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Abstract

In this paper a new similarity-based learning al-
gorithm, inspired by string edit-distance (Wag-
ner and Fischer, 1974), is applied to the problem
of bootstrapping structure from scratch. The
algorithm takes a corpus of unannotated sen-
tences as input and returns a corpus of brack-
eted sentences. The method works on pairs
of unstructured sentences or sentences partially
bracketed by the algorithm that have one or
more words in common. It finds parts of sen-
tences that are interchangeable (i.e. the parts
of the sentences that are different in both sen-
tences). These parts are taken as possible con-
stituents of the same type. While this corre-
sponds to the basic bootstrapping step of the al-
gorithm, further structure may be learned from
comparison with other (similar) sentences.

We used this method for bootstrapping struc-
ture from the flat sentences of the Penn Tree-
bank ATIS corpus, and compared the resulting
structured sentences to the structured sentences
in the ATIS corpus. Similarly, the algorithm
was tested on the OVIS corpus. We obtained
86.04 % non-crossing brackets precision on the
ATIS corpus and 89.39 % non-crossing brackets
precision on the OVIS corpus.

1 Introduction

People seem to learn syntactic structure without
great difficulty. Unfortunately, it is difficult to
model this process and therefore, it is difficult
to make a computer learn structure.

Instead of actually modeling the human pro-
cess of language learning, we propose a gram-
mar learning algorithm and apply it to a corpus
of natural language sentences. The algorithm
should assign structure to the sentences which
is similar to the structure people give to the
sentences.

The algorithm consists of two phases. The
first phase, alignment learning, builds a large set
of possible constituents by aligning sentences.
The second phase, which is called bracket se-
lection, selects the best constituents from this
set.

The rest of the paper is organized as fol-
lows. We will start out by describing some pre-
vious work in grammar induction. This is fol-
lowed by a detailed description of the ABL al-
gorithm, where three different implementations
of ABL will be described, ABL:incr, ABL:leaf
and ABL:branch. We will then discuss some of
the properties of the ABL algorithms. First, we
claim the ABL algorithms can generate recur-
sive structures and then discuss problems with
PP attachment. After that, some results of the
algorithms applied to the ATIS corpus (Marcus
et al., 1993) and to the OVIS corpus (Bonnema
et al., 1997) will be presented, followed by a
description of future research on the ABL algo-
rithm.

2 Previous Work

This section contains a brief overview of previ-
ous work in grammar acquisition systems. Some
differences between supervised and unsuper-
vised acquisition methods will be discussed, fol-
lowed by a discussion of several different meth-
ods. We then relate ABL to some of these meth-
ods.

2.1 Supervised versus Unsupervised

Language learning algorithms can be roughly
divided into two groups, supervised and un-
supervised learning algorithms based on the
amount of information about the language they
use. All learning algorithms use a teacher that
gives examples of (unstructured) sentences in
the language. In addition, some algorithms also
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use a critic. A critic may be asked if a cer-
tain sentence (possibly including structure) is a
valid sentence in the language. The algorithm
can use a critic to validate hypotheses about the
language.1 Supervised language learning meth-
ods use a teacher and a critic, whereas the unsu-
pervised methods only use a teacher. (Powers,
1997)

Supervised language learning methods typi-
cally generate better results. These methods
can tune their output, since they receive knowl-
edge of the structure of the language (by initial-
isation or querying a critic). In contrast, unsu-
pervised language learning methods do not re-
ceive these structured sentences, so they do not
know at all what the output should look like.

However, it is worthwhile to investigate unsu-
pervised language learning methods, since “the
costs of annotation are prohibitively time and
expertise intensive, and the resulting corpora
may be too susceptible to restriction to a par-
ticular domain, application, or genre”. (Kehler
and Stolcke, 1999)

2.2 Language Learning Methods

In this section a short overview of several super-
vised and unsupervised language learning meth-
ods will be given. However, the focus will be
on on unsupervised language learning methods,
since we are interested in what results can be
achieved using as little information as possible.

There have been many different approaches
to language learning, only some of the different
systems will be described here briefly. This sec-
tion is merely meant to relate the ABL system
to other language learning methods; we do not
claim to give a complete overview of this field.

