
Grammars with generalized ontextfree rules and their treeautomataH. Volger (Univ. of Passau)
AbstratWe develop a uniform approah for studyinglasses of generalized ontextfree grammars andtheir lasses of trees. The rules of the grammarsare still ontextfree i.e. they have a single non-terminal on the left side. However, the set ofright sides of rules with a given nonterminal onthe left may be de�ned impliitly by means ofan expression of an abstrat logi whose modelsare �nite words. Thus the set of rules may bein�nite, in general. But the domain of loalityof the derivation trees whih onsists of a nodetogether with its �nite set of suessor nodesremains unhanged.The generalization overs a wide range of ex-amples. The uniform approah has the advan-tage that di�erent lasses of generalized on-textfree grammars an be ompared by meansof a translation between their logis. In thismanner a result proved for a lass of general-ized ontextfree grammars over a given logian be transferred to all less general lasses ofgrammars whose logi an be translated into thegiven one. Quite a number of results may beextended to generalized ontextfree grammars.In partiular, the equivalene between lassesof trees whih onsist of derivation trees of aontextfree grammar and those whih onsist oftrees reognized by a tree automaton an be ex-tended to the general ase .However, to deal with further lasses of gram-mars whih involve ertain ontext-sensitivemehanisms like (linear) indexed grammars weneed a generalization of a di�erent type. We ex-tend the nonterminals by elements from a �xedvalue struture. Extending likewise the on-textfree rules by ontrol onditions on the our-ring values one may ontrol the derivation in thevertial diretion. Again we keep the domain ofloality of the ontextfree grammars.

1 IntrodutionThe domain of loality of derivation trees of aontextfree grammar onsists of a node togetherwith its �nite set of suessor nodes. As a uni-form method to study more general lasses ofgrammars and their assoiated lasses of treeswe introdue lasses of generalized ontextfreegrammars whih are based on the same domainof loality. Hene the left side of a general-ized ontextfree rule is still a single nonterminal.However, the set of right sides of rules with agiven nonterminal on the left may be de�nedimpliitly by means of an expression whose in-terpretation is a set of words, whih may be in-�nite in general. Thus one keeps the domain ofloality of ontextfree grammars and the deriva-tion trees an be de�ned as usual.The motivations for this work are twofold.In his dissertation Shneider (1999) has studiedthe systemati extension of parsing shemata ala Sikkel (1993) from ontextfree grammars tomore general lasses of grammars. On the otherhand Palm (1997) has studied in his disserta-tion several logis for de�ning lasses of trees(f. also Volger(1999)). The logis are used toexpress the wellformedness onditions on treesof a priniple-based grammar formalism like GBof Chomsky (1981). Desribing the transforma-tion from a set of priniples formulated in a �rst-order language for trees to a rule-based gram-mar he has obtained as intermediate steps gen-eralized ontextfree grammars where the rightside of the rules are determined by expressionsof appropriate logis for words.We shall onsider the following set up. Fix aset X(S [ �) of expressions for de�ning sets ofwords i.e. sentential forms with S and � as �nitesets of nonterminal and terminal symbols. ThusX may be viewed as an abstrat logi whoseexpressions have �nite words as models. An X-



prodution is a pair (s; e) where s 2 S is a non-terminal and e 2 X(S [ �) is an X-expression.The words u whih satisfy e determine the as-soiated set of rules for s whih may be in�-nite. Now the usual de�nitions an be extendedin a uniform manner to X-ontextfree gram-mars. We obtain lasses of grammars whih willbe weakly equivalent to ontextfree grammarswhenever all expressions used are required tode�ne ontextfree languages.Our generalization overs a wide range of ex-amples. Beside the lassial example of the ex-tended ontextfree grammars of Thather andWright (1968) whih are based on regular ex-pressions we want to mention here the state-transition grammars of Shneider (1999) whihadmit an Earley parser, a loalized version ofthe ID/LP-grammars of Gazdar (1985) and theML-grammars of Shneider (1999) whih arebased on a propositional modal logi with amodal operator for the right sibling relation.The latter ase inludes grammars with par-tially spei�ed ontextfree rules.Quite a number of results for ontextfreegrammars an be extended to generalized on-textfree grammars. In partiular, the equiva-lene up to a projetion between lasses of treeswhih onsist of derivation trees of a ontextfreegrammar and those whih onsist of trees re-ognized by a tree automaton an be extendedto the general ase under fairly mild onditions.In addition, di�erent lasses of generalizedontextfree grammars an be ompared bymeans of translations. A translation is an in-terpretation preserving map between the asso-iated sets of expressions and therefore it de-termines a simulation between the assoiatedlasses of grammars. By this method a resultproved for one lass might be transferred to alllasses whih an be translated into it.However, our approah does not over lassesof grammars like (linear) indexed grammars orgrammars from the geometri hierarhy of Weir(1992). These lasses involve ontext-sensitivemehanisms like indies or ontrol words whihfores us to admit in�nite sets of nonterminals.Therefore another type of generalization hasto be used. We will onsider attributed wordswhere the nonterminal symbols arry valuesfrom a given value struture. Likewise the rulesare extended by ontrol onditions on the our-

