
Grammars with generalized 
ontextfree rules and their treeautomataH. Volger (Univ. of Passau)
Abstra
tWe develop a uniform approa
h for studying
lasses of generalized 
ontextfree grammars andtheir 
lasses of trees. The rules of the grammarsare still 
ontextfree i.e. they have a single non-terminal on the left side. However, the set ofright sides of rules with a given nonterminal onthe left may be de�ned impli
itly by means ofan expression of an abstra
t logi
 whose modelsare �nite words. Thus the set of rules may bein�nite, in general. But the domain of lo
alityof the derivation trees whi
h 
onsists of a nodetogether with its �nite set of su

essor nodesremains un
hanged.The generalization 
overs a wide range of ex-amples. The uniform approa
h has the advan-tage that di�erent 
lasses of generalized 
on-textfree grammars 
an be 
ompared by meansof a translation between their logi
s. In thismanner a result proved for a 
lass of general-ized 
ontextfree grammars over a given logi

an be transferred to all less general 
lasses ofgrammars whose logi
 
an be translated into thegiven one. Quite a number of results may beextended to generalized 
ontextfree grammars.In parti
ular, the equivalen
e between 
lassesof trees whi
h 
onsist of derivation trees of a
ontextfree grammar and those whi
h 
onsist oftrees re
ognized by a tree automaton 
an be ex-tended to the general 
ase .However, to deal with further 
lasses of gram-mars whi
h involve 
ertain 
ontext-sensitiveme
hanisms like (linear) indexed grammars weneed a generalization of a di�erent type. We ex-tend the nonterminals by elements from a �xedvalue stru
ture. Extending likewise the 
on-textfree rules by 
ontrol 
onditions on the o
ur-ring values one may 
ontrol the derivation in theverti
al dire
tion. Again we keep the domain oflo
ality of the 
ontextfree grammars.

1 Introdu
tionThe domain of lo
ality of derivation trees of a
ontextfree grammar 
onsists of a node togetherwith its �nite set of su

essor nodes. As a uni-form method to study more general 
lasses ofgrammars and their asso
iated 
lasses of treeswe introdu
e 
lasses of generalized 
ontextfreegrammars whi
h are based on the same domainof lo
ality. Hen
e the left side of a general-ized 
ontextfree rule is still a single nonterminal.However, the set of right sides of rules with agiven nonterminal on the left may be de�nedimpli
itly by means of an expression whose in-terpretation is a set of words, whi
h may be in-�nite in general. Thus one keeps the domain oflo
ality of 
ontextfree grammars and the deriva-tion trees 
an be de�ned as usual.The motivations for this work are twofold.In his dissertation S
hneider (1999) has studiedthe systemati
 extension of parsing s
hemata ala Sikkel (1993) from 
ontextfree grammars tomore general 
lasses of grammars. On the otherhand Palm (1997) has studied in his disserta-tion several logi
s for de�ning 
lasses of trees(
f. also Volger(1999)). The logi
s are used toexpress the wellformedness 
onditions on treesof a prin
iple-based grammar formalism like GBof Chomsky (1981). Des
ribing the transforma-tion from a set of prin
iples formulated in a �rst-order language for trees to a rule-based gram-mar he has obtained as intermediate steps gen-eralized 
ontextfree grammars where the rightside of the rules are determined by expressionsof appropriate logi
s for words.We shall 
onsider the following set up. Fix aset X(S [ �) of expressions for de�ning sets ofwords i.e. sentential forms with S and � as �nitesets of nonterminal and terminal symbols. ThusX may be viewed as an abstra
t logi
 whoseexpressions have �nite words as models. An X-



produ
tion is a pair (s; e) where s 2 S is a non-terminal and e 2 X(S [ �) is an X-expression.The words u whi
h satisfy e determine the as-so
iated set of rules for s whi
h may be in�-nite. Now the usual de�nitions 
an be extendedin a uniform manner to X-
ontextfree gram-mars. We obtain 
lasses of grammars whi
h willbe weakly equivalent to 
ontextfree grammarswhenever all expressions used are required tode�ne 
ontextfree languages.Our generalization 
overs a wide range of ex-amples. Beside the 
lassi
al example of the ex-tended 
ontextfree grammars of That
her andWright (1968) whi
h are based on regular ex-pressions we want to mention here the state-transition grammars of S
hneider (1999) whi
hadmit an Earley parser, a lo
alized version ofthe ID/LP-grammars of Gazdar (1985) and theML-grammars of S
hneider (1999) whi
h arebased on a propositional modal logi
 with amodal operator for the right sibling relation.The latter 
ase in
ludes grammars with par-tially spe
i�ed 
ontextfree rules.Quite a number of results for 
ontextfreegrammars 
an be extended to generalized 
on-textfree grammars. In parti
ular, the equiva-len
e up to a proje
tion between 
lasses of treeswhi
h 
onsist of derivation trees of a 
ontextfreegrammar and those whi
h 
onsist of trees re
-ognized by a tree automaton 
an be extendedto the general 
ase under fairly mild 
onditions.In addition, di�erent 
lasses of generalized
ontextfree grammars 
an be 
ompared bymeans of translations. A translation is an in-terpretation preserving map between the asso-
iated sets of expressions and therefore it de-termines a simulation between the asso
iated
lasses of grammars. By this method a resultproved for one 
lass might be transferred to all
lasses whi
h 
an be translated into it.However, our approa
h does not 
over 
lassesof grammars like (linear) indexed grammars orgrammars from the geometri
 hierar
hy of Weir(1992). These 
lasses involve 
ontext-sensitiveme
hanisms like indi
es or 
ontrol words whi
hfor
es us to admit in�nite sets of nonterminals.Therefore another type of generalization hasto be used. We will 
onsider attributed wordswhere the nonterminal symbols 
arry valuesfrom a given value stru
ture. Likewise the rulesare extended by 
ontrol 
onditions on the o