A lot of recent language learning methods
are based on probabilistic or counting theo-
ries. An example of this type of method is
Memory-Based Learning (MBL) which keeps
track of the distribution of contexts of words
and assigns word types based on that informa-
tion (Daelemans, 1995). Magerman and Mar-
cus (1990) describe a system that can find con-
stituent boundaries using mutual information of
n-grams within sentences, while in (Finch and

1When an algorithm uses a treebank or structured
corpus to initialise, it is said to be supervised. The struc-
ture of the sentences in the corpus can be seen as the
critic.

Chater, 1992) and (Redington et al., 1998) mod-
els are proposed that use distributional informa-
tion to acquire syntactic categories.

Another type of language learning system
is based on the Minimum Description Length
(MDL) principle. These systems compress the
input corpus by finding the minimum descrip-
tion needed to express the corpus. The com-
pression results in a grammar that can describe
the corpus. Examples of these systems can be
found in (Grünwald, 1994) and (de Marcken,
1996).

Wolff (1982) describes a system that performs
a heuristic search while creating and merg-
ing symbols directed by an evaluation function.
Similarly, Cook et al. (1976) describe an algo-
rithm that uses a cost function to direct search
for a grammar. The grammar induction method
found in (Stolcke and Omohundro, 1994) merges
elements of models using a Bayesian framework.
Chen (1995) presents a Bayesian grammar in-
duction method, which is followed by a post-
pass using the inside-outside algorithm (Baker,
1979; Lari and Young, 1990), while Pereira and
Schabes (1992) apply the inside-outside algo-
rithm to a partially structured corpus.

The final system mentioned here is
Transformation-Based Learning (Brill, 1993),
which is also a supervised system. This
system differs from others in that it is a
non-probabilistic system that learns transfor-
mations to improve a naive parse (for example
a right branching parse).

2.3 ABL in relation to other Methods

ABL consists of two distinct phases, alignment
learning and bracket selection. Both phases
can be roughly compared to different language
learning methods.

The alignment learning step is a way of com-
pressing the corpus. Similar techniques can be
found in systems that are based on the MDL
principle (Grünwald, 1994). MDL systems com-
press the corpus by looking for the minimal de-
scription of the corpus. The MDL principle re-
sults in grouping reoccurring parts of sentences
yielding a reduction of the corpus. The align-
ment learning step finds constituents based on
the idea of interchangeability, which effectively
compresses the corpus.

The bracket selection phase selects con-
stituents based on the probability of the pos-
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sible constituents. This is in some way similar
to systems that use distributional information
to select the most probable syntactic types as
in (Finch and Chater, 1992) or (Redington et
al., 1998). On the other hand, ABL assigns a
probability to the different constituents, which
is similar to an SCFG (Baker, 1979).

3 Algorithm

In this section we describe an unsupervised
grammar learning algorithm that learns using a
corpus of plain sentences, so neither pre-tagged
nor pre-labelled or bracketed sentences are used.
The output of the algorithm is a labelled, brack-
eted version of the input corpus. Although
the algorithm does not generate a (context-free)
grammar, it is trivial to deduce one from the
output treebank.

The algorithm consists of two distinct phases:
alignment learning and bracket selection. Align-
ment learning finds possible constituents by
aligning sentences from the corpus. The bracket
selection phase selects constituents from the
possibly overlapping constituents that were
found in the alignment learning phase.

Both phases will be described in more detail
in the next two sections.

3.1 Alignment Learning

The alignment learning phase is based on Har-
ris’s idea of interchangeability (Harris, 1951)
that states that constituents of the same type
can be replaced by each other. This means that
for example in the sentence What is a dual car-
rier the noun phrase a dual carrier may be
replaced by another noun phrase.2 Replacing
the noun phrase with the payload of an African
Swallow yields the sentences What is the pay-
load of an African Swallow, which is another
well-formed sentence.

ABL uses the replacement feature to find con-
stituents by reversing the idea. Instead of re-
placing parts of sentences that have the same
type, this idea is used to find constituents of
the same type by looking for parts of sentences
that can be replaced by each other. In the ex-
ample this means the algorithm looks for parts
as a dual carrier and the payload of an African

2Most example sentences used in this paper can be
found in the ATIS corpus.

Swallow, which then are remembered as possi-
ble constituents.