ring values to ontrol the derivation in the verti-al diretion. Again we have kept the domain ofloality of the ontextfree grammars. It remainsto be seen whether both types of generalizationan be ombined to over further examples.2 Grammars with quasi ontextfreerulesA ontextfree grammar G = (S;�; P; s0) maybe represented in a slightly nonstandard man-ner as follows. Replae the �nite subset P ofS� (S[�)� by the map p : S ! Pfin((S [�)�)where the �nite subset p(s) = fu : (s; u) 2 Pgof (S[�)� onsists of the right sides of the ruleswith left side s. More generally, one might ad-mit in�nite subsets p(s). To restrit the admis-sible sets we onsider a set of expressions whihare interpreted by sets of words and we requirethat eah set p(s) is de�ned impliitly by an ex-pression e. The pair (s; e) whih determines apossibly in�nite set of ontextfree rules will bealled a quasi ontextfree rule as the left side isstill a single nonterminal. However, it should benoted that the set of symbols remains �nite.2.1 Grammars over a word logi:Therefore we will introdue a lass of abstratlogis whose expressions are evaluated overwords. For the rest of the paper we �x a set� of terminal symbols and for a given �nite setS of nonterminal symbols we use the notationS for the set of symbols S [�.De�nition 1 X = (X; �) is a word logi if foreah �nite set V we have a set X(V ) of X-expressions over V , an element 0X(V ) of X(V )and an interpretation map �V : X(V )! P (V �)satisfying �V (0X(V )) = ;.In the following we use the model theoretinotation w j=X x for w 2 �V (x). For lateruse we introdue the preorder �X(V ) induedby the subset ordering on P (V �): x1 �X(V ) x2i� �V (x1) � �V (x2).Let X = (X; �) be a word logi. As indiatedabove X -expressions may be used to give an im-pliit de�nition of a set of ontextfree rules of agrammar.De�nition 2 G = (S;�; p; s0) is alled an X -grammar if p : S ! X(S�) and s0 2 S. Theelements of � resp. S are the terminal resp.



nonterminal symbols of G and s0 is the startsymbol of G whereas p is alled the rule map ofG. XG(S;�) denotes the lass of X -grammarsover � and S.The graph of the rule map p determines theset of generalized ontextfree rules of G whih isa subset of S�X(S). The omposition with theinterpretation map �S : X(S) ! P (S�) yieldsProd(G) := fs !G u : u j= p(s)g, the assoi-ated set of ontextfree rules of G whih in gen-eral will be an in�nite subset of S � S�.Making use of the rule relation !G thederivation relation )G is de�ned in the usualmanner: u )G v if there exist u1; u2 ands !G w in Prod(G) suh that u = u1su2and v = u1wu2. All other de�nitions whihare based on Prod(G) and do not require the�niteness of this set an be extended to X -grammars in this manner. In partiular, onede�nes Lang(G) � ��, the language generatedby G and then XL := fLang(G) : G 2 XGg,the lass of X -languages.Sine the rules onsidered are still ontextfreeone an de�ne as usual the lass Trees(G)of derivation trees of G as a sublass ofTrees(S;�). The latter onsists of those �nitetrees whose leaves resp. inner nodes are labeledwith elements from � [ f�g resp. S as follows.Thus (T; I) belongs to Trees(G) if T is a treedomain and the map I : T ! S [ (� [ f�g)satis�es:1. I(�) = s0 and I(w) 2 (� [ f�g) wheneversu(w) = [ ℄2. If w 2 T with su(w) = [w1; : : : ; wk℄ andk � 1then I(w1) � : : : � I(wk) 2 �S � p(I(w))As usual the yield of (T; I) produes an el-ement of Lang(G). Finally we obtain XT :=fTrees(G) : G 2 XGg, the lass of XG-reognizable trees.2.2 Examples of word logisThe following list of examples illustrates therange of the notion we have introdued. In the�rst three examples the word logi is determinedby a lass of languages where eah language in-terprets itself.(1) Contextfree grammars:

The standard example X1 = CF is de�ned by:X1(V ) := Pfin(V �) and �V (L) := LHene G = (S;�; p; s0) is a X1-grammar if p :S ! Pfin(S�). Eah p(s) determines a �niteset of ontextfree rules with left side s i.e. G isa ontextfree grammar. Thus X1G is the lassCFG of ontextfree grammars and X1L is is thelass CFL of ontextfree languages.(2) Quasi ontextfree grammars:The maximal example X2 = QCF is de�ned by:X2(V ) := P (V �) and �V (L) := LHene G = (S;�; p; s0) is a X2-grammar ifp : S ! P (S�). Here eah p(s) determines anarbitrary set of ontextfree rules with left sides. For lak of a better name the grammars inX2G have been alled quasi ontextfree gram-mars i.e. X2G = QCFG. However, the lassX2L = QCFL of quasi ontextfree languagesonsists of arbitrary languages sine any lan-guage L an be generated by the QCF -grammarGL = (f�g;�; pL; �) with pL(�) = L. Thisexample shows that we obtain more languagesthan we have bargained for. To get more rea-sonable lasses of grammars the de�ning lassof languages has to be restrited as in the nextexample.(3) Weakly ontextfree grammars:An intermediate example X3 = WCF is ob-tained by:X3(V ) := CFL(V ) and �V (L) = LHene G = (S;�; p; s0) is a X3-grammar ifp : S ! CFL(S). Here p(s) is a ontextfreelanguage over S i.e. generated by a ontextfreegrammar with S as terminal symbols. For lakof a better name the grammars in X3G havebeen alled weakly ontextfree grammars i.e.X3G = WCFG. It an be shown that thelanguages in WCFL are again ontextfree lan-guages. This follows by a onstrution whihsubstitutes the rules of the ontextfree gram-mars for eah of the languages p(s) into the rulesof the WCF -grammar.In the next two examples the word logi isdetermined by a lass of automata where eahautomaton is interpreted by its aepted lan-guage.



(4) Extended ontextfree grammars:The lassial example X4 = ECF whih moti-vated our de�nition is de�ned as follows, whereNFA(V ) denotes the lass of nondeterministi�nite automata over V and L(A) denotes thelanguage aepted by the automaton A:X4(V ) = NFA(V ) and �V (A) = L(A)Clearly Rexp(V ), the set of regular expressionsover V , ould be used as well. This yieldsthe lass X4G = ECFG of extended ontextfreegrammars whih was introdued by Thatherand Wright (1968). There it was shown thatX4L is again the lass of ontextfree languages.It should be noted that the family of nonde-terministi �nite automata in the de�nition ofan ECF -grammar may be replaed by a singleautomaton with a family of initial states.(5) State-transition grammars:The following lass of grammars introdued byShneider (1999) onstitutes the largest lass ofgrammars for whih parsing shemata workingfrom left to right an be de�ned. To arrive atthe de�nition we have to introdue the underly-ing lass of automata whih work by generatingsymbols rather than onsuming symbols. In ad-dition, the new state and the generated symbolmay depend on all the symbols generated so far.A = (Q;V; �;Q0; Qf ) is a state-transition au-tomaton over V if � : Q � V � ! P (Q � V ) isthe transition map and Q0 � Q resp. Qf � Qis the set of initial resp. �nal states. The tran-sition relation for the on�gurations is de�nedfor a 2 V [ f�g by:(q; u) `A (q0; ua) if �(q; u) 3 (q0; a)The language generated by A is given byL(A) = fu : (q; �) `�A (q0; u); q 2 Q0; q0 2 Qfg.STA(V ) denotes the lass of state-transition au-tomata over V .Now X5 = ST is de�ned by:X5(V ) = STA(V ) and �V (A) = L(A)Thus G = (S;�; p; s0) p : S ! ST (S) is aST -grammar if p(s) is a state-transition au-tomaton over S for eah s 2 S. Hene wehave obtained X5G = ST G, the lass of state-transition grammars of Shneider (1999). Againit should be noted that the family of state-transition automata in the de�nition of a ST -

