
On the Proper Treatment of Context in NLJan van EijckCWI & ILLC, Amsterdam, Uil-OTS, Utrecht
AbstractThe proper treatment of quanti�cation in NaturalLanguage proposed by Richard Montague some thir-ty years does not do proper justice to the fact thatinterpretation of texts both uses context and sets upnew contexts. The dynamic turn in NL semantics isthe attempt to model this basic fact, but the use ofdynamically quanti�ed variables introduces an un-desirable element into this attempt. By extendinga variable-free `incremental dynamics' with a exi-ble system of type scheme patterns and type schemepattern matching, we arrive at a Montague style ar-chitecture for NL semantics that provides a propertreatment both of quanti�cation and of context useand context change.1 The Key IssueWhen processing natural language text, a context isincrementally built up of salient items, to be usedas a domain for �xing anaphoric references (withconstraints on where the referents are to be found).This context is used and extended at the same time,for introduction of new topics of conversation makesthe context grow, and pronouns get interpreted (re-solved) by linking them to the existing context.txt txt txt him" txt txt she" txttxt txt him" txt txt txt she" txttxt a man# txt txt txt his" txttxt every woman# txt txt txt her"txt txt a man# txt txt his" txt txtanother" man# txt txt txt his" txttxt a boy# txt txt his" txt txt txta man# txt txt txt himself" txttxt txtLegend:� ": looking for a referent from surrounding textor outside context.� #: adding a new referent to the existing context.� # txt txt txt : local extension of context(the context is extended, but this extension haslimited scope).

� txt txt txt " : locally extended contextwhere antecedent may be found (the local ex-tension of context provides additional possiblereferents).The �rst theories that tried to give a systematicand more or less formal account of context dynam-ics were Discourse Representation Theory (Kam-p, 1981) and File Change Semantics (Heim, 1982).Attempts to incorporate this work in mainstreamMontague style natural language semantics can befound in (Groenendijk and Stokhof, 1990; Muskens,1994; van Eijck, 1997; van Eijck and Kamp, 1997;Kohlhase et al., 1996). What these attempts at in-corporation have in common is the representationof context as a list of variables, and use of dynam-ic quanti�cation over these variables as context up-date. A serious disadvantage of dynamic quanti�ca-tion is that update of a variable y makes the previousvalue of y inaccessible: dynamic quanti�cation overnamed variables brings the problem of destructiveassignment in its wake.One way of avoiding the destructive assignmen-t problem is by dispensing with dynamic variablenames and handling argument binding in a way rem-iniscent of the so-called De Bruijn indices from lamb-da calculus (de Bruijn, 1980). This leads to a re-design of the dynamic logic paradigm for handlingcontext and context change, as follows. In incremen-tal dynamics (van Eijck, 2000), context gets rep-resented as a stack of n objects: referents for theanaphora ANA0, : : : , ANAn�1. These contextual-ly given objects need not all be di�erent. Contextgets processed dynamically: context extensions maybe temporary. Of course, the anaphoric elements donot occur with an index in the text, as ANAi; rather,the choice of appropriate indices for the anaphoricelements constitutes the process of anaphora resolu-tion.Text processing gets viewed as a process that addsa number of referents (say m) to the context: afterprocessing the new text in a context of size n we havea new context of size n + m. Contextual elementsthat were mentioned too long ago may lose theirsalience (or: drop out of the context), but we will

