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Abstract

We develop a uniform approach for studying
classes of generalized contextfree grammars and
their classes of trees. The rules of the grammars
are still contextfree i.e. they have a single non-
terminal on the left side. However, the set of
right sides of rules with a given nonterminal on
the left may be defined implicitly by means of
an expression of an abstract logic whose models
are finite words. Thus the set of rules may be
infinite, in general. But the domain of locality
of the derivation trees which consists of a node
together with its finite set of successor nodes
remains unchanged.

The generalization covers a wide range of ex-
amples. The uniform approach has the advan-
tage that different classes of generalized con-
textfree grammars can be compared by means
of a translation between their logics. In this
manner a result proved for a class of general-
ized contextfree grammars over a given logic
can be transferred to all less general classes of
grammars whose logic can be translated into the
given one. Quite a number of results may be
extended to generalized contextfree grammars.
In particular, the equivalence between classes
of trees which consist of derivation trees of a
contextfree grammar and those which consist of
trees recognized by a tree automaton can be ex-
tended to the general case .

However, to deal with further classes of gram-
mars which involve certain context-sensitive
mechanisms like (linear) indexed grammars we
need a generalization of a different type. We ex-
tend the nonterminals by elements from a fixed
value structure. Extending likewise the con-
textfree rules by control conditions on the ocur-
ring values one may control the derivation in the
vertical direction. Again we keep the domain of
locality of the contextfree grammars.

1 Introduction

The domain of locality of derivation trees of a
contextfree grammar consists of a node together
with its finite set of successor nodes. As a uni-
form method to study more general classes of
grammars and their associated classes of trees
we introduce classes of generalized contextfree
grammars which are based on the same domain
of locality. Hence the left side of a general-
ized contextfree rule is still a single nonterminal.
However, the set of right sides of rules with a
given nonterminal on the left may be defined
implicitly by means of an expression whose in-
terpretation is a set of words, which may be in-
finite in general. Thus one keeps the domain of
locality of contextfree grammars and the deriva-
tion trees can be defined as usual.

The motivations for this work are twofold.
In his dissertation Schneider (1999) has studied
the systematic extension of parsing schemata a
la Sikkel (1993) from contextfree grammars to
more general classes of grammars. On the other
hand Palm (1997) has studied in his disserta-
tion several logics for defining classes of trees
(cf. also Volger(1999)). The logics are used to
express the wellformedness conditions on trees
of a principle-based grammar formalism like GB
of Chomsky (1981). Describing the transforma-
tion from a set of principles formulated in a first-
order language for trees to a rule-based gram-
mar he has obtained as intermediate steps gen-
eralized contextfree grammars where the right
side of the rules are determined by expressions
of appropriate logics for words.

We shall consider the following set up. Fix a
set X (S UX) of expressions for defining sets of
words i.e. sentential forms with S and ¥ as finite
sets of nonterminal and terminal symbols. Thus
X may be viewed as an abstract logic whose
expressions have finite words as models. An X-



production is a pair (s,e) where s € S is a non-
terminal and e € X (S UX) is an X-expression.
The words u which satisfy e determine the as-
sociated set of rules for s which may be infi-
nite. Now the usual definitions can be extended
in a uniform manner to X-contextfree gram-
mars. We obtain classes of grammars which will
be weakly equivalent to contextfree grammars
whenever all expressions used are required to
define contextfree languages.

Our generalization covers a wide range of ex-
amples. Beside the classical example of the ex-
tended contextfree grammars of Thatcher and
Wright (1968) which are based on regular ex-
pressions we want to mention here the state-
transition grammars of Schneider (1999) which
admit an Earley parser, a localized version of
the ID/LP-grammars of Gazdar (1985) and the
ML-grammars of Schneider (1999) which are
based on a propositional modal logic with a
modal operator for the right sibling relation.
The latter case includes grammars with par-
tially specified contextfree rules.

Quite a number of results for contextfree
grammars can be extended to generalized con-
textfree grammars. In particular, the equiva-
lence up to a projection between classes of trees
which consist of derivation trees of a contextfree
grammar and those which consist of trees rec-
ognized by a tree automaton can be extended
to the general case under fairly mild conditions.

In addition, different classes of generalized
contextfree grammars can be compared by
means of translations. A translation is an in-
terpretation preserving map between the asso-
ciated sets of expressions and therefore it de-
termines a simulation between the associated
classes of grammars. By this method a result
proved for one class might be transferred to all
classes which can be translated into it.

However, our approach does not cover classes
of grammars like (linear) indexed grammars or
grammars from the geometric hierarchy of Weir
(1992). These classes involve context-sensitive
mechanisms like indices or control words which
forces us to admit infinite sets of nonterminals.