Finding replaceable parts of sentences is done
by finding parts that are identical in two sen-
tences and parts that are distinct. The distinct
parts of the sentences are parts that can be in-
terchanged. See for example the sentences in
figure 1. The part What is is identical in both
sentences, while the noun phrases are distinct
parts. ABL now assumes the distinct parts of
the sentences are constituents of the same type.

What is a dual carrier
What is the payload of an African Swallow

What is (a dual carrier)X1

What is (the payload of an African Swallow)X1

Figure 1: Bootstrapping structure

An instance of the string edit distance algo-
rithm (Wagner and Fischer, 1974) that finds the
longest common subsequences in two sentences
is used. These longest common subsequences
are parts that are identical in both sentences.
The distinct parts of the sentences are exactly
these parts of the sentences that are not part
of the longest common subsequences. In fig-
ure 1, What is is the longest common subse-
quence (and the only one), while a dual carrier
and the payload of an African Swallow are the
remaining (distinct) parts of the sentences.

The distinct parts of the sentences, found
by the string edit distance algorithm, are then
grouped and labelled. Respective distinct parts
receive the same non-terminal. Since the al-
gorithm does not know any linguistically mo-
tivated names for the non-terminals, it assigns
names X1,X2, . . . to the different constituents.

More structure is learned when aligning more
than two sentences. Each new sentence is com-

For each sentence s1 in the corpus:
For every other sentence s2 in the corpus:

Align s1 to s2

Find the identical and distinct parts
between s1 and s2

Assign non-terminals to the constituents
(i.e. distinct parts of s1 and s2)

Figure 2: Alignment learning algorithm
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pared to all (partially structured) sentences in
the partially structured corpus. An overview of
the algorithm can be found in figure 2.

Sentences are always aligned without looking
at the structure that is already known; all newly
learned structure is added to the old structure,
which may yield overlapping constituents.

(Book Delta 128)X1
from Dallas to Boston

(Give me all flights)X1
from Dallas to Boston

Give me (all flights from Dallas to Boston)X2

Give me (information on reservations)X2

Figure 3: Overlapping constituents

In figure 3 two overlapping constituents are
learned on the sentence Give me all flights from
Dallas to Boston. Constituent X1 is learned
when aligning to the sentence Book Delta 128
from Dallas to Boston and the other constituent
(X2) is learned when aligning to the sentence
Give me information on reservations. The
bracket selection phase selects brackets until no
more overlapping brackets are found.

An unstructured sentence is sometimes
aligned to a partially structured sentence (which
was already in the partially structured corpus).
Aligning these sentences might yield a con-
stituent that was already present in the par-
tially structured sentence. The new constituent
in the unstructured sentence then receives the
same non-terminal as the constituent in the par-
tially structured sentence. An example of this
can be found in figure 4. Sentences 1 and 2 are
compared, resulting in sentences 3 and 4.

1 What does (AP57 restriction)X1
mean

2 What does aircraft code D8S mean
3 What does (AP57 restriction)X1

mean
4 What does (aircraft code D8S)X1

mean

Figure 4: Learning with a partially structured
sentence and an unstructured sentence

It may even be the case that two partially
structured sentences are aligned. This occurs
when a new sentence has been aligned to a sen-
tence (and has received some structure) and is
then aligned to another partially structured sen-
tence in memory. If this combination of sen-
tences yields a constituent with two distinct
non-terminals (a different one in each sentence),

the two non-terminals are merged. All occur-
rences of these non-terminals are updated in the
corpus. In figure 5 sentences 1 and 2 are com-
pared, resulting in sentences 3 and 4.

1 Explain the (meal code)X1

2 Explain the (restriction AP)X2

3 Explain the (meal code)X3

4 Explain the (restriction AP)X3

Figure 5: Learning with two partially struc-
tured sentences

Merging non-terminals (as shown in figure 4
reduce the number of different non-terminals.
By merging non-terminals, we assume that con-
stituents in a certain context can only have one
type. In section 6.3 we discuss the consequences
and propose a method that loosens this assump-
tion.

3.2 Bracket Selection

The alignment learning phase may generate un-
wanted overlapping constituents as can be seen
in figure 3. Since we assume the underly-
ing grammar of the corpus is context-free and
we want to know the most appropriate disam-
biguated structure of the sentences of the cor-
pus, overlapping constituents have to be elimi-
nated. The bracket selection phase does exactly
this.