grammar may be replaed by a single automa-ton with a family of initial state sets. We anshow that X5 = STL onsists of arbitrary lan-guages beause any language L an be gener-ated by AL := (fq1; q2g; S; Æ; fq1g; fq2g) whereÆ(q1; u) := f(q1; a) : ua 2 prefix(L)g[f(q2; a) :ua 2 Lg [ f(q2; �) : u = � 2 Lg. Here the sameremark as for example X2 applies. To get morereasonable lasses of grammars one has to addrestritions on the lass of automata.(6) Loalized ID/LP grammars:X6 = IDLP will be de�ned by X6(V ) =Pfin(M(V )) � LP (V ), where M(V ) is the setof multisets over V and LP (V ) is the set ofirreexive, transitive relations over V . Then�V (fM1; : : : ;Mkg; R) is the set of those words,whose assoiated multiset is Mi for some i andwhose order is admissible for R i.e. the orderis disjoint to the onverse of R. Thus G =(S;�; p; s0) is an IDLP-grammar if p : S !MP (S) � IR(S). If p(s) happens to be a �xedrelation R for all s 2 S, we obtain an ID/LP-grammar in the sense of Gazdar et al. (1985).This shows that the new lass X6G is a loalizedversion of the lass of ID=LP -grammars.(7) Modal logi grammars:In the example X7 = ML formulas of a modallogi are used to de�ne sets of words. LetML[); V ℄ be the propositional modal logiwith h)i as modal operator for the relation ofright sibling and the elements of V as proposi-tional variables. LetWmod(x) denote the set ofthose models of the formula x whih orrespondto words w in V �. Now the example X7 =MLis de�ned by:X7(V ) :=ML[); V ℄ and �V (x) =Wmod(x)The lass X7G =MLG of modal logi grammarsis losely related to the modal(1,*)-grammars ofShneider(1999). More general lasses of gram-mars de�ned with modal logi have been onsid-ered by Blakburn and Spaan (1993) and Palm(1997). { Other languages like propositional lin-ear temporal logi or �rst-order logi might beused as well.(8) Right linear grammars:In the next example the lass of words itself isrestrited. To over this ase the notion of aword logi has to be extended slightly by ad-mitting sets of expressions of the form X(S;�).In this manner it may depend di�erently on S



and �. The whole approah an be extendedas well but the notation beomes more umber-some.X8 = RL is de�ned by:X8(S;�) := Pfin(��S [ ��) and �S;�(L) := LNow G = (S;�; p; s0) is a RLG-grammar if p :S ! Pfin(��S [ ��). Eah p(s) determines a�nite set of right linear rules with left side si.e. G is a right linear grammar. Thus we haveX8G = RLG. { Similarly, a word logi for thelass of linear grammars ould be de�ned.Remark: To �t the lass of linear indexedgrammars of Gazdar (1985) into this set up theset S � I� for an index set I would have to beused as set of nonterminals. However, this setwill be in�nite in general. Admitting in�nitesets of nonterminals in a grammar any languageL ould be generated by a trivial ontextfreegrammar. To see this introdue an assoiatednonterminal for eah word in L. In a later se-tion we shall disuss a di�erent approah whihovers examples like the linear indexed gram-mars.2.3 Closure propertiesClosure properties of the lasses of languageswill serve as an example how results an beextended to generalized ontextfree grammars.The following property of a word logi X =(X; �) is satis�ed in many examples and is veryuseful in proving losure properties of the lassXG of grammars and the lass XL of languages.De�nition 3 The word logi (X; �) is (weakly)funtorial if for eah (injetive) map f : V1 !V2 with �nite sets V1,V2 there exists X(f) :X(V1) ! X(V2) satisfying the following on-ditions:1. �V2X(f) = P (f�)�V1 .X(V1) X(f)�! X(V2)# �V1 # �V2P (V �1 ) P (f�)�! P (V �2 )2. X(gf) = X(g)X(f) for f : V1 ! V2; g :V2 ! V3 and X(idV ) = idX(V )Thus X is a funtor on �nite sets and � isa natural transformation between X and thefuntor P ((�)�). In the list of examples above

the word logis X1 - X5, X8 are funtorial, X6 isweakly funtorial whereas in example X7 =MLthe positivity of the formulas seems to be ne-essary.The funtoriality of a word logi X ensuresthat we may assume without loss of generalitythat the set of nonterminals of an X -grammaris disjoint to a given set. This follows by thelemma below.Lemma 1 Let f : S ! T be a map and G =(S;�; p; s0), H = (T;�; q; t0) be X -grammarsfor a word logi X = (X; �) suh that H isindued by G via f i.e. we have X(f)p = qfand f(s0) = t0. Whenever X is funtorialor X is weakly funtorial and f is injetivethen Lang(G) = Lang(H) and f(Trees(G)) =Trees(H).The proof is based on a hain of equivalenes:f(s) !H v i� v 2 �T qf(s) i� v 2 P (f�)�Sp(s)i� there exists u with f�(u) = v and u 2 �Sp(s)i� there exists u with f�(u) = v and s!G u.The lemma an be used to show that the fun-toriality of the word logi ensures the losureunder substitution of the assoiated lass of lan-guages.Proposition 2 For any word logi X = (X; �)whih is weakly funtorial the lasses XL andXT are losed under substitution i.e. for G =(S;�; p; s0) 2 XG and Ga = (Sa;�a; pa; s0;a) 2XG for a 2 � there exists Ĝ = (Ŝ; �̂; p; s0) 2XG with Ŝ ' S [ Sa2� Sa and �̂ = Sa2� �asuh that:Lang(Ĝ) = Lang(G) [a=Lang(Ga) : a 2 �℄Trees(Ĝ) = Trees(G) [a=Trees(Ga) : a 2 �℄By lemma 1 we may assume that the sets Sand all the Sa are disjoint and thus Ŝ := S [Sa2� Sa is a disjoint union. The rule map q :Ŝ ! X(Ŝ [ �̂) is de�ned as follows. q jSa :=X(ja)pa where ja is the inlusion of Sa [ �a inŜ [ �̂. q jS := X(k)p where k : S [ � ! Ŝ [ �̂is determined by k(s) = s for s 2 S and k(a) =s0;a for a 2 �. Now the proof follows from theequivalene: s !Ĝ v i� there exist u and uafor a 2 � suh that v = u [a=ua℄, s !G u ands0;a !Ga ua for a 2 �.