Therefore another type of generalization has
to be used. We will consider attributed words
where the nonterminal symbols carry values
from a given value structure. Likewise the rules
are extended by control conditions on the occur-

ring values to control the derivation in the verti-
cal direction. Again we have kept the domain of
locality of the contextfree grammars. It remains
to be seen whether both types of generalization
can be combined to cover further examples.

2 Grammars with quasi contextfree
rules

A contextfree grammar G = (5,3, P, s9) may
be represented in a slightly nonstandard man-
ner as follows. Replace the finite subset P of
S x (SUX)* by the map p : S — Py, (SUX)Y)
where the finite subset p(s) = {u : (s,u) € P}
of (SUX)* consists of the right sides of the rules
with left side s. More generally, one might ad-
mit infinite subsets p(s). To restrict the admis-
sible sets we consider a set of expressions which
are interpreted by sets of words and we require
that each set p(s) is defined implicitly by an ex-
pression e. The pair (s,e) which determines a
possibly infinite set of contextfree rules will be
called a quasi contextfree rule as the left side is
still a single nonterminal. However, it should be
noted that the set of symbols remains finite.

2.1 Grammars over a word logic:

Therefore we will introduce a class of abstract
logics whose expressions are evaluated over
words. For the rest of the paper we fix a set
3 of terminal symbols and for a given finite set
S of nonterminal symbols we use the notation
S for the set of symbols S U .

Definition 1 X = (X, ) is a word logic if for
each finite set V. we have a set X (V) of X-
expressions over V, an element Ox vy of X(V)
and an interpretation map &y : X (V) — P(V*)

satisfying §v (0x(vy) = 0.

In the following we use the model theoretic
notation w =y x for w € &y(x). For later
use we introduce the preorder <x(y) induced
by the subset ordering on P(V*): w1 <x(v) 72
iff {v(w1) C &y (w2).

Let X = (X,¢) be a word logic. As indicated
above X-expressions may be used to give an im-
plicit definition of a set of contextfree rules of a
grammar.

Definition 2 G = (S,X,p, sg) is called an X-
grammar if p : S — X(57) and sy € S. The
elements of ¥ resp. S are the terminal resp.



nonterminal symbols of G and sg is the start
symbol of G whereas p is called the rule map of
G. XG(S,X) denotes the class of X-grammars
over X and S.

The graph of the rule map p determines the
set of generalized contextfree rules of G which is
a subset of S x X(S). The composition with the
interpretation map ¢z : X(S) — P(S") yields
Prod(G) := {s =g u : u = p(s)}, the associ-
ated set of contextfree rules of G which in gen-
eral will be an infinite subset of S x S".

Making use of the rule relation —¢g the
derivation relation = is defined in the usual
manner: u =g v if there exist uj,us and
s —q w in Prod(G) such that u = wujsus
and v = wjwuy. All other definitions which
are based on Prod(G) and do not require the
finiteness of this set can be extended to X-
grammars in this manner. In particular, one
defines Lang(G) C ¥*, the language generated
by G and then XL := {Lang(G) : G € XG},
the class of X-languages.

Since the rules considered are still contextfree
one can define as usual the class Trees(G)
of derivation trees of G as a subclass of
Trees(S,Y). The latter consists of those finite
trees whose leaves resp. inner nodes are labeled
with elements from ¥ U {e} resp. S as follows.
Thus (7T, 1) belongs to Trees(G) if T is a tree
domain and the map I : T — S U (X U {¢})
satisfies:

1. I(e) = sp and I(w) € (¥ U {e}) whenever
suce(w) =[]

2. If w € T with succ(w) = [wl, ..., wk] and
E>1
then I'(wl) - ... - I(wk) € &g - p(1(w))

As usual the yield of (T, I) produces an el-
ement of Lang(G). Finally we obtain X'T :=
{Trees(G) G € XG}, the class of XG-
recognizable trees.

2.2 Examples of word logics

The following list of examples illustrates the
range of the notion we have introduced. In the
first three examples the word logic is determined
by a class of languages where each language in-
terprets itself.

(1) Contextfree grammars:

The standard example X} = CF is defined by:
Xl(V) = me(V*) and fv(L) =L

Hence G = (S,%,p, s0) is a Aj-grammar if p :
S — Pf;in(S7). Each p(s) determines a finite
set of contextfree rules with left side s i.e. G is
a contextfree grammar. Thus X;G is the class
CFG of contextfree grammars and A L is is the
class CFL of contextfree languages.