Three different approaches to the selection of
constituents have been implemented. Note that
the selected constituents are kept (i.e. they are
not removed).

ABL:incr Assume the constituent learned ear-
lier is correct. This means that when new
constituents overlap with older ones, they
are ignored.

ABL:leaf Constituents are selected based on
their probability. The system computes
the probability of a constituent by count-
ing the number of times the sequence of
words in the constituent occurs as a con-
stituent, normalized by the total number
of constituents. The probability of a con-
stituent c can be computed as follows:

Pleaf (c) =
|c′ ∈ C : yield(c′) = yield(c)|

|C|

where C is the entire set of constituents.



ABL:branch This method is similar to the
ABL:leaf method. The probability of a
constituent is now computed by counting
the number of times the sequence of words
in a constituent together with its root non-
terminal occur, normalized by the num-
ber of constituents with that root non-
terminal:

Pbranch(c|root(c) = r) =

|c′ ∈ C : yield(c′) = yield(c) ∧ root(c′) = r|

|c′′ ∈ C : root(c′′) = r|

The ABL:incr method may be applied dur-
ing the alignment learning phase. When a con-
stituent is found that overlaps with an exist-
ing constituent, the new constituent will not be
stored. ABL:leaf and ABL:branch bracket se-
lection methods are applied after the alignment
learning phase, since more specific constituent
counts are available then.

The probabilistic methods, ABL:leaf and
ABL:branch, both compute the probability of
constituents. Since more than just two con-
stituents can overlap, the methods need to con-
sider the probability of all possible combina-
tions of constituents, which is the product of
the probabilities of the separate constituents as
in SCFGs (cf. (Booth, 1969)). Viterbi style al-
gorithm optimization (Viterbi, 1967) is used to
efficiently select the best combination of con-
stituents.

Computing the probability of a combina-
tion of constituents by taking the product of
the probabilities leads to a “thrashing” effect.
Since the product of two probabilities is al-
ways smaller than or equal to the two single
probabilities, the system has a preference to
single constituents over a combination of con-
stituents. Therefore, the geometric mean is
used to compute the probability of a combi-
nation of constituents instead (Caraballo and
Charniak, 1998).3 When more combinations of
constituents have the same probability, one is
chosen at random.

4 Discussion

3The geometric mean of a set of constituents

c1, . . . , cn is P (c1 ∧ . . . ∧ cn) = n

√
∏

n

i=1
P (ci)

1 The man saw the girl with his squinting eyes

2 The man saw the girl with the bikini

3 The man saw the girl with the binoculars

Figure 7: PP attachment

4.1 Recursion

All ABL algorithms generate recursive struc-
tures. Figure 6 shows some real examples of
recursive structures generated by the ABL sys-
tems compared to their structure in the ATIS
corpus.

In the first example ABL finds a recursive
structure, but there is no recursion in the origi-
nal sentence. The context of the constituents
is quite similar (both follow the word “on”).
The second example contains recursive struc-
tures that are very alike. The original cor-
pus contains two recursive noun phrases, while
the learned structure describes recursive noun
phrases without the determiner. The last ex-
ample contains recursive noun phrases with con-
junction. Again similar structures are found in
the learned and original corpora.

Intuitively, a recursive structure is formed
first by building the constituents that form the
structure of the recursion but with different root
non-terminals. Now the non-terminals need to
be merged. This happens when two partially
structured sentences are compared to each other
yielding a constituent that already existed in
both sentences with the non-terminals present
in the “recursive” structure (see figure 5). The
non-terminals are then merged, resulting in a
recursive structure.

4.2 PP attachment

Most unsupervised grammar learning systems
have difficulty regarding prepositional phrase
attachments. In figure 7 the first two sentences
seem similar, but the prepositional phrase with
his squinting eyes indicates the man saw the girl
using his eyes, while with the bikini determines
the girl to have the bikini, since it is difficult
to see using a bikini.4 On the other hand, the
third sentence in figure 7 is ambiguous.