ur-

ring values to 
ontrol the derivation in the verti-
al dire
tion. Again we have kept the domain oflo
ality of the 
ontextfree grammars. It remainsto be seen whether both types of generalization
an be 
ombined to 
over further examples.2 Grammars with quasi 
ontextfreerulesA 
ontextfree grammar G = (S;�; P; s0) maybe represented in a slightly nonstandard man-ner as follows. Repla
e the �nite subset P ofS� (S[�)� by the map p : S ! Pfin((S [�)�)where the �nite subset p(s) = fu : (s; u) 2 Pgof (S[�)� 
onsists of the right sides of the ruleswith left side s. More generally, one might ad-mit in�nite subsets p(s). To restri
t the admis-sible sets we 
onsider a set of expressions whi
hare interpreted by sets of words and we requirethat ea
h set p(s) is de�ned impli
itly by an ex-pression e. The pair (s; e) whi
h determines apossibly in�nite set of 
ontextfree rules will be
alled a quasi 
ontextfree rule as the left side isstill a single nonterminal. However, it should benoted that the set of symbols remains �nite.2.1 Grammars over a word logi
:Therefore we will introdu
e a 
lass of abstra
tlogi
s whose expressions are evaluated overwords. For the rest of the paper we �x a set� of terminal symbols and for a given �nite setS of nonterminal symbols we use the notationS for the set of symbols S [�.De�nition 1 X = (X; �) is a word logi
 if forea
h �nite set V we have a set X(V ) of X-expressions over V , an element 0X(V ) of X(V )and an interpretation map �V : X(V )! P (V �)satisfying �V (0X(V )) = ;.In the following we use the model theoreti
notation w j=X x for w 2 �V (x). For lateruse we introdu
e the preorder �X(V ) indu
edby the subset ordering on P (V �): x1 �X(V ) x2i� �V (x1) � �V (x2).Let X = (X; �) be a word logi
. As indi
atedabove X -expressions may be used to give an im-pli
it de�nition of a set of 
ontextfree rules of agrammar.De�nition 2 G = (S;�; p; s0) is 
alled an X -grammar if p : S ! X(S�) and s0 2 S. Theelements of � resp. S are the terminal resp.



nonterminal symbols of G and s0 is the startsymbol of G whereas p is 
alled the rule map ofG. XG(S;�) denotes the 
lass of X -grammarsover � and S.The graph of the rule map p determines theset of generalized 
ontextfree rules of G whi
h isa subset of S�X(S). The 
omposition with theinterpretation map �S : X(S) ! P (S�) yieldsProd(G) := fs !G u : u j= p(s)g, the asso
i-ated set of 
ontextfree rules of G whi
h in gen-eral will be an in�nite subset of S � S�.Making use of the rule relation !G thederivation relation )G is de�ned in the usualmanner: u )G v if there exist u1; u2 ands !G w in Prod(G) su
h that u = u1su2and v = u1wu2. All other de�nitions whi
hare based on Prod(G) and do not require the�niteness of this set 
an be extended to X -grammars in this manner. In parti
ular, onede�nes Lang(G) � ��, the language generatedby G and then XL := fLang(G) : G 2 XGg,the 
lass of X -languages.Sin
e the rules 
onsidered are still 
ontextfreeone 
an de�ne as usual the 
lass Trees(G)of derivation trees of G as a sub
lass ofTrees(S;�). The latter 
onsists of those �nitetrees whose leaves resp. inner nodes are labeledwith elements from � [ f�g resp. S as follows.Thus (T; I) belongs to Trees(G) if T is a treedomain and the map I : T ! S [ (� [ f�g)satis�es:1. I(�) = s0 and I(w) 2 (� [ f�g) wheneversu

(w) = [ ℄2. If w 2 T with su

(w) = [w1; : : : ; wk℄ andk � 1then I(w1) � : : : � I(wk) 2 �S � p(I(w))As usual the yield of (T; I) produ
es an el-ement of Lang(G). Finally we obtain XT :=fTrees(G) : G 2 XGg, the 
lass of XG-re
ognizable trees.2.2 Examples of word logi
sThe following list of examples illustrates therange of the notion we have introdu
ed. In the�rst three examples the word logi
 is determinedby a 
lass of languages where ea
h language in-terprets itself.(1) Contextfree grammars:

The standard example X1 = CF is de�ned by:X1(V ) := Pfin(V �) and �V (L) := LHen
e G = (S;�; p; s0) is a X1-grammar if p :S ! Pfin(S�). Ea
h p(s) determines a �niteset of 
ontextfree rules with left side s i.e. G isa 
ontextfree grammar. Thus X1G is the 
lassCFG of 
ontextfree grammars and X1L is is the
lass CFL of 
ontextfree languages.(2) Quasi 
ontextfree grammars:The maximal example X2 = QCF is de�ned by:X2(V ) := P (V �) and �V (L) := LHen
e G = (S;�; p; s0) is a X2-grammar ifp : S ! P (S�). Here ea
h p(s) determines anarbitrary set of 
ontextfree rules with left sides. For la
k of a better name the grammars inX2G have been 
alled quasi 
ontextfree gram-mars i.e. X2G = QCFG. However, the 
lassX2L = QCFL of quasi 
ontextfree languages
onsists of arbitrary languages sin
e any lan-guage L 
an be generated by the QCF -grammarGL = (f�g;�; pL; �) with pL(�) = L. Thisexample shows that we obtain more languagesthan we have bargained for. To get more rea-sonable 
lasses of grammars the de�ning 
lassof languages has to be restri
ted as in the nextexample.(3) Weakly 
ontextfree grammars:An intermediate example X3 = WCF is ob-tained by:X3(V ) := CFL(V ) and �V (L) = LHen
e G = (S;�; p; s0) is a X3-grammar ifp : S ! CFL(S). Here p(s) is a 
ontextfreelanguage over S i.e. generated by a 
ontextfreegrammar with S as terminal symbols. For la
kof a better name the grammars in X3G havebeen 
alled weakly 
ontextfree grammars i.e.X3G = WCFG. It 
an be shown that thelanguages in WCFL are again 
ontextfree lan-guages. This follows by a 
onstru
tion whi
hsubstitutes the rules of the 
ontextfree gram-mars for ea
h of the languages p(s) into the rulesof the WCF -grammar.In the next two examples the word logi
 isdetermined by a 
lass of automata where ea
hautomaton is interpreted by its a

epted lan-guage.



(4) Extended 
ontextfree grammars:The 
lassi
al example X4 = ECF whi
h moti-vated our de�nition is de�ned as follows, whereNFA(V ) denotes the 
lass of nondeterministi
�nite automata over V and L(A) denotes thelanguage a

epted by the automaton A:X4(V ) = NFA(V ) and �V (A) = L(A)Clearly Rexp(V ), the set of regular expressionsover V , 
ould be used as well. This yieldsthe 
lass X4G = ECFG of extended 
ontextfreegrammars whi
h was introdu
ed by That
herand Wright (1968). There it was shown thatX4L is again the 
lass of 
ontextfree languages.It should be noted that the family of nonde-terministi
 �nite automata in the de�nition ofan ECF -grammar may be repla
ed by a singleautomaton with a family of initial states.(5) State-transition grammars:The following 
lass of grammars introdu
ed byS
hneider (1999) 
onstitutes the largest 
lass ofgrammars for whi
h parsing s
hemata workingfrom left to right 
an be de�ned. To arrive atthe de�nition we have to introdu
e the underly-ing 
lass of automata whi
h work by generatingsymbols rather than 
onsuming symbols. In ad-dition, the new state and the generated symbolmay depend on all the symbols generated so far.A = (Q;V; �;Q0; Qf ) is a state-transition au-tomaton over V if � : Q � V � ! P (Q � V ) isthe transition map and Q0 � Q resp. Qf � Qis the set of initial resp. �nal states. The tran-sition relation for the 
on�gurations is de�nedfor a 2 V [ f�g by:(q; u) `A (q0; ua) if �(q; u) 3 (q0; a)The language generated by A is given byL(A) = fu : (q; �) `�A (q0; u); q 2 Q0; q0 2 Qfg.STA(V ) denotes the 
lass of state-transition au-tomata over V .Now X5 = ST is de�ned by:X5(V ) = STA(V ) and �V (A) = L(A)Thus G = (S;�; p; s0) p : S ! ST (S) is aST -grammar if p(s) is a state-transition au-tomaton over S for ea
h s 2 S. Hen
e wehave obtained X5G = ST G, the 
lass of state-transition grammars of S
hneider (1999). Againit should be noted that the family of state-transition automata in the de�nition of a ST -