(2) Quasi contextfree grammars:

The maximal example Ao = QCF is defined by:
Xo(V):=P(V*) and &y (L) := L

Hence G = (S,%,p,s9) is a Ap-grammar if
p:S — P(S"). Here each p(s) determines an
arbitrary set of contextfree rules with left side
s. For lack of a better name the grammars in
X5G have been called quasi contextfree gram-
mars i.e. XoG = QCFG. However, the class
XoL = QCFL of quasi contextfree languages
consists of arbitrary languages since any lan-
guage L can be generated by the QCF-grammar
Gr, = ({*},¥,pr,*) with pp(x) = L. This
example shows that we obtain more languages
than we have bargained for. To get more rea-
sonable classes of grammars the defining class
of languages has to be restricted as in the next
example.
(3) Weakly contextfree grammars:

An intermediate example X3 = WCF is ob-
tained by:

X3(V) :=CFL(V) and & (L) = L

Hence G = (S,%,p,s9) is a As-grammar if
p: S — CFL(S). Here p(s) is a contextfree
language over S i.e. generated by a contextfree
grammar with S as terminal symbols. For lack
of a better name the grammars in X3G have
been called weakly contextfree grammars i.e.
X3G = WCFG. It can be shown that the
languages in WCF L are again contextfree lan-
guages. This follows by a construction which
substitutes the rules of the contextfree gram-
mars for each of the languages p(s) into the rules
of the WCF-grammar.

In the next two examples the word logic is
determined by a class of automata where each
automaton is interpreted by its accepted lan-

guage.



(4) Extended contextfree grammars:
The classical example Xy = £CF which moti-
vated our definition is defined as follows, where
NFA(V) denotes the class of nondeterministic
finite automata over V and L(A) denotes the
language accepted by the automaton A:

X4(V) = NFA(V) and & (A) = L(A)

Clearly Rexp(V'), the set of regular expressions
over V, could be used as well. This yields
the class X3G = ECFG of extended contextfree
grammars which was introduced by Thatcher
and Wright (1968). There it was shown that
Xy L is again the class of contextfree languages.
It should be noted that the family of nonde-
terministic finite automata in the definition of
an ECF-grammar may be replaced by a single
automaton with a family of initial states.

(5) State-transition grammars:
The following class of grammars introduced by
Schneider (1999) constitutes the largest class of
grammars for which parsing schemata working
from left to right can be defined. To arrive at
the definition we have to introduce the underly-
ing class of automata which work by generating
symbols rather than consuming symbols. In ad-
dition, the new state and the generated symbol
may depend on all the symbols generated so far.

A=(Q,V,1u,Qo,Qy) is a state-transition au-
tomaton over V if u: Q x V* — P(Q x V) is
the transition map and Qg C Q resp. Qf C Q
is the set of initial resp. final states. The tran-
sition relation for the configurations is defined
for a € V.U {e} by:

(¢:u) Fa (- ua) if u(g,w) 3 (¢ a)

The language generated by A is given by
L<A> = {U’ : (q’ 6) l_:k4 (q’,u),q € Qovq, € Qf}
ST A(V') denotes the class of state-transition au-
tomata over V.

Now X5 = ST is defined by:

X5(V)=STA(V) and &y (A) = L(A)
Thus G = (S,%,p,50) p : S — ST(S) is a
ST-grammar if p(s) is a state-transition au-
tomaton over S for each s € S. Hence we
have obtained X5G = STG, the class of state-
transition grammars of Schneider (1999). Again
it should be noted that the family of state-
transition automata in the definition of a S7T-

grammar may be replaced by a single automa-
ton with a family of initial state sets. We can
show that A5 = ST L consists of arbitrary lan-
guages because any language L can be gener-
ated by Ap == ({q1,42}, 5,6, {a1},{q2}) where
8(g1,u) = {(q1. ) : ua € prefiz(L)} U (g2, a) :
ua € L} U{(¢q2,€) : u =€ € L}. Here the same
remark as for example X5 applies. To get more
reasonable classes of grammars one has to add
restrictions on the class of automata.

(6) Localized ID/LP grammars:
Xs = IDLP will be defined by Xg(V) =
Pfin (M(V)) x LP(V), where M(V) is the set
of multisets over V and LP(V) is the set of
irreflexive, transitive relations over V. Then
Ev({My,..., My}, R) is the set of those words,
whose associated multiset is M; for some 7 and
whose order is admissible for R i.e. the order
is disjoint to the converse of R. Thus G =
(S,%,p,s9) is an ZDLP-grammar if p : S —
MP(S) x IR(S). If p(s) happens to be a fixed
relation R for all s € S, we obtain an ID/LP-
grammar in the sense of Gazdar et al. (1985).
This shows that the new class X3G is a localized
version of the class of ID/LP-grammars.