not make this a central issue in the present paper.Thus, the question What do the indices in naturallanguage texts like (1) mean? has as its answer: justa gloss to indicate how we suppose the anaphoric ref-erence resolution mechanism links the pronoun fromthe second sentence to the noun phrase introducedin the �rst.1 A mani walked in. Hei smiled.An anaphoric context is just a stack of n object-s available as antecedents in future discourse. In-troducing a new topic of conversation extends theanaphoric context by putting a new object on top ofthe context stack. The dynamic existential quanti�-er 9 gets interpreted as the action of putting a newobject on top of the context stack. If the size of thecontext is known, there is no need to indicate theregister that gets bound by 9. If the context is c,and its size is n, then c has the form (c0; : : : ; cn�1),and the next register | the one that gets bound by9 | is cn.A central idea is that the dynamic quanti�er doesnot name the variable that it binds, but that dynam-ic quanti�cation is always quanti�cation in context.If a context is given, the interpretation of 9 is just:introduce a next topic of conversation, and add it tothe context.2 Types for Incremental DynamicsA typed version of DRT and DPL can be built onbasic types e for entities and T for state transitions.The shift from t (truth values) to T (state transition-s) constitutes the dynamic turn in natural languagesemantics. The state transitions can themselves beviewed as relations between states, so in a more �ne-grained set-up, with basic types for t for truth val-ues and s for states, state transitions are of types! s! t.A typed version of incremental dynamics (hence-forth: ID) will use basic types e for entities, t fortruth values, and types for contexts of arbitrary �-nite sizes. We view the natural number k in VonNeumann style as k = f0; : : : ; k�1g, and we use [k]for the type of a context consisting of k elements.E.g., 5! [5] is the type of an index function into acontext of length 5, and [5] ! [8] ! t the type of astack transition that extends a stack of length 5 by 3positions to a stack of length 8. We will abbreviatethis type as (5; 3). Here is the de�nition of the typesystem: N ::= 0 j 1 j 2 j � � �Type ::= e j t j N j [N] j Type! TypeAbbreviation: use (N1; N2) for[N1]! [N1 +N2]! t:

3 Index Variables and Type SchemesTo represent a context of arbitrary size i index vari-ables are used. (i; 3) is the type scheme of a stacktransition that extends a stack of length i by 3 po-sitions. To represent extension of context by an in-determinate number of elements, we add numericalvariables. (i+ 1; J) is the type scheme pattern of astack transition that extends a non-empty contextby J positions.To generalize over stack transitions, we introducetype schemes. A type scheme is a type with indexvariables in it. Thus, (i + 1; 2) is (abbreviated no-tation for) a type scheme. It describes the generalform of a stack transition that increments a stack ofat least size 1 by 2 positions. Examples:� i! [i] is the type of an index (function) into acontext,� i + 1 ! [i + 1] is the type of an index into anon-empty context,� i + 1 ! (i + 1; 2) the type of an index into astack transformer with a non-empty input thatputs 2 new items on the stack.We use .T as an abbreviation for an index into T ,leaving the type of the index to be understood fromthe context of use.4 Pattern Variables and TypeScheme PatternsWe distinguish between index variables and patternvariables. We use i; j; k for index variables, I; J;Kfor pattern variables.A type containing pattern variables is called a typepattern. A type scheme containing pattern variablesis called a type scheme pattern.� i+ 1! (i+ 1; J) is the type scheme pattern ofan index into a stack transformer with a non-empty input that puts J new items on the stack.Replacing the pattern variables in a type (scheme)pattern instantiates the type (scheme) pattern toa type (scheme).� K := 3 instantiates the type pattern (3;K) tothe type (3; 3).� J := 2 instantiates the type scheme pattern i+1 ! (i+ 1; J) to the type scheme i+ 1 ! (i+1; 2).5 Pattern Variables Versus IndexVariables� Pattern variables (Pvar) are variables that s-tand proxy for natural numbers. Full instan-tiation of a type (scheme) pattern involves re-placement of all pattern variables by (names of)natural numbers.