4The phrase with his squinting eyes could also mean
that the girl has squinting eyes, just like the man, but
this reading is less likely.



learnedBook reservations for five from Dallas to Baltimore on (flight 314 on (May 12th)X15
)X15

originalBook reservations for five from Dallas to Baltimore on (flight 314)NP on (May 12th)NP

learnedWhat is the (name of the (airport in Boston)X18
)X18

originalWhat is (the name of (the airport in Boston)NP )NP

learnedExplain classes QW and (QX and (Y)X52
)X52

originalExplain classes ((QW)NP and (QX)NP and (Y)NP )NP

Figure 6: Recursion in the ATIS corpus

To solve the problem of PP attachment, sev-
eral types of information may be needed. The
PP attachment in the first sentence can be
solved using syntactic information only, since
his clearly indicates the man is looking. How-
ever, the second sentence can only be solved
using semantic information. Without knowing
that a bikini does not help enhancing sight, it is
difficult if not impossible to attach the preposi-
tional phrase to the correct constituent.

The third sentence shows that sometimes dis-
course information is needed to solve attach-
ment. The prepositional phrase with the binoc-
ulars should be attached to saw or the girl de-
pending on the who has the binoculars.

Since the ABL system builds structures based
on a context-free grammar and does not use
any other information than the input sentences,
ABL might seem unable to solve PP attach-
ments correctly. However, the bracket selection
phase might find a difference in distribution be-
tween the girl with his squinting eyes and the
girl with the bikini. This difference in distribu-
tion might resolve in the different PP attach-
ments.

5 Results

This section describes the results of apply-
ing the three ABL algorithms and two base-
line systems to the Penn Treebank ATIS (Air
Travel Information System) corpus (Marcus et
al., 1993) and to the OVIS corpus (Bonnema
et al., 1997).5 First the test environment is de-
scribed, followed by a discussion of the test re-
sults.

5.1 Test Environment

The three ABL algorithms, ABL:incr, ABL:leaf
and ABL:branch have been applied to the ATIS
and OVIS corpus. The ATIS corpus contains

5OVIS (Openbaar Vervoer Informatie Systeem)
stands for Public Transport Information System.

716 sentences and 11,777 constituents. The
larger OVIS corpus contains 10,000 sentences.
When single word sentences are removed, this
results in a corpus of 6,797 sentences containing
48,562 constituents.

The sentences of the corpora are stripped of
their structure. The resulting plain sentences
are used in the learning algorithms and the re-
sulting structured sentences are then compared
to the structure of the sentences in the original
corpora.

To be able to compare the results, we have
also computed the results of two baseline sys-
tems, a left-branching and a right-branching
system on both corpora.

The results of the ABL:incr system depend
on the order of the sentences in the corpus and
the two probabilistic ABL systems sometimes
choose constituents at random (i.e. when more
combinations of constituents have the same
probability). Therefore, the ABL:incr system is
applied to ten differently ordered versions of the
corpora. Likewise, we applied the probabilistic
ABL systems ten times to the corpora to ac-
count for the random selection of constituents.
The mean results are shown in table 1 and the
standard deviations are shown in brackets.

Three different metrics are used to compare
the results of the different algorithms:

NCBP Non-Crossing Brackets Precision: the
percentage of learned constituents that do
not overlap any constituents in the original
corpus.

NCBR Non-Crossing Brackets Recall: the
percentage of original constituents that do
not overlap any constituents in the learned
corpus.

ZCS Zero-Crossing Sentences: the percentage
of sentences that do not have any overlap-
ping constituents.



NCBP =

∑

i |NonLaBr(Oi)| − |Cross(NonLaBr(Oi), NonLaBr(Ti))|
∑

i |NonLaBr(Oi)|

NCBR =

∑

i |NonLaBr(Ti)| − |Cross(NonLaBr(Ti), NonLaBr(Oi))|
∑

i |NonLaBr(Ti)|

ZCS =

∑

i Cross(Oi, Ti) = 0

|TEST |

NonLaBr(T ) denotes the set of non-labelled brackets of the non-terminal nodes of T .
Cross(U, V ) denotes the subset of brackets from U that cross at least one bracket in V .
Oi represents a tree in the learned corpus.
Ti is a tree in TEST , the original corpus. (Sima’an, 1999)

Figure 8: Formulas of the different metrics

The formulas describing the metrics can be
found in figure 8.

5.2 Test Results

The results of applying the ABL algorithms and
the baseline systems on the ATIS and OVIS cor-
pora can be found in table 1. The ATIS corpus
is predominantly right branching as can be seen
in the results, while the OVIS corpus is right
branching to a lesser degree.