(7) Modal logic grammars:
In the example X7 = ML formulas of a modal
logic are used to define sets of words. Let
ML[=,V] be the propositional modal logic
with (=) as modal operator for the relation of
right sibling and the elements of V' as proposi-
tional variables. Let Wmod(x) denote the set of
those models of the formula = which correspond
to words w in V*. Now the example X; = ML
is defined by:

X7(V):=ML[=,V] and &y (x) = Wmod(x)

The class X7G = M LG of modal logic grammars
is closely related to the modal(1,*)-grammars of
Schneider(1999). More general classes of gram-
mars defined with modal logic have been consid-
ered by Blackburn and Spaan (1993) and Palm
(1997). — Other languages like propositional lin-
ear temporal logic or first-order logic might be
used as well.
(8) Right linear grammars:

In the next example the class of words itself is
restricted. To cover this case the notion of a
word logic has to be extended slightly by ad-
mitting sets of expressions of the form X (S, ).
In this manner it may depend differently on S



and Y. The whole approach can be extended
as well but the notation becomes more cumber-

some.
Xg = RL is defined by:

Xg(8,%) := Ppip,(E*SUYY) and g (L) := L

Now G = (S,%,p,sg) is a RLG-grammar if p :
S — Pfin(E*S UX*). Each p(s) determines a
finite set of right linear rules with left side s
i.e. G is a right linear grammar. Thus we have
XsG = RLG. Similarly, a word logic for the
class of linear grammars could be defined.

Remark: To fit the class of linear indexed
grammars of Gazdar (1985) into this set up the
set S x I* for an index set I would have to be
used as set of nonterminals. However, this set
will be infinite in general. Admitting infinite
sets of nonterminals in a grammar any language
L could be generated by a trivial contextfree
grammar. To see this introduce an associated
nonterminal for each word in L. In a later sec-
tion we shall discuss a different approach which
covers examples like the linear indexed gram-
mars.

2.3 Closure properties

Closure properties of the classes of languages
will serve as an example how results can be
extended to generalized contextfree grammars.
The following property of a word logic X =
(X, &) is satisfied in many examples and is very
useful in proving closure properties of the class
X G of grammars and the class X L of languages.

Definition 3 The word logic (X, &) is (weakly)
functorial if for each (injective) map f : Vi —
Vo with finite sets Vi,Vy there exists X(f)
X(Vi) = X(Va) satisfying the following con-
ditions:

1. &, X (f) = P(f)éwn.
f

X()

XV) — X(W)
1éw L&,
.

Py 15 pay)

2. X(gf) = X(g)X(f) for f Vi = Va9
VQ — V:‘; and X(?dv) = 7dX(V)

Thus X is a functor on finite sets and ¢ is
a natural transformation between X and the
functor P((—)*). In the list of examples above

the word logics X - A5, Ay are functorial, Xy is
weakly functorial whereas in example X7 = ML
the positivity of the formulas seems to be nec-
essary.

The functoriality of a word logic X ensures
that we may assume without loss of generality
that the set of nonterminals of an X-grammar
is disjoint to a given set. This follows by the
lemma below.

Lemma 1 Let f: S — T be a map and G =
(S,%,p,s0), H = (T,%,q,ty) be X-grammars
for a word logic X = (X,£) such that H is
induced by G wvia f i.e. we have X(f)p = qf
and f(sg) = tg. Whenever X is functorial
or X is weakly functorial and f is injective
then Lang(G) = Lang(H) and f(Trees(G)) =

Trees(H).

The proof is based on a chain of equivalences:
f(s) =m viff v € &rqf(s) iff v € P(F)égp(s)
iff there exists u with f (u) = v and u € 546)
iff there exists u with f (u) = v and s —¢ u.

The lemma can be used to show that the func-
toriality of the word logic ensures the closure
under substitution of the associated class of lan-
guages.

Proposition 2 For any word logic X = (X,£)
which is weakly functorial the classes XL and
XT are closed under substitution i.e. for G =
(S,%,p,s0) € XG and G = (Sa,XasDas50,a) €
XG for a € ¥ there exists G = (S,3,p,s9) €

XG with § ~ S U Upex, Sa and ¥ = Upey, Za
such that:

Lang(G) = Lang(G) [a/Lang(G,) : a € X]
Trees(G) = Trees(G) [a/Trees(Gy) : a € 3]

By lemma 1 we may assume that the sets S
and all the S, are disjoint and thus S := S U
Usex Sa is a disjoint union. The rule map ¢ :

S — X(SUY) is defined as follows. ¢ |g,:=
X (Ja)pa where j, is the inclusion of S, U X, in
SUS. ¢ ls:= X(k)p where k: SUY — SUY
is determined by k(s) = s for s € S and k(a) =
50,a for a € ¥. Now the proof follows from the
equivalence: s — 4 v iff there exist u and u,
for a € ¥ such that v = u[a/u,], s =¢ v and
50,a =G, Uq for a € X.