grammar may be repla
ed by a single automa-ton with a family of initial state sets. We 
anshow that X5 = STL 
onsists of arbitrary lan-guages be
ause any language L 
an be gener-ated by AL := (fq1; q2g; S; Æ; fq1g; fq2g) whereÆ(q1; u) := f(q1; a) : ua 2 prefix(L)g[f(q2; a) :ua 2 Lg [ f(q2; �) : u = � 2 Lg. Here the sameremark as for example X2 applies. To get morereasonable 
lasses of grammars one has to addrestri
tions on the 
lass of automata.(6) Lo
alized ID/LP grammars:X6 = IDLP will be de�ned by X6(V ) =Pfin(M(V )) � LP (V ), where M(V ) is the setof multisets over V and LP (V ) is the set ofirre
exive, transitive relations over V . Then�V (fM1; : : : ;Mkg; R) is the set of those words,whose asso
iated multiset is Mi for some i andwhose order is admissible for R i.e. the orderis disjoint to the 
onverse of R. Thus G =(S;�; p; s0) is an IDLP-grammar if p : S !MP (S) � IR(S). If p(s) happens to be a �xedrelation R for all s 2 S, we obtain an ID/LP-grammar in the sense of Gazdar et al. (1985).This shows that the new 
lass X6G is a lo
alizedversion of the 
lass of ID=LP -grammars.(7) Modal logi
 grammars:In the example X7 = ML formulas of a modallogi
 are used to de�ne sets of words. LetML[); V ℄ be the propositional modal logi
with h)i as modal operator for the relation ofright sibling and the elements of V as proposi-tional variables. LetWmod(x) denote the set ofthose models of the formula x whi
h 
orrespondto words w in V �. Now the example X7 =MLis de�ned by:X7(V ) :=ML[); V ℄ and �V (x) =Wmod(x)The 
lass X7G =MLG of modal logi
 grammarsis 
losely related to the modal(1,*)-grammars ofS
hneider(1999). More general 
lasses of gram-mars de�ned with modal logi
 have been 
onsid-ered by Bla
kburn and Spaan (1993) and Palm(1997). { Other languages like propositional lin-ear temporal logi
 or �rst-order logi
 might beused as well.(8) Right linear grammars:In the next example the 
lass of words itself isrestri
ted. To 
over this 
ase the notion of aword logi
 has to be extended slightly by ad-mitting sets of expressions of the form X(S;�).In this manner it may depend di�erently on S



and �. The whole approa
h 
an be extendedas well but the notation be
omes more 
umber-some.X8 = RL is de�ned by:X8(S;�) := Pfin(��S [ ��) and �S;�(L) := LNow G = (S;�; p; s0) is a RLG-grammar if p :S ! Pfin(��S [ ��). Ea
h p(s) determines a�nite set of right linear rules with left side si.e. G is a right linear grammar. Thus we haveX8G = RLG. { Similarly, a word logi
 for the
lass of linear grammars 
ould be de�ned.Remark: To �t the 
lass of linear indexedgrammars of Gazdar (1985) into this set up theset S � I� for an index set I would have to beused as set of nonterminals. However, this setwill be in�nite in general. Admitting in�nitesets of nonterminals in a grammar any languageL 
ould be generated by a trivial 
ontextfreegrammar. To see this introdu
e an asso
iatednonterminal for ea
h word in L. In a later se
-tion we shall dis
uss a di�erent approa
h whi
h
overs examples like the linear indexed gram-mars.2.3 Closure propertiesClosure properties of the 
lasses of languageswill serve as an example how results 
an beextended to generalized 
ontextfree grammars.The following property of a word logi
 X =(X; �) is satis�ed in many examples and is veryuseful in proving 
losure properties of the 
lassXG of grammars and the 
lass XL of languages.De�nition 3 The word logi
 (X; �) is (weakly)fun
torial if for ea
h (inje
tive) map f : V1 !V2 with �nite sets V1,V2 there exists X(f) :X(V1) ! X(V2) satisfying the following 
on-ditions:1. �V2X(f) = P (f�)�V1 .X(V1) X(f)�! X(V2)# �V1 # �V2P (V �1 ) P (f�)�! P (V �2 )2. X(gf) = X(g)X(f) for f : V1 ! V2; g :V2 ! V3 and X(idV ) = idX(V )Thus X is a fun
tor on �nite sets and � isa natural transformation between X and thefun
tor P ((�)�). In the list of examples above

the word logi
s X1 - X5, X8 are fun
torial, X6 isweakly fun
torial whereas in example X7 =MLthe positivity of the formulas seems to be ne
-essary.The fun
toriality of a word logi
 X ensuresthat we may assume without loss of generalitythat the set of nonterminals of an X -grammaris disjoint to a given set. This follows by thelemma below.Lemma 1 Let f : S ! T be a map and G =(S;�; p; s0), H = (T;�; q; t0) be X -grammarsfor a word logi
 X = (X; �) su
h that H isindu
ed by G via f i.e. we have X(f)p = qfand f(s0) = t0. Whenever X is fun
torialor X is weakly fun
torial and f is inje
tivethen Lang(G) = Lang(H) and f(Trees(G)) =Trees(H).The proof is based on a 
hain of equivalen
es:f(s) !H v i� v 2 �T qf(s) i� v 2 P (f�)�Sp(s)i� there exists u with f�(u) = v and u 2 �Sp(s)i� there exists u with f�(u) = v and s!G u.The lemma 
an be used to show that the fun
-toriality of the word logi
 ensures the 
losureunder substitution of the asso
iated 
lass of lan-guages.Proposition 2 For any word logi
 X = (X; �)whi
h is weakly fun
torial the 
lasses XL andXT are 
losed under substitution i.e. for G =(S;�; p; s0) 2 XG and Ga = (Sa;�a; pa; s0;a) 2XG for a 2 � there exists Ĝ = (Ŝ; �̂; p; s0) 2XG with Ŝ ' S [ Sa2� Sa and �̂ = Sa2� �asu
h that:Lang(Ĝ) = Lang(G) [a=Lang(Ga) : a 2 �℄Trees(Ĝ) = Trees(G) [a=Trees(Ga) : a 2 �℄By lemma 1 we may assume that the sets Sand all the Sa are disjoint and thus Ŝ := S [Sa2� Sa is a disjoint union. The rule map q :Ŝ ! X(Ŝ [ �̂) is de�ned as follows. q jSa :=X(ja)pa where ja is the in
lusion of Sa [ �a inŜ [ �̂. q jS := X(k)p where k : S [ � ! Ŝ [ �̂is determined by k(s) = s for s 2 S and k(a) =s0;a for a 2 �. Now the proof follows from theequivalen
e: s !Ĝ v i� there exist u and uafor a 2 � su
h that v = u [a=ua℄, s !G u ands0;a !Ga ua for a 2 �.



