=wi + - +wm +k} -

n+-Fop+krw
{w:=v1+ - +wv, +k}

w # v;

VRW o+ UF e+ Wiy
{wy; :=0,... ,w, =0}

ViAW U AW
{v1:=0,...,v, :=0}

11 Unification Algorithm for Tsp’s
(Sketch)

e ¢ unifies with e, with mgu €, ¢t unifies with ¢,
with mgu e.

e Nexp, unifies with Nexp, and gives mgu accord-
ing to the rules above.

e [Nexp,] unifies with [Nexp,| if Nexp, unifies
with Nexp, and gives mgu according to the rules
above.

e Tsp, — Tsp, unifies with Tsp; — Tsp, if Tsp,
unifies with Tsps to give mgu 0, and Tspyf u-
nifies with Tsp,# to give mgu o, and gives mgu
fo.

e No other pairs of Tsp’s unify.
12 Facts about Tsp Unification

e The algorithm always terminates.

e The algorithm is sound, but not complete (it
will fail to find solutions in cases of comparison
of numerical term pairs that are neither unifying
nor failing).

e The algorithm will never introduce more than
one index variable in a numerical expression.
(This follows from a straightforward inspection
of the rules.)

13 Example Type Scheme Patterns

Dynamic Exists
3 (@+1LJ)—> 6, J+1)

3 is a function that maps a stack transformer of
type (i +1,.J), i.e., a transformer for a context with
at least one element, to a stack transformer that
expects a context with one element less, and incre-
ments this context by one element more. Note that

(t+1,J) = (i,J + 1) in fact specifies the pattern
of a type scheme rather than a type scheme. For
every choice of a natural number for .J, we get a
particular instantiation of the pattern to a scheme.
In these type schemes for 3 there occurs just one
type variable, namely i.

Dynamic Negation
= (i,J) = (4,0)

— maps a stack transformer to a test (a transformer
that does not increment the stack).

Context Composition
G) = (6,)=+ JK)—= (i,J + K)

; takes as its arguments two stack transformers of
which the second handles the output of the first, and
combines these two into a new stack transformer,
with increment given by the sum of the increments
of the components.

14 Expressing properties in ID

Assume a constant for the property of being a man:

man e —1

We can use this constant of type e — ¢ to construct
an index into a stack transformer, i.e, an object of
type i + 1 — (i + 1,0). This is the type of index
functions into [i + 1] = [i + 1] — ¢, i.e., into tests on
non-empty stacks.

Ajz‘+] Ac[H—l]Acfﬂ»]]'

(man c¢j Ac=c") = i+1— (i+1,0)
Abbreviation: if ¢ [n], and i :: m, we use ¢;
for (¢ i). Also, we abbreviate ¢ + 1 — (i + 1,0) as
b(i + 1,0).

15 Definition of 3

We extend the usual logic for extensional type theory
with a constant [] :: [0] and an operation (*) :: [i] —
e — [i+1]. The constant [| denotes the empty stack,
and the operation ~ denotes ‘extending a list by one
element’ or ‘putting a new item on top of a stack’.
We write ~ with infix notation, so if ¢ [i] and
z ethen c'x [i + 1]. We use this to give the
definition of 3, as follows. 3 is an abbreviation of:

APG1,.nACACy gy T2 (P c'z)).
Note: ¢ + .J + 1 is of the general form i + K, with

i an index variable and K a numerical expression
containing no index variables.

16 Definitions of — and ;

— is an abbreviation of:
AP e Aty (=3ctiy (P e)) Ae=¢).
; is an abbreviation of:

)\P(z‘7J))\Q(i+J7K))\C[Z-])\{ZEZ-+J+K]_
3y (P o) YA Q")).

We will write ; as an infix operator with association
to the left, and we will omit superfluous brackets.

17 Linking Formulas to Their Type
Schemes

Index variables can serve as a bridge between formu-
las and their type schemes. To talk about the final
position of an arbitrary non-empty stack, we refer to
the stack by means of the type [i + 1], and use index
1 in the formula to access its final position.

This is at the heart of the incremental dynamic-
s of the indefinite determiner. A sentence starting
with an indefinite determiner a has the general form
[[a CN] VP]. Its semantics is a context transforma-
tion that takes an arbitary context, say of length i,
adds one element to it to produce a new context of
length i + 1, makes sure that that element satisfies
the CN and the VP, and performs the context trans-
formations associated with the CN and the VP. We
use index expression i in the formula to refer to that
element.