As usual the result in proposition 2 gives rise
to further closure properties of X£. The corol-
lary below is given without proof.

Corollary 3 Let X = (X,&) be a word logic
which is weakly functorial.

1. If for vy, vy € V there ezists x € X (V') with
&(x) = {vy,v9} then XL is closed under
binary unions.

2. If for vi,v9 € V there exists y € X (V)
with £(y) = {vive} then XL is closed under
concatenation.

3. If for vi,vy € V there exist y,z € X(V)
with &(y) = {viva} and &(z) = {€} then

XL is closed under Kleene iteration.

Assume that X' admits one letter singletons
i.e. for all V' there exist dy : V — X (V) such
that &y dy(v) = {v} for all v € V. Under this
assumption we may use in (1) the stronger as-
sumption that X admits binary unions. This re-
quires that for all V and all 21,29 € X (V') there
exists ¥ € X(V) with (v (z) = &y (x1) U &y (w2).
In the same manner we require in (2) resp. (3)
that X admits concatenation resp. Kleene it-
eration. For example the word logics A} - A5
satisfy these properties. - In a later section we
shall consider word logics which admit finitary
unions.

2.4 Translations and simulations:

To compare grammars for two different word
logics X = (X,£) and Y = (Y,7) we introduce
translations between the logics which determine
simulations between the associated classes of
grammars.

Definition 4 F : X — ) is a translation from
X to Y if for each finite set V' there exists a
map Fy : X(V) — Y(V) which is compatible
with the interpretation maps i.e. &y = ny - Fy.
Thus we have for all v € X(V):

wEy Fy () iffw Ex @ (1)

A tranAslation F : X — )Y determines a sim-
ulation F' : XG — VG of the grammars in X'G
by grammars in YG as follows. For a gram-
mar G = (S,X,p,s9) in XG the simulating

grammar F'(G) is given by (S, 3, F(p), sg) where
F(p) := Fg-p is the composition of the rule map
p with the translation map Fg. .

Saying that G is simulated by F(G) is jus-
tified by the lemma below since it states that
both grammars have the same derivation rela-
tion. Thus we may say that the grammars in
XG can be simulated by the grammars in VG if
there exists a translation F': X — ). This will
be denoted by XG < YG. Clearly, the simulata-
bility relation < is a preorder since a composi-
tion of translations is again a translation and
the identity is a translation.

Lemma 4 Let F : X — Y be a translation. For
each grammar G € XG we have:

1. _>ﬁ(G) = —a
i.e. the sets of contextfree rules coincide.

2. :>F(G) = =
i.e. the derivation relations coincide.

3. Trees(F(G)) = Trees(G)
i.e. G and F(QG) are strongly equivalent.

4. Lang(F(G)) = Lang(QG)
i.e. G and F(G) are weakly equivalent.

Making use of equation (1) statement (1) fol-
lows by a chain of equivalences: s —pe) W iff

w =y F(p)(s) iff w =y Fg(p(s)) iff w =x p(s)
iff s ¢ w. (2) and (3) are a consequence of (1)
whereas (4) follows from (2). — The corollary
below shows how the simulations can be used.

Corollary 5 Let X,Y be word logics.

1. X <Y implies XT C YT and XL C VL.

2. X <Y < X implies XT = YT and XL =
VL.

3. X <QCF

4. CF < X implies CFL C XL.

5. X < WCF implies XL CWCFL =CFL.

(2) and (3) in lemma 4 yield (1) and hence
(2). (1) is used to prove (3) - (5). To prove (3)
one uses the interpretation map as translation.
(5) makes use of the equation WCFL = CFL
which was mentioned in the discussion of the
example WCF above.



Proposition 6 The classes of general-
ized contextfree grammars mentioned above
are related by the following translations:
RL — 1IDLP

I \J

CF —» ML

I 1

ECF — WCF

| )

ST — QCF

The translations 87 — QCF and WCF —
QCF follow by (3) in corollary 5, the maxi-
mality of QCF. The translations RL — CF,
CF — ECF, RL — IDLP, IDLP — CF,
CF — ML and hence ZDLP — ML are obvi-
ous. The translation ECF — WCF uses the fact
that regular languages are contextfree. To get
the translation ECF — ST one notes that state-
transition automata whose transition function
do not depend on the word generated so far
may be viewed as nondeterministic automata.
Adding the further restriction that the asso-
ciated transition graph is acyclic one obtains
again the translation CF — ECF. To con-
struct the translation ML — ECF which in
turn yields ML — WCF one makes use of a
function f, on regular expressions which satis-
fies: L(r) = a- L(fq(r)). It splits a letter a off
at the left end of a word.