As usual the result in proposition 2 gives riseto further losure properties of XL. The orol-lary below is given without proof.Corollary 3 Let X = (X; �) be a word logiwhih is weakly funtorial.1. If for v1; v2 2 V there exists x 2 X(V ) with�(x) = fv1; v2g then XL is losed underbinary unions.2. If for v1; v2 2 V there exists y 2 X(V )with �(y) = fv1v2g then XL is losed underonatenation.3. If for v1; v2 2 V there exist y; z 2 X(V )with �(y) = fv1v2g and �(z) = f�g thenXL is losed under Kleene iteration.Assume that X admits one letter singletonsi.e. for all V there exist dV : V ! X(V ) suhthat �V dV (v) = fvg for all v 2 V . Under thisassumption we may use in (1) the stronger as-sumption thatX admits binary unions. This re-quires that for all V and all x1; x2 2 X(V ) thereexists x 2 X(V ) with �V (x) = �V (x1) [ �V (x2).In the same manner we require in (2) resp. (3)that X admits onatenation resp. Kleene it-eration. For example the word logis X1 - X5satisfy these properties. - In a later setion weshall onsider word logis whih admit �nitaryunions.2.4 Translations and simulations:To ompare grammars for two di�erent wordlogis X = (X; �) and Y = (Y; �) we introduetranslations between the logis whih determinesimulations between the assoiated lasses ofgrammars.De�nition 4 F : X ! Y is a translation fromX to Y if for eah �nite set V there exists amap FV : X(V ) ! Y (V ) whih is ompatiblewith the interpretation maps i.e. �V = �V � FV .Thus we have for all x 2 X(V ):w j=Y FV (x) i� w j=X x (1). A translation F : X ! Y determines a sim-ulation F̂ : XG ! YG of the grammars in XGby grammars in YG as follows. For a gram-mar G = (S;�; p; s0) in XG the simulating

grammar F̂ (G) is given by (S;�; F̂ (p); s0) whereF̂ (p) := FS �p is the omposition of the rule mapp with the translation map FS .Saying that G is simulated by F̂ (G) is jus-ti�ed by the lemma below sine it states thatboth grammars have the same derivation rela-tion. Thus we may say that the grammars inXG an be simulated by the grammars in YG ifthere exists a translation F : X ! Y. This willbe denoted by XG � YG. Clearly, the simulata-bility relation � is a preorder sine a omposi-tion of translations is again a translation andthe identity is a translation.Lemma 4 Let F : X ! Y be a translation. Foreah grammar G 2 XG we have:1. !F̂ (G) = !Gi.e. the sets of ontextfree rules oinide.2. )F̂ (G) = )Gi.e. the derivation relations oinide.3. Trees(F̂ (G)) = Trees(G)i.e. G and F̂ (G) are strongly equivalent.4. Lang(F̂ (G)) = Lang(G)i.e. G and F̂ (G) are weakly equivalent.Making use of equation (1) statement (1) fol-lows by a hain of equivalenes: s !F̂ (G) w i�w j=Y F̂ (p)(s) i� w j=Y FS(p(s)) i� w j=X p(s)i� s!G w. (2) and (3) are a onsequene of (1)whereas (4) follows from (2). | The orollarybelow shows how the simulations an be used.Corollary 5 Let X ,Y be word logis.1. X � Y implies XT � YT and XL � YL.2. X � Y � X implies XT = YT and XL =YL.3. X � QCF4. CF � X implies CFL � XL.5. X � WCF implies XL � WCFL = CFL.(2) and (3) in lemma 4 yield (1) and hene(2). (1) is used to prove (3) - (5). To prove (3)one uses the interpretation map as translation.(5) makes use of the equation WCFL = CFLwhih was mentioned in the disussion of theexample WCF above.