18 Translating the Indefinite
Determiner

a~
APy (141, M AQs (14 N+1,1) -3 (Pi 5 Qi)
(i 4+ LN) (i 4+ N+ 1, M) = (i, N+ M+ 1).

We need a pattern here because we do not know in
advance how many referents will be introduced with-
in the CN that goes with the indefinite determiner
and how many in the predicate that follows.

Because Pi (i +1,N) and Qi i+ N+
1, M), we must instantiate the type scheme of ; to
(+1,N)=>((+N+1,M)— (i+1,N+ M), and
we get that (Pi; Qi) = (i +1, N + M).

Since 3 (i+1,J) = (i,J + 1) we must unify
the schemes (i + 1, N + M) and (i + 1,.J) to make
the function fit the argument. This instantiates the
typeof 3to (i+1,N+ M) — (i, N+ M + 1), and
we get that 3 (Pi ; Qi) = (i, N+ M +1).

19 Function Application with
Unification

Function application may involve unification of type
schemes, as follows:

puTy =Ty Ty 6 mgu of Ty, T3
(b 0) :: Tr0

For example, let 71 = o(i + 1,J), To = (i, J + 1),
T3 = (k +1,0). Then

AP (ip1.nAcAd' Jx.Picx ¢ =Ty = Ty
applied to
MAAMcejNe=c = Ts
yields, under substitution 8 = {i := k,J := 0}:

(APy(k41,0)AcAc Tz
Pkc'z ¢)(A\jAcAd' Mej Ae =)
i (k, 1).

Note that the substitution 8§ = {i := k,J := 0}
affects both the type scheme and the formula.

20 Toy Fragment: Determiners,
Nouns and Intransitive Verbs

a -~
AR (g1, A@s (i 741,K)-3(Pi; Qi)

s+ 1,J) =2+ J+1L,K) > (6, J+K+1)
every ~»

AP (i51,0) A Qb (i g 41,K) -3 (Pi; ~Qi)

s (4 1,0) =i+ J+1,K) = (i,0)

no ~~»

APy (i11,) AQs (i4-741,K) -3 (Pi; Qi)

o+ 1,J) o+ J+1,K)— (4,0)

man ~

AjAclipAcqyqp-(man ¢; Ae=c') = »(i+1,0)
smiled ~»
AjAclipAcyyqp-(smile ¢; Ae=c') = »(i+1,0)

21 Iota Reduction

If A is a list of i elements and we append a new
element B to the list, then we can retrieve this ele-
ment by lookup at index ¢ + 1. This motivates the
following notion of ¢ reduction:

e If A :: [i]and B :: e, then ((A'B) i) =, B.
In abbreviated notation: (A"B); =, B. We also
allow ¢ reduction in context, and we use =, for one-
step ¢ reduction. Here is an example:

Az.((c5°2) 5) =, Az

Or with variables:

Az.((er'x) i) =, Av.w

22 Reduction to Normal Form
e Beta reduction: defined in the standard way.

e Jota reduction: see above.

e Beta-iota reduction is confluent, i.e, if E @

and B Eﬁ) F' then there is a G with F E)’) G
and F' E)”)G.

e Beta-iota reduction is strongly normalizing, i.e.,

. L L
every reduction sequence E LN AN G...
terminates.

e Thus, beta-iota reduction yields unique normal
forms.

23 Example: ‘a man smiled’

a man ~»
(APs(ig1,) AQs(iv141,K)-3(Pi; Q1))
(AjAcpiy)Aciyq)-(man ¢; A e = c'))
=3)‘QD(H-LK)'3(()‘c[i+l])‘cfi+1]'
(man c; 1 Ac=c")); Qi)
=3)‘Qb(i+17K)'H(Ac[i+l]>‘cfz’+[(+]]-
(mam cr41 A (((Qic)e'))
=3)‘QD(H-LK) ./\C[i])\Cb+K+1].
Az, (man (c'z);r1 A ((Q(i+1))c"z)c))
=,)‘Qb(i+17K))‘C[z])‘cEi+K+1]'
Jz.(man z A ((Qi)c"x)c)

a man smiled ~»
(AQo(i41.K) - A A1 k411
Jz.(man z A (((Qi)c’z)c")))
(AjAcpip11 ¢y -(smile ¢j A c = ¢'))
/
:>ﬁ1,)\C[Z])\C[H_l] .
Jze(man z A smile z A ¢’z = ¢')

24 Anaphora Resolution

Construction of an anaphora resolution engine is
outside our scope. But the present framework makes
it easy to specify exactly where anaphora resolution
comes in. For every given anaphoric element, the
framework specifies the currently relevant con-
text for the resolution of that anaphoric element.