Corollary 7 The associated classes
of languages are related as  follows:
RLL C IDLPL
n| al
CFL = MLL
| I
ECFL = WCFL
n| n|
STL = QCFL

This follows from proposition 6 by an applica-
tion of 5 and the equations CFL = WCFL and
ST L = QCFL mentioned earlier discussing the
examples X3 = WCF and X5 = ST. In this
context it might be useful to have a notion of
weak simulation which yields weakly equivalent
grammars. Possibly this might be obtained by
the use of weak translations which are based
on translation maps of the form Fg : X(S) —

Y(f(5))

It should be mentioned that it is fairly easy to
find conditions on a word logic X which guar-
antee closure properties of the clagss XL of lan-
guages. Let X be the word logic determined
by Xo(S) = P-1(S). Then XL is closed un-
der unions whenever Ay < X. Similarly, XL is
closed under concatenations whenever Xy < X

and each set X (S) admits concatenations.

3 Generalized tree automata

It is well known that the class of trees which
are recognizable by a contextfree grammar coin-
cides with the class of trees which are recogniz-
able by a tree automaton (cf. (Thatcher, 1967)).
It remains to be seen whether this equivalence
may be lifted to grammars over a word logic.
To do this we have to generalize the notion of a
tree automaton to an arbitrary word logic.

As a starting point we shall use the following
variant of the definition of a nondeterministic
top-down tree automaton.

Definition 5 A = (Q, S, X, 4, qo, s0) is a (non-
deterministic top-down) tree automaton if it
satisfies:

1. Q is finite set of states and qq an initial
state in Q)

2. S is finite set of nonterminal symbols and
sg an initial symbol in S

3.0:5%xQ — Pf,;n(Q*) is a transition func-
tion which associates with each pair (s,q) a
finite set of possible lists (=words) of suc-
cessor states or terminal symbols.

3.1 Tree automata over a word logic

Let X = (X,¢) be a word logic. Replacing in
the above definition C'F' by X we obtain X-tree
automata as the appropriate generalization.

Definition 6 A = (Q,S,%,0,q0, s0) s a (non-
deterministic top-down) X-tree automaton if it
satisfies:

1. Q is a finite set of states and qo is an initial
state in Q)

2. Sis a finite set of nonterminal symbols and
sg 48 an initial symbol in S

3.0 : 5 %xQ — X(Q) is a transition func-
tion which associates with each pair (s,q)



by means of £g : X(Q) — P(Q") a set of
possible lists (=words) of successor states
or terminal symbols.

XTA(Q, S,Y) denotes the class of X-tree au-
tomata with state set Q and symbols S U X.
In the case X = CF we get back the defini-
tion above. — The X'TAA-recognizable trees (T, 1)
in Trees(S,Y) are defined with the help of run
trees (T, K) in Trees(Q,X) as follows.

Definition 7 A tree (T, K) in Trees(Q,X) is
called a run for the tree (T,I) € Trees(S,%)
over the X-tree automaton A whenever:

1. Ifw € T with suc(w) = [wl,...,wk] k> 1
then K(wl)-...-K(wk) € £g-0(1(w), K(w))

2. If w € T with suc(w) =[]
then K(w) = I(w) € ¥ U {¢}.

Now a tree (T,I) in Trees(S.X) is said
to be XTA- recognized by an X-tree automa-
ton A if there exists a run (T, K) for (T,1)
over A. Trees(A)) denotes the class of X'TA-
recognizable trees for A. In the case X =CF
we get back the usual definition of recognizable
trees.

3.2 The correspondence result

Under certain mild conditions on the word logic
X = (X,&) we get the desired correspondence
result. It relates derivation trees (=recognizable
trees) of an X-grammar with recognizable trees
of an associated X-tree automaton. A word
logic X is said to be finitary if for each surjec-
tive map f : S1 — S9 with S7, S5 finite the map
X (f) has finite preimages i.e. the set X (f) '(z)
is finite for each # € X (S2). All the examples of
word logics mentioned above except Xy = QCF
and X5 = ST A are finitary.

Theorem 8 Let X = (X,&) be a word logic
which is functorial and finitary and admits fini-
tary unions. Then the following holds:

1. There exists a map
xta: XG(S,X) — XTA(S, S. %)

which preserves recognizable trees.