Proposition 6 The lasses of general-ized ontextfree grammars mentioned aboveare related by the following translations:RL ! IDLP# . #CF ! ML# . #ECF ! WCF# #ST ! QCFThe translations ST ! QCF and WCF !QCF follow by (3) in orollary 5, the maxi-mality of QCF . The translations RL ! CF ,CF ! ECF , RL ! IDLP, IDLP ! CF ,CF ! ML and hene IDLP ! ML are obvi-ous. The translation ECF ! WCF uses the fatthat regular languages are ontextfree. To getthe translation ECF ! ST one notes that state-transition automata whose transition funtiondo not depend on the word generated so farmay be viewed as nondeterministi automata.Adding the further restrition that the asso-iated transition graph is ayli one obtainsagain the translation CF ! ECF . To on-strut the translation ML ! ECF whih inturn yields ML ! WCF one makes use of afuntion fa on regular expressions whih satis-�es: L(r) = a � L(fa(r)). It splits a letter a o�at the left end of a word.Corollary 7 The assoiated lassesof languages are related as follows:RLL � IDLPL\ j \ jCFL = MLLk kECFL = WCFL\ j \ jST L = QCFLThis follows from proposition 6 by an applia-tion of 5 and the equations CFL =WCFL andST L = QCFL mentioned earlier disussing theexamples X3 = WCF and X5 = ST . { In thisontext it might be useful to have a notion ofweak simulation whih yields weakly equivalentgrammars. Possibly this might be obtained bythe use of weak translations whih are basedon translation maps of the form FS : X(S) !Y (f(S)).

It should be mentioned that it is fairly easy to�nd onditions on a word logi X whih guar-antee losure properties of the lass XL of lan-guages. Let X0 be the word logi determinedby X0(S) = P=1(S). Then XL is losed un-der unions whenever X0 � X . Similarly, XL islosed under onatenations whenever X0 � Xand eah set X(S) admits onatenations.3 Generalized tree automataIt is well known that the lass of trees whihare reognizable by a ontextfree grammar oin-ides with the lass of trees whih are reogniz-able by a tree automaton (f. (Thather, 1967)).It remains to be seen whether this equivalenemay be lifted to grammars over a word logi.To do this we have to generalize the notion of atree automaton to an arbitrary word logi.As a starting point we shall use the followingvariant of the de�nition of a nondeterministitop-down tree automaton.De�nition 5 A = (Q;S;�; Æ; q0; s0) is a (non-deterministi top-down) tree automaton if itsatis�es:1. Q is �nite set of states and q0 an initialstate in Q2. S is �nite set of nonterminal symbols ands0 an initial symbol in S3. Æ : S �Q! Pfin(Q�) is a transition fun-tion whih assoiates with eah pair (s; q) a�nite set of possible lists (=words) of su-essor states or terminal symbols.3.1 Tree automata over a word logiLet X = (X; �) be a word logi. Replaing inthe above de�nition CF by X we obtain X -treeautomata as the appropriate generalization.De�nition 6 A = (Q;S;�; Æ; q0; s0) is a (non-deterministi top-down) X -tree automaton if itsatis�es:1. Q is a �nite set of states and q0 is an initialstate in Q2. S is a �nite set of nonterminal symbols ands0 is an initial symbol in S3. Æ : S � Q ! X(Q) is a transition fun-tion whih assoiates with eah pair (s; q)



by means of �Q : X(Q) ! P (Q�) a set ofpossible lists (=words) of suessor statesor terminal symbols.XTA(Q;S;�) denotes the lass of X -tree au-tomata with state set Q and symbols S [ �.In the ase X = CF we get bak the de�ni-tion above. { The XTA-reognizable trees (T; I)in Trees(S;�) are de�ned with the help of runtrees (T;K) in Trees(Q;�) as follows.De�nition 7 A tree (T;K) in Trees(Q;�) isalled a run for the tree (T; I) 2 Trees(S;�)over the X -tree automaton A whenever:1. If w 2 T with su(w) = [w1; : : : ; wk℄ ; k � 1then K(w1)�: : :�K(wk) 2 �Q�Æ(I(w);K(w))2. If w 2 T with su(w) = [ ℄then K(w) = I(w) 2 � [ f�g.Now a tree (T; I) in Trees(S;�) is saidto be XTA- reognized by an X -tree automa-ton A if there exists a run (T;K) for (T; I)over A. Trees(A)) denotes the lass of XTA-reognizable trees for A. { In the ase X = CFwe get bak the usual de�nition of reognizabletrees.3.2 The orrespondene resultUnder ertain mild onditions on the word logiX = (X; �) we get the desired orrespondeneresult. It relates derivation trees (=reognizabletrees) of an X -grammar with reognizable treesof an assoiated X -tree automaton. A wordlogi X is said to be �nitary if for eah surje-tive map f : S1 ! S2 with S1; S2 �nite the mapX(f) has �nite preimages i.e. the set X(f)�1(x)is �nite for eah x 2 X(S2). All the examples ofword logis mentioned above exept X2 = QCFand X5 = STA are �nitary.Theorem 8 Let X = (X; �) be a word logiwhih is funtorial and �nitary and admits �ni-tary unions. Then the following holds:1. There exists a mapxta : XG(S;�)! XTA(S; S;�)whih preserves reognizable trees.More preisely, for eah G 2 XG wehave: (T; I) 2 Trees(G) implies (T; I) 2Trees(xta(G)), where I is a run for (T; I).Hene (T; I) is XTA-reognizable whenever(T; I) is XG-reognizable.