� Type patterns and type scheme patterns areused to express patterns of types or patternsof type schemes. E.g., (i; J) is the pattern of allstack transitions that extend the stack by J el-ements. Instantiations of (i; J) are (i; 0), (i; 1),(i; 2), and so on.� Index variables (Ivar) are variables that may oc-cur in the type schemes that result from ful-ly instantiating the pattern variables in a typescheme pattern. (i; 1) is the type scheme of astack transition that extends the stack by oneposition.6 Type Scheme Patterns: De�nitionN ::= 0 j 1 j 2 j � � �Type ::= e j t j N j [N] j Type! TypeNum ::= N j Pvar j Num1 +Num2Nexp ::= Num j Ivar + NumTsp ::= e j tj Nexp j [Nexp]j Tsp! Tsp� A type (scheme) T is an instantiation of a type(scheme) pattern T 0 if there is a pattern variablesubstitution � such that T = T 0�. In this case,� will map all pattern variables in T 0 to naturalnumbers.� A type scheme pattern T is more general thana scheme T 0 if there is a substitution � for theindex and pattern variables such that T 0 = T�.� Thus, i ! (i; 2) is more general than j + 1 !(j+1; 2), for the substitution fi := j+1g trans-forms the former into the latter.� Substitution � is an mgu (most general uni�er)of type schemes T and T 0 if{ there is a substitution � such that T� =T 0�,{ every substitution � such that T� = T 0� issuch that T� is more general than T�.7 Uni�cation of Numerical Terms:Caution!We are not interested in the term model generatedfrom the natural numbers by the operation +, but inthe natural numbers themselves. In the term model,(1+ 4), (4 + 1) and (2+ 3) are all di�erent, while infact all these terms denote the same natural number.If we work in the term model, we can unify(N +M) � (K + L), with N;M;K;L all variables,by means of N := K;M := L, but for the naturalnumbers this substitution may well be wrong, foras we know, decomposition of natural numbers intosummands is not unique.

We must conclude that uni�cation of numericalterms will only work in special cases: we call termsthat can be uni�ed unifying pairs, pairs that cannotfailing pairs. Caution: in-between cases exist!8 Simpli�ed Forms of NumericalTerm PairsIf Nexp1 and Nexp2 are numerical terms, then thepair Nexp1 � Nexp2 can be written in a canonicalform as follows:� Collect all natural numbers occuring in the lhsterm and add them up, giving n.� Collect all natural numbers occuring in the rhsterm and add them up, giving m.� Subtract the di�erence jn�mj from both sidesof the pair.� If lhs and rhs both consist of more than a singlevariable, delete all variables that occur on bothsides.With this recipe, a pair Nexp1 � Nexp2 can al-ways be simpli�ed to one of the following forms (thevariables vi and wj range over index and patternvariables, with each term containing at most one in-dex variable; if lhs and rhs both consist of more thana single variable then they have no variables in com-mon):� n � m, with n � 0;m � 0.� v1 + � � �+ vn � k, with n > 0; k � 0,� k � v1 + � � �+ vn, with n > 0; k � 0,� v1 + � � �+ vn � w1 + � � �+ wm,with (n > 0;m > 0)� v1 + � � �+ vn � w1 + � � �+ wm + k,with (n > 0;m > 0; k > 0)� v1 + � � �+ vn + k � w1 + � � �+ wm,with (n > 0;m > 0; k > 0)9 Failing Pairs� A pair of the form n � m fails if n 6= m.� A pair of the form v � w1 + � � �+ wm + k,with k > 0 fails if v occurs among the wj .� A pair of the form v1 + � � �+ vn + k � w,with k > 0 fails if w occurs among the vi.10 Unifying pairs, With TheirSubstitutionsWe use � for the empty substitution (the substitutionthat maps every term to itself).v � w� v � w v � wfv := wg v 6� w

v � kfv := kg k � wfw := kgv � w1 + � � �+ wmfv := w1 + � � �+ wmg v 6� wjv1 + � � �+ vm � wfw := v1 + � � �+ vng w 6� viv � w1 + � � �+ wm + kfv := w1 + � � �+ wm + kg v 6� wjv1 + � � �+ vm + k � wfw := v1 + � � �+ vn + kg w 6� viv � w1 + � � �+ v + � � �+ wmfw1 := 0; : : : ; wm := 0gv1 + � � �+ w + � � �+ vn � wfv1 := 0; : : : ; vn := 0g11 Uni�cation Algorithm for Tsp's(Sketch)� e uni�es with e, with mgu �, t uni�es with t,with mgu �.� Nexp1 uni�es with Nexp2 and gives mgu accord-ing to the rules above.� [Nexp1] uni�es with [Nexp2] if Nexp1 uni�eswith Nexp2 and gives mgu according to the rulesabove.� Tsp1 ! Tsp2 uni�es with Tsp3 ! Tsp4 if Tsp1uni�es with Tsp3 to give mgu �, and Tsp2� u-ni�es with Tsp4� to give mgu �, and gives mgu��.� No other pairs of Tsp's unify.12 Facts about Tsp Uni�cation� The algorithm always terminates.� The algorithm is sound, but not complete (itwill fail to �nd solutions in cases of comparisonof numerical term pairs that are neither unifyingnor failing).� The algorithm will never introduce more thanone index variable in a numerical expression.(This follows from a straightforward inspectionof the rules.)13 Example Type Scheme PatternsDynamic Exists9 :: (i+ 1; J)! (i; J + 1)9 is a function that maps a stack transformer oftype (i+1; J), i.e., a transformer for a context withat least one element, to a stack transformer thatexpects a context with one element less, and incre-ments this context by one element more. Note that