As usual the result in proposition 2 gives riseto further 
losure properties of XL. The 
orol-lary below is given without proof.Corollary 3 Let X = (X; �) be a word logi
whi
h is weakly fun
torial.1. If for v1; v2 2 V there exists x 2 X(V ) with�(x) = fv1; v2g then XL is 
losed underbinary unions.2. If for v1; v2 2 V there exists y 2 X(V )with �(y) = fv1v2g then XL is 
losed under
on
atenation.3. If for v1; v2 2 V there exist y; z 2 X(V )with �(y) = fv1v2g and �(z) = f�g thenXL is 
losed under Kleene iteration.Assume that X admits one letter singletonsi.e. for all V there exist dV : V ! X(V ) su
hthat �V dV (v) = fvg for all v 2 V . Under thisassumption we may use in (1) the stronger as-sumption thatX admits binary unions. This re-quires that for all V and all x1; x2 2 X(V ) thereexists x 2 X(V ) with �V (x) = �V (x1) [ �V (x2).In the same manner we require in (2) resp. (3)that X admits 
on
atenation resp. Kleene it-eration. For example the word logi
s X1 - X5satisfy these properties. - In a later se
tion weshall 
onsider word logi
s whi
h admit �nitaryunions.2.4 Translations and simulations:To 
ompare grammars for two di�erent wordlogi
s X = (X; �) and Y = (Y; �) we introdu
etranslations between the logi
s whi
h determinesimulations between the asso
iated 
lasses ofgrammars.De�nition 4 F : X ! Y is a translation fromX to Y if for ea
h �nite set V there exists amap FV : X(V ) ! Y (V ) whi
h is 
ompatiblewith the interpretation maps i.e. �V = �V � FV .Thus we have for all x 2 X(V ):w j=Y FV (x) i� w j=X x (1). A translation F : X ! Y determines a sim-ulation F̂ : XG ! YG of the grammars in XGby grammars in YG as follows. For a gram-mar G = (S;�; p; s0) in XG the simulating

grammar F̂ (G) is given by (S;�; F̂ (p); s0) whereF̂ (p) := FS �p is the 
omposition of the rule mapp with the translation map FS .Saying that G is simulated by F̂ (G) is jus-ti�ed by the lemma below sin
e it states thatboth grammars have the same derivation rela-tion. Thus we may say that the grammars inXG 
an be simulated by the grammars in YG ifthere exists a translation F : X ! Y. This willbe denoted by XG � YG. Clearly, the simulata-bility relation � is a preorder sin
e a 
omposi-tion of translations is again a translation andthe identity is a translation.Lemma 4 Let F : X ! Y be a translation. Forea
h grammar G 2 XG we have:1. !F̂ (G) = !Gi.e. the sets of 
ontextfree rules 
oin
ide.2. )F̂ (G) = )Gi.e. the derivation relations 
oin
ide.3. Trees(F̂ (G)) = Trees(G)i.e. G and F̂ (G) are strongly equivalent.4. Lang(F̂ (G)) = Lang(G)i.e. G and F̂ (G) are weakly equivalent.Making use of equation (1) statement (1) fol-lows by a 
hain of equivalen
es: s !F̂ (G) w i�w j=Y F̂ (p)(s) i� w j=Y FS(p(s)) i� w j=X p(s)i� s!G w. (2) and (3) are a 
onsequen
e of (1)whereas (4) follows from (2). | The 
orollarybelow shows how the simulations 
an be used.Corollary 5 Let X ,Y be word logi
s.1. X � Y implies XT � YT and XL � YL.2. X � Y � X implies XT = YT and XL =YL.3. X � QCF4. CF � X implies CFL � XL.5. X � WCF implies XL � WCFL = CFL.(2) and (3) in lemma 4 yield (1) and hen
e(2). (1) is used to prove (3) - (5). To prove (3)one uses the interpretation map as translation.(5) makes use of the equation WCFL = CFLwhi
h was mentioned in the dis
ussion of theexample WCF above.