The anaphora resolution engine ‘res’ uses a con-
text plus some unspecified further information to
pick an index for that context.

res:: [i+1]—>_—i+1

25 Toy Fragment: Pronouns and
Transitive Verbs

he ~»

)\PD(H],J))\C[z‘+1]>\(3fi+.]+1]-(((P(res c2))e))
s+ 1,J) = (i +1,J)

hek >
)‘Pb(i+1,J)/\C[i+1]/\cfi+.l+1]-(((Pk)c)cl)
e+ 1,J) = (E+1,J)

him ~» . ..
hlmk’\»

loves ~»

APy (i41,0) = (i41,7) ASACAC
((P(AoAC" A" (((love) ¢y A" = ")))e)d)
4+ 1,J) = (i +1,]) =@ +1,0)

26 Example: ‘he; loves her;’

loves hery ~»

APAsAcAc’.

((P(AoAC" A" (((love) ¢y A" = ")))e)d)
(APXee .(((P2)e)c))

=3 ASAeA . ((APAeAd .(((P2)c)c))

Ao A" (((love) Y A" =c")))e)d

=3 Ashedd.(((love ¢2) ¢5) Ae=¢')

he; loves hery ~»

(APXed .(((P1)e)c))
(AsAede’.(((love ¢3) ¢s) Ae= "))
=5 AeAd.(((love ¢2) e1) Ae=¢)

27 Flexible Typing: Pronouns and
Transitive Verbs Again

In a system with flexible typing, the type (i + 1 —
(i+1,J)) = (i +1,J) for pronouns can be lowered
to i + 1. The simplest meaning of pronoun is: an
invitation to pick a suitable index from a context.
The simplest meaning for an anaphorically resolved
pronoun is: an index into the appropriate context.

If we use the type scheme variables to transfer the
information about the size of the context, we can get
by with the following:

res:: [i+1]—>_—>i+1

he~ Ac.(resc) [i+1]—i+1
hep~ k = i+1
loves ~»

AoAsAehd . (((lovee,)es) Ae = ¢')
i+l —=i+1-=0G+1,0

28 Toy Fragment: Reflexives

In the flexible set-up, where transitive verbs have
typei+1 —i+1 — (i+1,0), we can treat reflexives
as relation reducers:

himself ~»

APi 1515 3i41,00A8-((Ps)s)

s +1—>i+1— (14 1,0)
= (i+1-(+1,0)

loves himself ~» - - -

AsAedd . (((love ¢5) ¢5) Ae=c')

every man loves himself ~» - - -
AeAd . (=Fz(man z A -love z) Ac=c')

29 Toy Fragment: Relative Clauses

that ~»
APy (i1 5,10 A Qo (,1) M- ((Q 5); (P 7))
o+ JK) =, J) 5o, J+ K)

loves a woman ~»
Ajec Fz(woman z A ((love z) ¢j) A’z = ')

that loves a woman ~»
AQjec A (Qjec” A
Fz(woman 2 A ((love z) ¢j) A"z = c'))

man that loves a woman ~»
Ajec .man ¢; A
Jz(woman z A ((love z) ¢;) A’z =)

30 Toy Fragment: Text Connectives

IR

(i,J) = i+ J,K)— (i,] + K)

.
. NS 5

(i,J) = (i+J,K)— (i,J + K)

if ~ AP) AQ(ig0,10)-—(P; =Q)
(i,.0) = i+ J.K) = (i,0)

SuUppose ~»
AP0 AQ (iv0,1) -~ (P; Q)
o (i, J) = (i 4+ JK) = (i,0)

then ~»
AP (it 7. k)= (1,00 AR (i+-0.K) - (P Q)
(i + J. K) = (5.0)) = (i + J, K) = (i, 0)

An example of a text in the fragment:

2 Suppose a farmer owns a donkey. Then he beats
it.

31 Conclusions

Current reformulations of DRT within a type-
theoretic framework are all without fail based on
dynamic logic with destructive assignment. This
holds for the dynamic Montague grammar of Groe-
nendijk and Stokhof (1990), for Muskens’ logic of
change (1994), for Van Eijck’s typed logic with s-
tates (1997), for Saarbriicken style lambda DRT
(Kohlhase et al., 1996), and so on. In short, any
framework that in some way takes the Groenendijk
and Stokhof DPL (1991a) way of treating dynam-
ic variables as its point of departure will suffer from
the same ailment: the problem of destructive assign-
ment will at some level spoil a correct treatment of
anaphor-antecedent linking.