More precisely, for each G € XG we
have: (T,I) € Trees(G) implies (T,1) €
Trees(xta(Q)), where I is a run for (T, I).
Hence (T, 1) is XTA-recognizable whenever
(T, I) is XG-recognizable.

2. There exists a map
xg: XYTA(Q,S,X) = XG(Q x S.Y)

which preserves recognizable trees up to a
projection of the label sets.

More precisely, for each A € XT A we have:
(T,I) € Trees(A) with a run (T,K) im-
plies (T, K,I) € Trees(xg(A)). Note that
(T, I) is obtained from (T, K,I) by the pro-
jection onto (S UY). Hence (T,I) is XG-
recognizable up to a projection whenever
(T, 1) is XTA-recognizable.

Corollary 9 Let X = (X,§) be a word logic
as in theorem 8. Then we have the following
result: A tree is a projection of a recognizable
tree for an X-grammar iff it is a projection of a
recognizable tree for an X-tree automaton.

The map ata for (1) is obtained as follows.
xta(S, X, p,s9) is defined as (S,S,3%, 0,50, 80)
where d(s,s) := p(s) and d(s,s") := Ox(g) for
s # s'. The desired equivalence makes use of
p(I(w)) = (1 (w), I(w)).

To get the map xg we associate with an X-
tree automaton A = (@, S,%,,qo, sg) the X-

tree automaton A 1= (QxS,8.%, 3), (qo,$0), S0)

where §((q,5),s) = Uly : X(pri)ly) =
6(q,s)) and 6((q,s),s") := Ox(gxs). Hence §
is uniqely determmed by the map fi D Q x

S — X(Q x 5) with u((q,s)) = d((q 75)75) =
Uly + X(pri)(y) = (g, s )) Now we obtain
TQ(Qv Sa 27 57 q0, SU) = (Q X Sa Za Ky (qov SO))'
Making use of the preordering on X-expressions
introduced earlier the required equivalence can
be proved.

4 Contextfree grammars with
controlled rules

To deal with classes of grammars like indexed
grammars or linear indexed grammars we need
another type of generalization of contextfree
grammars. In order to control the derivation
in the vertical dimension one introduces addi-
tional values for the nonterminals.

We replace words by attributed words where
the nonterminals carry values from a given
structure A = (A, (fi + @ = 1,....0),(r
Jj = 1,....,m),ap,Ay) where qp is an initial
value and Ay is a set of final values. Now



a set of attributed nonterminals is a set of
the form S x A and we obtain words of the
form wysi[ar]ug ... ugsglag|ugsr in ((S x A) U
¥)* where uy,...up1 € ¥, $1,...,8, € S
and ai,...,ap € A. Thus we have replaced
Words(S,X) = (SUX)* by AWords(S,X) =
Words(S x A, %).

Likewise the contextfree rules will be ex-
tended by a control condition.

Definition 8 An A-controlled contextfree rule
is of the form (r,p) where r = s —
U1S1UQ . .. ULSpUEL1 1S a contextfree rule and the
control condition p is a conjunction of atomic
formulas over A with {x,x1,..., 2} as free
variables. If r is a terminal rule i.e. k =0 then
we require that @ is the formula © = ag.

Typical control conditions will be connection
formulas r;(x, x1,...,2;) , synthesizing formu-
las fi(x1,...,2) = x or inheritance formulas
Ni<ick®i = fi(®).

The application of the rule (r,¢) to the at-
tributed word vs[a]w yields the attributed word
vuysyfag]usg ... sglag]ugriw whenever the local
condition ¢(a, aq, ..., ax) holds in A. In the def-
inition of a derivation tree we require in addition
at the leaves the boundary conditions imposed
by the terminal rules and that the value at the
root is the initial value ag.

4.1 Linear control conditions

A control condition is said to be linear if the
condition involves only the value at the node
and at a specified successor node usually called
the head. More precisely, an A-controlled con-
textfree rule (r,¢) is linear if the control con-
dition ¢ is of the form ¢ (z,7;) A A\j 4 75 = ao.
Thus the nonterminal s; in r is specifed as head.
This shows that the underlying grammars of lin-
early A-controlled grammars should be consid-
ered as headed contextfree grammars.

The grammars in HCFG are defined as fol-
lows. A headed word is either a word wujsus
where a unique nonterminal s has been speci-
fied as head or it is a terminal word w. Thus
HWords(S,X) := ((SUX)*x Sx (SUX)*)UX*
is the set of headed words over S.