Proposition 6 The 
lasses of general-ized 
ontextfree grammars mentioned aboveare related by the following translations:RL ! IDLP# . #CF ! ML# . #ECF ! WCF# #ST ! QCFThe translations ST ! QCF and WCF !QCF follow by (3) in 
orollary 5, the maxi-mality of QCF . The translations RL ! CF ,CF ! ECF , RL ! IDLP, IDLP ! CF ,CF ! ML and hen
e IDLP ! ML are obvi-ous. The translation ECF ! WCF uses the fa
tthat regular languages are 
ontextfree. To getthe translation ECF ! ST one notes that state-transition automata whose transition fun
tiondo not depend on the word generated so farmay be viewed as nondeterministi
 automata.Adding the further restri
tion that the asso-
iated transition graph is a
y
li
 one obtainsagain the translation CF ! ECF . To 
on-stru
t the translation ML ! ECF whi
h inturn yields ML ! WCF one makes use of afun
tion fa on regular expressions whi
h satis-�es: L(r) = a � L(fa(r)). It splits a letter a o�at the left end of a word.Corollary 7 The asso
iated 
lassesof languages are related as follows:RLL � IDLPL\ j \ jCFL = MLLk kECFL = WCFL\ j \ jST L = QCFLThis follows from proposition 6 by an appli
a-tion of 5 and the equations CFL =WCFL andST L = QCFL mentioned earlier dis
ussing theexamples X3 = WCF and X5 = ST . { In this
ontext it might be useful to have a notion ofweak simulation whi
h yields weakly equivalentgrammars. Possibly this might be obtained bythe use of weak translations whi
h are basedon translation maps of the form FS : X(S) !Y (f(S)).

It should be mentioned that it is fairly easy to�nd 
onditions on a word logi
 X whi
h guar-antee 
losure properties of the 
lass XL of lan-guages. Let X0 be the word logi
 determinedby X0(S) = P=1(S). Then XL is 
losed un-der unions whenever X0 � X . Similarly, XL is
losed under 
on
atenations whenever X0 � Xand ea
h set X(S) admits 
on
atenations.3 Generalized tree automataIt is well known that the 
lass of trees whi
hare re
ognizable by a 
ontextfree grammar 
oin-
ides with the 
lass of trees whi
h are re
ogniz-able by a tree automaton (
f. (That
her, 1967)).It remains to be seen whether this equivalen
emay be lifted to grammars over a word logi
.To do this we have to generalize the notion of atree automaton to an arbitrary word logi
.As a starting point we shall use the followingvariant of the de�nition of a nondeterministi
top-down tree automaton.De�nition 5 A = (Q;S;�; Æ; q0; s0) is a (non-deterministi
 top-down) tree automaton if itsatis�es:1. Q is �nite set of states and q0 an initialstate in Q2. S is �nite set of nonterminal symbols ands0 an initial symbol in S3. Æ : S �Q! Pfin(Q�) is a transition fun
-tion whi
h asso
iates with ea
h pair (s; q) a�nite set of possible lists (=words) of su
-
essor states or terminal symbols.3.1 Tree automata over a word logi
Let X = (X; �) be a word logi
. Repla
ing inthe above de�nition CF by X we obtain X -treeautomata as the appropriate generalization.De�nition 6 A = (Q;S;�; Æ; q0; s0) is a (non-deterministi
 top-down) X -tree automaton if itsatis�es:1. Q is a �nite set of states and q0 is an initialstate in Q2. S is a �nite set of nonterminal symbols ands0 is an initial symbol in S3. Æ : S � Q ! X(Q) is a transition fun
-tion whi
h asso
iates with ea
h pair (s; q)



by means of �Q : X(Q) ! P (Q�) a set ofpossible lists (=words) of su

essor statesor terminal symbols.XTA(Q;S;�) denotes the 
lass of X -tree au-tomata with state set Q and symbols S [ �.In the 
ase X = CF we get ba
k the de�ni-tion above. { The XTA-re
ognizable trees (T; I)in Trees(S;�) are de�ned with the help of runtrees (T;K) in Trees(Q;�) as follows.De�nition 7 A tree (T;K) in Trees(Q;�) is
alled a run for the tree (T; I) 2 Trees(S;�)over the X -tree automaton A whenever:1. If w 2 T with su
(w) = [w1; : : : ; wk℄ ; k � 1then K(w1)�: : :�K(wk) 2 �Q�Æ(I(w);K(w))2. If w 2 T with su
(w) = [ ℄then K(w) = I(w) 2 � [ f�g.Now a tree (T; I) in Trees(S;�) is saidto be XTA- re
ognized by an X -tree automa-ton A if there exists a run (T;K) for (T; I)over A. Trees(A)) denotes the 
lass of XTA-re
ognizable trees for A. { In the 
ase X = CFwe get ba
k the usual de�nition of re
ognizabletrees.3.2 The 
orresponden
e resultUnder 
ertain mild 
onditions on the word logi
X = (X; �) we get the desired 
orresponden
eresult. It relates derivation trees (=re
ognizabletrees) of an X -grammar with re
ognizable treesof an asso
iated X -tree automaton. A wordlogi
 X is said to be �nitary if for ea
h surje
-tive map f : S1 ! S2 with S1; S2 �nite the mapX(f) has �nite preimages i.e. the set X(f)�1(x)is �nite for ea
h x 2 X(S2). All the examples ofword logi
s mentioned above ex
ept X2 = QCFand X5 = STA are �nitary.Theorem 8 Let X = (X; �) be a word logi
whi
h is fun
torial and �nitary and admits �ni-tary unions. Then the following holds:1. There exists a mapxta : XG(S;�)! XTA(S; S;�)whi
h preserves re
ognizable trees.More pre
isely, for ea
h G 2 XG wehave: (T; I) 2 Trees(G) implies (T; I) 2Trees(xta(G)), where I is a run for (T; I).Hen
e (T; I) is XTA-re
ognizable whenever(T; I) is XG-re
ognizable.