Incremental dynamics avoids this problem by tak-
ing context updating seriously. Incremental dynam-
ics is both a ‘better’ rational reconstruction of DRT
than DPL and an improvement on DRT itself. It
is a better rational reconstruction because it does
away with the artificial problems introduced by the
DPL treatment of variables. It is an improvement,
because it makes clear that the DRT departure from
the standard type-theoretic paradigm introduced by
Montague was unnecessary after all. Indeed, typed
incremental dynamics has the same advantages over
dynamic Montague grammar and its ilk that ID has
over DPL (and to a lesser extent over DRT).

We are now in a position to combine incremen-
tal dynamics with dynamic modality in a principled
fashion, by integrating epistemic modalities within
ID. This task is much easier than the combination
of DPL and Update Semantics discussed by Groe-
nendijk and Stokhof in (1991b) because DPL is non-
eliminative whereas ID is eliminative by its very na-
ture.

Further information on ID can be found in (van
Eijck, 2000), while (van Eijck, 1999) provides a per-
haps unexpected spin-off of the ID perspective: ele-
gant axiomatisations of DPL and DRT.

Acknowledgements Thanks to Johan van Ben-
them, Paul Dekker, Michael Kohlhase, Kees Ver-
meulen and Albert Visser for their comments on a
draft version of this paper.

References

N.G. de Bruijn. 1980. A survey of the project AU-
TOMATH. In J.R. Hindley and J.P. Seldin, edi-
tors, To H.B. Curry: Essays on Combinatory Log-
ic, Lambda Calculus and Formalism, pages 579
606. Academic Press, London.

J. Groenendijk and M. Stokhof. 1990. Dynamic
Montague Grammar. In L. Kalman and L. Po-
los, editors, Papers from the Second Symposium
on Logic and Language, pages 3 48. Akademiai
Kiadoo, Budapest.

J. Groenendijk and M. Stokhof. 1991a. Dynam-
ic predicate logic. Linguistics and Philosophy,
14:39-100.

J. Groenendijk and M. Stokhof. 1991b. Two the-
ories of dynamic semantics. In J. van Eijck, ed-
itor, Logics in AI FEuropean Workshop JELIA
’90, Springer Lecture Notes in Artificial Intelli-
gence, pages 55 64, Berlin. Springer, Berlin.

I. Heim. 1982. The Semantics of Definite and In-
definite Noun Phrases. Ph.D. thesis, University
of Massachusetts, Amherst.

H. Kamp. 1981. A theory of truth and semantic
representation. In J. Groenendijk et al., editors,
Formal Methods in the Study of Language. Math-
ematisch Centrum, Amsterdam.

M. Kohlhase, S. Kuschert, and M. Pinkal. 1996. A
type-theoretic semantics for A-DRT. In P. Dekker
and M. Stokhof, editors, Proceedings of the Tenth
Amsterdam Colloguium, Amsterdam. ILLC.

R. Muskens. 1994. A compositional discourse rep-
resentation theory. In P. Dekker and M. Stokhof,
editors, Proceedings 9th Amsterdam Colloquium,
pages 467-486. ILLC, Amsterdam.

J. van Eijck and H. Kamp. 1997. Representing dis-
course in context. In J. van Benthem and A. ter
Meulen, editors, Handbook of Logic and Language,
pages 179 237. Elsevier, Amsterdam.

J. van Eijck. 1997. Typed logics with states. Logic
Journal of the IGPL, 5(5):623-645.

J. van Eijck. 1999. Axiomatising dynamic logics for
anaphora. Journal of Language and Computation,
1:103-126.

J. van Eijck. 2000. Incremental dynamics. Journal
of Logic, Language and Information.

https://www.researchgate.net/publication/2620268