(i + 1; J) ! (i; J + 1) in fact speci�es the patternof a type scheme rather than a type scheme. Forevery choice of a natural number for J , we get aparticular instantiation of the pattern to a scheme.In these type schemes for 9 there occurs just onetype variable, namely i.Dynamic Negation: :: (i; J)! (i; 0): maps a stack transformer to a test (a transformerthat does not increment the stack).Context Composition(;) :: (i; J)! (i+ J;K)! (i; J +K); takes as its arguments two stack transformers ofwhich the second handles the output of the �rst, andcombines these two into a new stack transformer,with increment given by the sum of the incrementsof the components.14 Expressing properties in IDAssume a constant for the property of being a man:man :: e! tWe can use this constant of type e! t to constructan index into a stack transformer, i.e, an object oftype i + 1 ! (i + 1; 0). This is the type of indexfunctions into [i+1]! [i+1]! t, i.e., into tests onnon-empty stacks.�ji+1�c[i+1]�c0[i+1]:(man cj ^ c = c0) :: i+ 1! (i+ 1; 0)Abbreviation: if c :: [n], and i :: n, we use cifor (c i). Also, we abbreviate i + 1 ! (i + 1; 0) as.(i+ 1; 0).15 De�nition of 9We extend the usual logic for extensional type theorywith a constant [] :: [0] and an operation (̂) :: [i]!e! [i+1]. The constant [] denotes the empty stack,and the operation ^ denotes `extending a list by oneelement' or `putting a new item on top of a stack'.We write ^ with in�x notation, so if c :: [i] andx :: e then ĉ x :: [i + 1]. We use this to give thede�nition of 9, as follows. 9 is an abbreviation of:�P(i+1;J)�c[i]�c0[i+J+1]:9xe((P ĉ x) c0):Note: i + J + 1 is of the general form i +K, withi an index variable and K a numerical expressioncontaining no index variables.

16 De�nitions of : and ;: is an abbreviation of:�P(i;J)�c[i]�c0[i]:(:9c00[i+J]((P c) c00) ^ c = c0):; is an abbreviation of:�P(i;J)�Q(i+J;K)�c[i]�c0[i+J+K]:9c00[i+J](((P c) c00) ^ ((Q c00) c0)):We will write ; as an in�x operator with associationto the left, and we will omit superuous brackets.17 Linking Formulas to Their TypeSchemesIndex variables can serve as a bridge between formu-las and their type schemes. To talk about the �nalposition of an arbitrary non-empty stack, we refer tothe stack by means of the type [i+1], and use indexi in the formula to access its �nal position.This is at the heart of the incremental dynamic-s of the inde�nite determiner. A sentence startingwith an inde�nite determiner a has the general form[[a CN] VP]. Its semantics is a context transforma-tion that takes an arbitary context, say of length i,adds one element to it to produce a new context oflength i + 1, makes sure that that element satis�esthe CN and the VP, and performs the context trans-formations associated with the CN and the VP. Weuse index expression i in the formula to refer to thatelement.18 Translating the Inde�niteDeterminera;�P.(i+1;N)�Q.(i+N+1;M):9 (Pi ; Qi):: .(i+ 1; N)! .(i+N + 1;M)! (i; N +M + 1):We need a pattern here because we do not know inadvance how many referents will be introduced with-in the CN that goes with the inde�nite determinerand how many in the predicate that follows.Because Pi :: (i + 1; N) and Qi :: (i + N +1;M), we must instantiate the type scheme of ; to(i+ 1; N)! (i+N + 1;M)! (i+ 1; N +M), andwe get that (Pi ; Qi) :: (i+ 1; N +M).Since 9 :: (i + 1; J) ! (i; J + 1) we must unifythe schemes (i + 1; N +M) and (i + 1; J) to makethe function �t the argument. This instantiates thetype of 9 to (i+ 1; N +M) ! (i; N +M + 1), andwe get that 9 (Pi ; Qi) :: (i; N +M + 1).19 Function Application withUni�cationFunction application may involve uni�cation of typeschemes, as follows:

' :: T1 ! T2 :: T3('� �) :: T2� � mgu of T1; T3For example, let T1 = .(i + 1; J), T2 = .(i; J + 1),T3 = (k + 1; 0). Then�P.(i+1;J)�c�c09x:P iĉ x c0 :: T1 ! T2applied to �j�c�c0Mcj ^ c = c0 :: T3yields, under substitution � = fi := k; J := 0g:(�P.(k+1;0)�c�c09x:Pkĉ x c)(�j�c�c0Mcj ^ c = c0):: (k; 1):Note that the substitution � = fi := k; J := 0ga�ects both the type scheme and the formula.20 Toy Fragment: Determiners,Nouns and Intransitive Verbsa;�P.(i+1;J)�Q.(i+J+1;K):9(Pi;Qi):: .(i+ 1; J)! .(i+ J + 1;K)! (i; J +K + 1)every;�P.(i+1;J)�Q.(i+J+1;K)::9(Pi;:Qi):: .(i+ 1; J)! .(i+ J + 1;K)! (i; 0)no;�P.(i+1;j)�Q.(i+J+1;K)::9(Pi;Qi):: .(i+ 1; J)! .(i+ J + 1;K)! (i; 0)man;�j�c[i+1]�c0[i+1]:(man cj ^ c = c0) :: .(i+ 1; 0)smiled;�j�c[i+1]�c0[i+1]:(smile cj ^ c = c0) :: .(i+ 1; 0)21 Iota ReductionIf A is a list of i elements and we append a newelement B to the list, then we can retrieve this ele-ment by lookup at index i + 1. This motivates thefollowing notion of � reduction:� If A :: [i] and B :: e, then ((A^B) i))� B.In abbreviated notation: (A^B)i)� B. We alsoallow � reduction in context, and we use)� for one-step � reduction. Here is an example:�x:((c[5]^x) 5))� �x:xOr with variables:�x:((c[i] x̂) i))� �x:x

22 Reduction to Normal Form� Beta reduction: de�ned in the standard way.� Iota reduction: see above.� Beta-iota reduction is conuent, i.e, if E ��!! Fand B ��!! F 0 then there is a G with F ��!! Gand F 0 ��!! G.� Beta-iota reduction is strongly normalizing, i.e.,every reduction sequence E ���! F ���! G : : :terminates.� Thus, beta-iota reduction yields unique normalforms.23 Example: `a man smiled'a man;(�P.(i+1;J)�Q.(i+J+1;K):9(Pi;Qi))(�j�c[i+1]�c0[i+1]:(man cj ^ c = c0)))� �Q.(i+1;K):9((�c[i+1]�c0[i+1]:(man ci+1 ^ c = c0));Qi))� �Q.(i+1;K):9(�c[i+1]�c0[i+K+1]:(man ci+1 ^ (((Qic)c0))))� �Q.(i+1;K):�c[i]�c0[i+K+1]:9xe(man (ĉ x)i+1 ^ (((Q(i+1))ĉ x)c0)))� �Q.(i+1;K):�c[i]�c0[i+K+1]:9xe(man x ^ ((Qi)ĉ x)c0)a man smiled;(�Q.(i+1;K):�c[i]�c0[i+K+1]:9xe(man x ^ (((Qi)ĉ x)c0)))(�j�c[i+1]�c0[i+1]:(smile cj ^ c = c0)))�� �c[i]�c0[i+1]:9xe(man x ^ smile x ^ ĉ x = c0)24 Anaphora ResolutionConstruction of an anaphora resolution engine isoutside our scope. But the present framework makesit easy to specify exactly where anaphora resolutioncomes in. For every given anaphoric element, theframework speci�es the currently relevant con-text for the resolution of that anaphoric element.The anaphora resolution engine `res' uses a con-text plus some unspeci�ed further information topick an index for that context.res :: [i+ 1]! ! i+ 1