2. There exists a mapxg : XTA(Q;S;�)! XG(Q� S;�)whi
h preserves re
ognizable trees up to aproje
tion of the label sets.More pre
isely, for ea
h A 2 XTA we have:(T; I) 2 Trees(A) with a run (T;K) im-plies (T;K; I) 2 Trees(xg(A)). Note that(T; I) is obtained from (T;K; I) by the pro-je
tion onto (S [ �). Hen
e (T; I) is XG-re
ognizable up to a proje
tion whenever(T; I) is XTA-re
ognizable.Corollary 9 Let X = (X; �) be a word logi
as in theorem 8. Then we have the followingresult: A tree is a proje
tion of a re
ognizabletree for an X -grammar i� it is a proje
tion of are
ognizable tree for an X -tree automaton.The map xta for (1) is obtained as follows.xta(S;�; p; s0) is de�ned as (S; S;�; Æ; s0; s0)where Æ(s; s) := p(s) and Æ(s; s0) := 0X(S) fors 6= s0. The desired equivalen
e makes use ofp(I(w)) = Æ(I(w); I(w)).To get the map xg we asso
iate with an X -tree automaton A = (Q;S;�; Æ; q0; s0) the X -tree automaton Â := (Q�S; S;�; Æ̂); (q0; s0); s0)where Æ̂((q; s); s) := S(y : X(pr1)(y) =Æ(q; s)) and Æ̂((q; s); s0) := 0X(Q�S). Hen
e Æ̂is uniqely determined by the map � : Q �S ! X(Q � S) with �((q; s)) = Æ̂((q; s); s) =S(y : X(pr1)(y) = Æ(q; s)). Now we obtainxg(Q;S;�; Æ; q0; s0) := (Q � S;�; �; (q0; s0)).Making use of the preordering on X -expressionsintrodu
ed earlier the required equivalen
e 
anbe proved.4 Contextfree grammars with
ontrolled rulesTo deal with 
lasses of grammars like indexedgrammars or linear indexed grammars we needanother type of generalization of 
ontextfreegrammars. In order to 
ontrol the derivationin the verti
al dimension one introdu
es addi-tional values for the nonterminals.We repla
e words by attributed words wherethe nonterminals 
arry values from a givenstru
ture A = (A; (fi : i = 1; : : : ; l); (rj :j = 1; : : : ;m); a0; Af ) where a0 is an initialvalue and Af is a set of �nal values. Now



a set of attributed nonterminals is a set ofthe form S � A and we obtain words of theform u1s1[a1℄u2 : : : uksk[ak℄uk+1 in ((S � A) [�)� where u1; : : : uk+1 2 ��, s1; : : : ; sk 2 Sand a1; : : : ; ak 2 A. Thus we have repla
edWords(S;�) = (S [ �)� by AWords(S;�) =Words(S �A;�).Likewise the 
ontextfree rules will be ex-tended by a 
ontrol 
ondition.De�nition 8 An A-
ontrolled 
ontextfree ruleis of the form (r; ') where r = s !u1s1u2 : : : ukskuk+1 is a 
ontextfree rule and the
ontrol 
ondition ' is a 
onjun
tion of atomi
formulas over A with fx; x1; : : : ; xkg as freevariables. If r is a terminal rule i.e. k = 0 thenwe require that ' is the formula x = a0.Typi
al 
ontrol 
onditions will be 
onne
tionformulas rj(x; x1; : : : ; xk) , synthesizing formu-las fi(x1; : : : ; xk) = x or inheritan
e formulasV1�i�k xi = fi(x).The appli
ation of the rule (r; ') to the at-tributed word vs[a℄w yields the attributed wordvu1s1[a1℄u2 : : : sk[ak℄uk+1w whenever the lo
al
ondition '(a; a1; : : : ; ak) holds in A. In the def-inition of a derivation tree we require in additionat the leaves the boundary 
onditions imposedby the terminal rules and that the value at theroot is the initial value a0.4.1 Linear 
ontrol 
onditionsA 
ontrol 
ondition is said to be linear if the
ondition involves only the value at the nodeand at a spe
i�ed su

essor node usually 
alledthe head. More pre
isely, an A-
ontrolled 
on-textfree rule (r; ') is linear if the 
ontrol 
on-dition ' is of the form  (x; xi) ^ Vj 6=i xj = a0.Thus the nonterminal si in r is spe
ifed as head.This shows that the underlying grammars of lin-early A-
ontrolled grammars should be 
onsid-ered as headed 
ontextfree grammars.The grammars in HCFG are de�ned as fol-lows. A headed word is either a word u1su2where a unique nonterminal s has been spe
i-�ed as head or it is a terminal word w. ThusHWords(S;�) := ((S[�)��S�(S[�)�)[��is the set of headed words over S.Consequently we obtain headed 
ontextfreerules if we repla
e words by headed words inthe right side of a rule. Hen
e G is a headed
ontextfree grammar if its rules are of the form