2. There exists a mapxg : XTA(Q;S;�)! XG(Q� S;�)whih preserves reognizable trees up to aprojetion of the label sets.More preisely, for eah A 2 XTA we have:(T; I) 2 Trees(A) with a run (T;K) im-plies (T;K; I) 2 Trees(xg(A)). Note that(T; I) is obtained from (T;K; I) by the pro-jetion onto (S [ �). Hene (T; I) is XG-reognizable up to a projetion whenever(T; I) is XTA-reognizable.Corollary 9 Let X = (X; �) be a word logias in theorem 8. Then we have the followingresult: A tree is a projetion of a reognizabletree for an X -grammar i� it is a projetion of areognizable tree for an X -tree automaton.The map xta for (1) is obtained as follows.xta(S;�; p; s0) is de�ned as (S; S;�; Æ; s0; s0)where Æ(s; s) := p(s) and Æ(s; s0) := 0X(S) fors 6= s0. The desired equivalene makes use ofp(I(w)) = Æ(I(w); I(w)).To get the map xg we assoiate with an X -tree automaton A = (Q;S;�; Æ; q0; s0) the X -tree automaton Â := (Q�S; S;�; Æ̂); (q0; s0); s0)where Æ̂((q; s); s) := S(y : X(pr1)(y) =Æ(q; s)) and Æ̂((q; s); s0) := 0X(Q�S). Hene Æ̂is uniqely determined by the map � : Q �S ! X(Q � S) with �((q; s)) = Æ̂((q; s); s) =S(y : X(pr1)(y) = Æ(q; s)). Now we obtainxg(Q;S;�; Æ; q0; s0) := (Q � S;�; �; (q0; s0)).Making use of the preordering on X -expressionsintrodued earlier the required equivalene anbe proved.4 Contextfree grammars withontrolled rulesTo deal with lasses of grammars like indexedgrammars or linear indexed grammars we needanother type of generalization of ontextfreegrammars. In order to ontrol the derivationin the vertial dimension one introdues addi-tional values for the nonterminals.We replae words by attributed words wherethe nonterminals arry values from a givenstruture A = (A; (fi : i = 1; : : : ; l); (rj :j = 1; : : : ;m); a0; Af ) where a0 is an initialvalue and Af is a set of �nal values. Now



a set of attributed nonterminals is a set ofthe form S � A and we obtain words of theform u1s1[a1℄u2 : : : uksk[ak℄uk+1 in ((S � A) [�)� where u1; : : : uk+1 2 ��, s1; : : : ; sk 2 Sand a1; : : : ; ak 2 A. Thus we have replaedWords(S;�) = (S [ �)� by AWords(S;�) =Words(S �A;�).Likewise the ontextfree rules will be ex-tended by a ontrol ondition.De�nition 8 An A-ontrolled ontextfree ruleis of the form (r; ') where r = s !u1s1u2 : : : ukskuk+1 is a ontextfree rule and theontrol ondition ' is a onjuntion of atomiformulas over A with fx; x1; : : : ; xkg as freevariables. If r is a terminal rule i.e. k = 0 thenwe require that ' is the formula x = a0.Typial ontrol onditions will be onnetionformulas rj(x; x1; : : : ; xk) , synthesizing formu-las fi(x1; : : : ; xk) = x or inheritane formulasV1�i�k xi = fi(x).The appliation of the rule (r; ') to the at-tributed word vs[a℄w yields the attributed wordvu1s1[a1℄u2 : : : sk[ak℄uk+1w whenever the loalondition '(a; a1; : : : ; ak) holds in A. In the def-inition of a derivation tree we require in additionat the leaves the boundary onditions imposedby the terminal rules and that the value at theroot is the initial value a0.4.1 Linear ontrol onditionsA ontrol ondition is said to be linear if theondition involves only the value at the nodeand at a spei�ed suessor node usually alledthe head. More preisely, an A-ontrolled on-textfree rule (r; ') is linear if the ontrol on-dition ' is of the form  (x; xi) ^ Vj 6=i xj = a0.Thus the nonterminal si in r is speifed as head.This shows that the underlying grammars of lin-early A-ontrolled grammars should be onsid-ered as headed ontextfree grammars.The grammars in HCFG are de�ned as fol-lows. A headed word is either a word u1su2where a unique nonterminal s has been spei-�ed as head or it is a terminal word w. ThusHWords(S;�) := ((S[�)��S�(S[�)�)[��is the set of headed words over S.Consequently we obtain headed ontextfreerules if we replae words by headed words inthe right side of a rule. Hene G is a headedontextfree grammar if its rules are of the form