25 Toy Fragment: Pronouns andTransitive Verbshe;�P.(i+1;J)�c[i+1]�c0[i+J+1]:(((P (res c))c)c0):: .(i+ 1; J)! (i+ 1; J)hek ;�P.(i+1;J)�c[i+1]�c0[i+J+1]:(((Pk)c)c0):: .(i+ 1; J)! (i+ 1; J)him; : : :himk ; : : :loves;�P.(i+1;J)!(i+1;J)�s�c�c0:(((P(�o�c00�c000(((love c00o) c00s) ^ c00 = c000)))c)c0):: (.(i+ 1; J)! (i+ 1; J))! .(i+ 1; J)26 Example: `he1 loves her2'loves her2 ;�P�s�c�c0:(((P(�o�c00�c000(((love c00o) c00s) ^ c00 = c000)))c)c0)(�P�c�c0:(((P2)c)c0)))� �s�c�c0:(((�P�c�c0:(((P2)c)c0))�o�c00�c000(((love c00o) c00s) ^ c00 = c000)))c)c0)� �s�c�c0:(((love c2) cs) ^ c = c0)he1 loves her2 ;(�P�c�c0:(((P1)c)c0))(�s�c�c0:(((love c2) cs) ^ c = c0)))� �c�c0:(((love c2) c1) ^ c = c0)27 Flexible Typing: Pronouns andTransitive Verbs AgainIn a system with exible typing, the type (i + 1 !(i+ 1; J))! (i+ 1; J) for pronouns can be loweredto i + 1. The simplest meaning of pronoun is: aninvitation to pick a suitable index from a context.The simplest meaning for an anaphorically resolvedpronoun is: an index into the appropriate context.If we use the type scheme variables to transfer theinformation about the size of the context, we can getby with the following:res :: [i+ 1]! ! i+ 1he; �c:(res c) :: [i+ 1]! i+ 1hek ; k :: i+ 1loves;�o�s�c�c0:(((loveco)cs) ^ c = c0):: i+ 1! i+ 1! (i+ 1; 0)

28 Toy Fragment: ReexivesIn the exible set-up, where transitive verbs havetype i+1! i+1! (i+1; 0), we can treat reexivesas relation reducers:himself;�Pi+1!i+1!(i+1;0)�s:((Ps)s):: (i+ 1! i+ 1! (i+ 1; 0))! (i+ 1! (i+ 1; 0))loves himself; � � ��s�c�c0:(((love cs) cs) ^ c = c0)every man loves himself; � � ��c�c0:(:9x(man x ^ :love x x) ^ c = c0)29 Toy Fragment: Relative Clausesthat;�P.(i+J;K)�Q.(i;J)�j:((Q j); (P j)):: .(i+ J;K)! .(i; J)! .(i; J +K)loves a woman;�jcc0:9x(woman x ^ ((love x) c0j) ^ ĉ x = c0)that loves a woman;�Qjcc0:9c00(Qjcc00 ^9x(woman x ^ ((love x) c00j) ^ c00̂ x = c0))man that loves a woman;�jcc0:man cj ^9x(woman x ^ ((love x) cj) ^ ĉ x = c0)30 Toy Fragment: Text Connectives; ; ;:: (i; J)! (i+ J;K)! (i; J +K): ; ;:: (i; J)! (i+ J;K)! (i; J +K)if ; �P(i;J)�Q(i+J;K)::(P ;:Q):: (i; J)! (i+ J;K)! (i; 0)suppose;�P(i;J)�Q(i+J;K)::(P ;:Q):: (i; J)! (i+ J;K)! (i; 0)then;�P(i+J;K)!(i;0)�Q(i+J;K):(P Q):: ((i+ J;K)! (i; 0))! (i+ J;K)! (i; 0)An example of a text in the fragment:2 Suppose a farmer owns a donkey. Then he beatsit.