s ! u1s0u2 or s ! w where w 2 ��. The headintrodu
es a spe
ial su

essor in the lo
al tree,the proje
tion onto the head. Hen
e the deriva-tion trees of a HCFG will be trees with proje
-tion lines i.e. trees in HTrees(S;�). { Belowwe shall see that the 
lass of headed 
ontextfreegrammars itself may be viewed as a 
lass of lin-early B-
ontrolled grammars where B is the setof truthvalues.4.2 Examples of 
ontrolled 
ontextfreegrammars(1) Headed 
ontextfree grammars:Let B = (B; (�k : k 2 N); 0; f1g) be the headstru
ture where B = f0; 1g and �k is the k-fold ex
lusive or. The 
ontrol 
ondition for k is�k(x1; : : : xk) = 1. In this 
ase the grammarsare basi
ally headed 
ontextfree grammars. Thevalue 1 sele
ts the head nonterminal and a pro-je
tion line starts with the value 0 and laternodes have the value 1.(2) Indexed grammars:Let A = (I�; (popi : i 2 I); nop; (pushi : i 2I); �; f�g) be the stru
ture of sta
ks over I .The 
ontrol 
onditions for k nonterminals areV1�j�k popi(x) = xj resp. V1�j�k x = xj resp.V1�j�k pushi(x) = xj. In this 
ase the A-
ontrolled 
ontextfree grammars are the indexedgrammars of Aho (1968).(3) Distributed indexed grammars:Let Ad = (I�; (
k : k 2 N); �; f�g) be thestru
ture of distributed sta
ks over I where
k(u1; : : : ; uk) = u1 : : : uk is the k-fold 
on-
atenation. The 
ontrol 
ondition for k non-terminals is 
k(x1; : : : ; xk) = x. In this 
asethe A-
ontrolled 
ontextfree grammars are thedistributed indexed grammars of Stauda
her(1994).(4) Unary de�nite 
lause grammars:To obtain de�nite 
lause grammars ((Pereiraand Warren, 1980)) we 
onsider the followingvalue stru
ture. It 
onsists of a set of terms to-gether with a relation for term mat
hing for se-quen
es of terms. In this manner we obtain thesub
lass of unary de�nite 
lause grammars i.e.those grammars where all nonterminals (=pred-i
ates) have exa
tly one argument. The 
asewhere all operations are at most unary is relatedto indexed grammars (
f. (Berts
h, 1994)).The next two examples will be linear.(5) Linear indexed grammars:Let A = (I�; (popi : i 2 I); nop; (pushi : i 2



I); �; f�g) be the stru
ture of sta
ks over I .The linear 
ontrol 
onditions are determined bypopi(x) = xj resp. x = xj resp. pushi(x) = xjwhere xj is the head su

essor. In this 
asethe linearly A-
ontrolled 
ontextfree grammarsare just the linear indexed grammars of Gazdar(1985).(6) Headed 
ontextfree grammars witha 
ontextfree grammar as a 
ontrol set:Let H = (�; T;Q; t0) 2 CFG(�; T ) be givenas 
ontrolling grammar. The asso
iated valuestru
ture AH is de�ned as follows. ((T [�)�; (ldeld : d 2 �); (appq : q 2 Q); �; f�g)where the relation ldeld removes an element dat the left end i.e. (u1; u2) 2 ldeld if u1 = du2and the relation appt!w applies the rule t! wi.e. (u1; u2) 2 appt!w if u1 = v1tv2; u2 = v1wv2The linear 
ontrol 
onditions are determinedby ldeld(x; xj) resp. appq(x; xj) where xj is thehead su

essor. In this 
ase the linearly AH-
ontrolled 
ontextfree grammars are 
ontrolled
ontextfree grammars with H as 
ontrollinggrammar (
f. (Weir, 1992)). They 
onstitutethe se
ond step of the hierar
hy introdu
ed byWeir. Further steps in the hiera
hy will requiremore 
omplex value stru
tures.Remark: To obtain arbitrary de�nite 
lausegrammars where we may have nonterminalswith �nitely many arguments we have to extendour approa
h to the 
ase with several attributesor sorts. This would mean that we have a valuestru
ture for ea
h sort. { Similar remarks ap-ply to the 
lass of attribute grammars (Knuth(1968)).5 SummaryAs a means to study more general 
lasses ofgrammars and their 
lasses of trees we havedeveloped a uniform approa
h to generalized
ontextfree grammars. We have presented twogeneralization of the 
lass of 
ontextfree gram-mars whi
h 
over a wide range of examples.Both generalizations yield grammars with a
ontextfree 
ore sin
e they preserve the do-main of lo
ality of 
ontextfree grammars. Asa �rst extension we have 
onsidered generalized
f rules. Here the right sides of the rules for agiven nonterminal on the left side are de�nedimpli
itly by means of expressions whi
h areinterpreted by sets of words. This led to X -grammars for a word logi
 X .

In a se
ond extension we have 
onsidered at-tributed 
ontextfree rules. Here the nontermi-nals 
arry values from a given value stru
tureand the appli
ation of the rules is 
ontrolled by
onditions on the asso
iated values. This ledto A-
ontrolled as well as linearly A-
ontrolled
ontextfree grammars for a value stru
ture A.It remains to be seen whether both approa
hesmay be 
ombined to 
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