Consequently we obtain headed contextfree
rules if we replace words by headed words in
the right side of a rule. Hence G is a headed
contextfree grammar if its rules are of the form

s = u1s'us or s = w where w € ¥*. The head
introduces a special successor in the local tree,
the projection onto the head. Hence the deriva-
tion trees of a HCFG will be trees with projec-
tion lines i.e. trees in HTrees(S,¥).  Below
we shall see that the class of headed contextfree
grammars itself may be viewed as a class of lin-
early B-controlled grammars where B is the set
of truthvalues.

4.2 Examples of controlled contextfree
grammars

(1) Headed contextfree grammars:
Let B = (B,(® : k € N),0,{1}) be the head
structure where B = {0,1} and @&y is the k-
fold exclusive or. The control condition for k is
@r(x1,...2,) = 1. In this case the grammars
are basically headed contextfree grammars. The
value 1 selects the head nonterminal and a pro-
jection line starts with the value 0 and later
nodes have the value 1.

(2) Indexed grammars:
Let A = (I*,(pop; : i € I),nop, (push; : i €
I),e,{€}) be the structure of stacks over I.
The control conditions for k nonterminals are
Ni<j<ipopi(x) = xj resp. Ai<jcp @ = x; resp.
Ai<j<rpushi(z) = ;. In this case the A-
controlled contextfree grammars are the indezed
grammars of Aho (1968).

(3) Distributed indexed grammars:
Let Ay = (I*,(cx, : k € N),e,{€e}) be the
structure of distributed stacks over I where
cg(ugy ... yug) = wup...up is the k-fold con-
catenation. The control condition for k& non-
terminals is ¢g(x1,...,2,) = 2. In this case
the A-controlled contextfree grammars are the
distributed indezed grammars of Staudacher
(1994).

(4) Unary definite clause grammars:
To obtain definite clause grammars ((Pereira
and Warren, 1980)) we consider the following
value structure. It consists of a set of terms to-
gether with a relation for term matching for se-
quences of terms. In this manner we obtain the
subclass of unary definite clause grammars i.e.
those grammars where all nonterminals (=pred-
icates) have exactly one argument. The case
where all operations are at most unary is related
to indexed grammars (cf. (Bertsch, 1994)).

The next two examples will be linear.

(5) Linear indexed grammars:
Let A = (I*,(pop; : i € I),nop, (push; : i €



I),e,{€}) be the structure of stacks over I.
The linear control conditions are determined by
popi(x) = xj resp. x = x; resp. push;(x) = z;
where x; is the head successor. In this case
the linearly A-controlled contextfree grammars
are just the linear indexed grammars of Gazdar
(1985).

(6) Headed contextfree grammars with
a contextfree grammar as a control set:
Let H = (A, T,Q,ty) € CFG(A,T) be given
as controlling grammar. The associated value
structure Apg is defined as follows. ((T" U
A, (ldely = d € A),(app, = ¢ € Q),¢,{€})
where the relation ldel; removes an element d
at the left end i.e. (uy,u2) € ldely if uy = dus
and the relation app;_,,, applies the rule t — w
Le. (up,u2) € appi—sy if up = v1tvg, us = v3wWv9
The linear control conditions are determined
by ldely(x, x;) resp. appq(x, ;) where x; is the
head successor. In this case the linearly Ag-
controlled contextfree grammars are controlled
contextfree grammars with H as controlling
grammar (cf. (Weir, 1992)). They constitute
the second step of the hierarchy introduced by
Weir. Further steps in the hierachy will require
more complex value structures.

Remark: To obtain arbitrary definite clause
grammars where we may have nonterminals
with finitely many arguments we have to extend
our approach to the case with several attributes
or sorts. This would mean that we have a value
structure for each sort.  Similar remarks ap-
ply to the class of attribute grammars (Knuth
(1968)).

5 Summary

As a means to study more general classes of
grammars and their classes of trees we have
developed a uniform approach to generalized
contextfree grammars. We have presented two
generalization of the class of contextfree gram-
mars which cover a wide range of examples.
Both generalizations yield grammars with a
contextfree core since they preserve the do-
main of locality of contextfree grammars. As
a first extension we have considered generalized
cf rules. Here the right sides of the rules for a
given nonterminal on the left side are defined
implicitly by means of expressions which are
interpreted by sets of words. This led to X-
grammars for a word logic X

In a second extension we have considered at-
tributed contextfree rules. Here the nontermi-
nals carry values from a given value structure
and the application of the rules is controlled by
conditions on the associated values. This led
to A-controlled as well as linearly A-controlled
contextfree grammars for a value structure A.
It remains to be seen whether both approaches
may be combined to cover further examples.
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