31 ConclusionsCurrent reformulations of DRT within a type-theoretic framework are all without fail based ondynamic logic with destructive assignment. Thisholds for the dynamic Montague grammar of Groe-nendijk and Stokhof (1990), for Muskens' logic ofchange (1994), for Van Eijck's typed logic with s-tates (1997), for Saarbr�ucken style lambda DRT(Kohlhase et al., 1996), and so on. In short, anyframework that in some way takes the Groenendijkand Stokhof DPL (1991a) way of treating dynam-ic variables as its point of departure will su�er fromthe same ailment: the problem of destructive assign-ment will at some level spoil a correct treatment ofanaphor-antecedent linking.Incremental dynamics avoids this problem by tak-ing context updating seriously. Incremental dynam-ics is both a `better' rational reconstruction of DRTthan DPL and an improvement on DRT itself. Itis a better rational reconstruction because it doesaway with the arti�cial problems introduced by theDPL treatment of variables. It is an improvementbecause it makes clear that the DRT departure fromthe standard type-theoretic paradigm introduced byMontague was unnecessary after all. Indeed, typedincremental dynamics has the same advantages overdynamic Montague grammar and its ilk that ID hasover DPL (and to a lesser extent over DRT).We are now in a position to combine incremen-tal dynamics with dynamic modality in a principledfashion, by integrating epistemic modalities withinID. This task is much easier than the combinationof DPL and Update Semantics discussed by Groe-nendijk and Stokhof in (1991b) because DPL is non-eliminative whereas ID is eliminative by its very na-ture.Further information on ID can be found in (vanEijck, 2000), while (van Eijck, 1999) provides a per-haps unexpected spin-o� of the ID perspective: ele-gant axiomatisations of DPL and DRT.Acknowledgements Thanks to Johan van Ben-them, Paul Dekker, Michael Kohlhase, Kees Ver-meulen and Albert Visser for their comments on adraft version of this paper.ReferencesN.G. de Bruijn. 1980. A survey of the project AU-TOMATH. In J.R. Hindley and J.P. Seldin, edi-tors, To H.B. Curry: Essays on Combinatory Log-ic, Lambda Calculus and Formalism, pages 579{606. Academic Press, London.J. Groenendijk and M. Stokhof. 1990. DynamicMontague Grammar. In L. Kalman and L. Po-los, editors, Papers from the Second Symposiumon Logic and Language, pages 3{48. AkademiaiKiadoo, Budapest.

J. Groenendijk and M. Stokhof. 1991a. Dynam-ic predicate logic. Linguistics and Philosophy,14:39{100.J. Groenendijk and M. Stokhof. 1991b. Two the-ories of dynamic semantics. In J. van Eijck, ed-itor, Logics in AI|European Workshop JELIA'90, Springer Lecture Notes in Arti�cial Intelli-gence, pages 55{64, Berlin. Springer, Berlin.I. Heim. 1982. The Semantics of De�nite and In-de�nite Noun Phrases. Ph.D. thesis, Universityof Massachusetts, Amherst.H. Kamp. 1981. A theory of truth and semanticrepresentation. In J. Groenendijk et al., editors,Formal Methods in the Study of Language. Math-ematisch Centrum, Amsterdam.M. Kohlhase, S. Kuschert, and M. Pinkal. 1996. Atype-theoretic semantics for �-DRT. In P. Dekkerand M. Stokhof, editors, Proceedings of the TenthAmsterdam Colloquium, Amsterdam. ILLC.R. Muskens. 1994. A compositional discourse rep-resentation theory. In P. Dekker and M. Stokhof,editors, Proceedings 9th Amsterdam Colloquium,pages 467{486. ILLC, Amsterdam.J. van Eijck and H. Kamp. 1997. Representing dis-course in context. In J. van Benthem and A. terMeulen, editors, Handbook of Logic and Language,pages 179{237. Elsevier, Amsterdam.J. van Eijck. 1997. Typed logics with states. LogicJournal of the IGPL, 5(5):623{645.J. van Eijck. 1999. Axiomatising dynamic logics foranaphora. Journal of Language and Computation,1:103{126.J. van Eijck. 2000. Incremental dynamics. Journalof Logic, Language and Information.

View publication statsView publication stats

https://www.researchgate.net/publication/2620268