s ! u1s0u2 or s ! w where w 2 ��. The headintrodues a speial suessor in the loal tree,the projetion onto the head. Hene the deriva-tion trees of a HCFG will be trees with proje-tion lines i.e. trees in HTrees(S;�). { Belowwe shall see that the lass of headed ontextfreegrammars itself may be viewed as a lass of lin-early B-ontrolled grammars where B is the setof truthvalues.4.2 Examples of ontrolled ontextfreegrammars(1) Headed ontextfree grammars:Let B = (B; (�k : k 2 N); 0; f1g) be the headstruture where B = f0; 1g and �k is the k-fold exlusive or. The ontrol ondition for k is�k(x1; : : : xk) = 1. In this ase the grammarsare basially headed ontextfree grammars. Thevalue 1 selets the head nonterminal and a pro-jetion line starts with the value 0 and laternodes have the value 1.(2) Indexed grammars:Let A = (I�; (popi : i 2 I); nop; (pushi : i 2I); �; f�g) be the struture of staks over I .The ontrol onditions for k nonterminals areV1�j�k popi(x) = xj resp. V1�j�k x = xj resp.V1�j�k pushi(x) = xj. In this ase the A-ontrolled ontextfree grammars are the indexedgrammars of Aho (1968).(3) Distributed indexed grammars:Let Ad = (I�; (k : k 2 N); �; f�g) be thestruture of distributed staks over I wherek(u1; : : : ; uk) = u1 : : : uk is the k-fold on-atenation. The ontrol ondition for k non-terminals is k(x1; : : : ; xk) = x. In this asethe A-ontrolled ontextfree grammars are thedistributed indexed grammars of Staudaher(1994).(4) Unary de�nite lause grammars:To obtain de�nite lause grammars ((Pereiraand Warren, 1980)) we onsider the followingvalue struture. It onsists of a set of terms to-gether with a relation for term mathing for se-quenes of terms. In this manner we obtain thesublass of unary de�nite lause grammars i.e.those grammars where all nonterminals (=pred-iates) have exatly one argument. The asewhere all operations are at most unary is relatedto indexed grammars (f. (Bertsh, 1994)).The next two examples will be linear.(5) Linear indexed grammars:Let A = (I�; (popi : i 2 I); nop; (pushi : i 2



I); �; f�g) be the struture of staks over I .The linear ontrol onditions are determined bypopi(x) = xj resp. x = xj resp. pushi(x) = xjwhere xj is the head suessor. In this asethe linearly A-ontrolled ontextfree grammarsare just the linear indexed grammars of Gazdar(1985).(6) Headed ontextfree grammars witha ontextfree grammar as a ontrol set:Let H = (�; T;Q; t0) 2 CFG(�; T ) be givenas ontrolling grammar. The assoiated valuestruture AH is de�ned as follows. ((T [�)�; (ldeld : d 2 �); (appq : q 2 Q); �; f�g)where the relation ldeld removes an element dat the left end i.e. (u1; u2) 2 ldeld if u1 = du2and the relation appt!w applies the rule t! wi.e. (u1; u2) 2 appt!w if u1 = v1tv2; u2 = v1wv2The linear ontrol onditions are determinedby ldeld(x; xj) resp. appq(x; xj) where xj is thehead suessor. In this ase the linearly AH-ontrolled ontextfree grammars are ontrolledontextfree grammars with H as ontrollinggrammar (f. (Weir, 1992)). They onstitutethe seond step of the hierarhy introdued byWeir. Further steps in the hierahy will requiremore omplex value strutures.Remark: To obtain arbitrary de�nite lausegrammars where we may have nonterminalswith �nitely many arguments we have to extendour approah to the ase with several attributesor sorts. This would mean that we have a valuestruture for eah sort. { Similar remarks ap-ply to the lass of attribute grammars (Knuth(1968)).5 SummaryAs a means to study more general lasses ofgrammars and their lasses of trees we havedeveloped a uniform approah to generalizedontextfree grammars. We have presented twogeneralization of the lass of ontextfree gram-mars whih over a wide range of examples.Both generalizations yield grammars with aontextfree ore sine they preserve the do-main of loality of ontextfree grammars. Asa �rst extension we have onsidered generalizedf rules. Here the right sides of the rules for agiven nonterminal on the left side are de�nedimpliitly by means of expressions whih areinterpreted by sets of words. This led to X -grammars for a word logi X .
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