The ABL:branch method performs signifi-
cantly better on all metrics on both the ATIS
and OVIS corpora compared to the other ABL
methods. The only deviating ABL result is the
ZCS of the ABL:incr system in the OVIS cor-
pus.

It is interesting to see that the ABL:incr sys-
tem outperforms ABL:leaf. In the ABL:incr
system, incorrectly learned constituents will
never be corrected. The idea behind the prob-
abilistic methods (including ABL:leaf) is that
incorrect constituents will be corrected because
they will receive lower probabilities. Appar-
ently, the statistics used in the ABL:leaf method
do not provide enough information to make a
correct bracket selection, whereas ABL:branch
does.

The standard deviation of the results of the
ABL:incr system is quite large, which indicates
that the order of the sentences in the corpus is
important. On the other hand, selecting ran-
dom constituents (when multiple constituents
have the same probability) in the probabilistic

ABL systems yields less varying results. When
a more specific probabilistic method is used
(ABL:branch), the variance in results is almost
zero.

The right branching system outperforms ABL
systems on several metrics (the ABL:branch
method almost keeps up however). This could
be expected, since the ATIS is predominantly
right branching (the OVIS corpus to a lesser
degree). Therefore, the right branching sys-
tem should perform well. The ABL systems do
not have a directional branching method built-
in; furthermore, the ABL systems have no ad-
justable parameters that can be used to tune
the algorithms to the specific corpora. This
means that the right branching system does not
perform well on a corpus of a predominantly
left branching language (for example Japanese),
while we expect that ABL does.

It is difficult to compare the results of the
ABL model against other methods, since often
different corpora or metrics are used. The meth-
ods described by Pereira and Schabes (1992)
comes reasonably close to ours. The unsuper-
vised method learns structure on plain sentences
from the ATIS corpus resulting in 37.35 %
non-crossing brackets precision, while the un-
supervised ABL significantly outperforms this
method, reaching 86.04 % precision. Only their
supervised version results in a slightly higher
precision of 90.36 %.



Results ATIS corpus Results OVIS corpus

NCBP NCBR ZCS NCBP NCBR ZCS

left 32.60 76.82 1.12 51.23 73.17 25.22
right 82.70 92.91 38.83 75.85 86.66 48.08
ABL:incr 82.55 (0.80) 82.98 (0.78) 17.15 (1.17) 88.69 (1.11) 83.90 (1.61) 45.13 (4.12)
ABL:leaf 82.20 (0.30) 82.65 (0.29) 21.05 (0.76) 85.70 (0.01) 79.96 (0.02) 30.87 (0.07)
ABL:branch 86.04 (0.10) 87.11 (0.09) 29.01 (0.00) 89.39 (0.00) 84.90 (0.00) 42.05 (0.02)

Table 1: Results ATIS and OVIS corpora

6 Future Work

Although the overall result of ABL algorithm is
slightly disappointing, some of the results of the
different ABL algorithms are encouraging. We
expect future extensions of the ABL system to
improve performance.

This section contains some future extensions
to the ABL implementations described in this
paper. These extensions solve certain problems
the current ABL systems have. First, we take
a look at different alignment schemes, that may
be used as an alternative to the string edit dis-
tance algorithm. Then an alternative proba-
bilistic model for bracket selection is considered.
Finally, we discuss two methods that generate
more possible constituents by adding context or
weakening exact match.

6.1 Different Alignment Schemes

The edit distance algorithm that is used to
find identical parts in sentences sometimes
finds alignments that generate unintended con-
stituents. If we consider the sentences 1 and 2 in
figure 9, the edit distance aligns these sentences
as in sentences 3 and 4. Unfortunately, the
alignment in sentences 3 and 4 generate unin-
tended constituents. The most preferred align-
ment is shown in sentences 7 and 8, since San
Francisco and Dallas are grouped and receive
the same type.

This problem occurs every time the algorithm
aligns words that are “too far apart”. The rel-
ative distance between the two San Franciscos
in the two sentences is much larger than the
relative distance between the word to in both
sentences.

There are two possible solutions to this prob-
lem. The first solution is to change the cost
function of the edit distance algorithm to let it

1 from San Francisco to Dallas
2 from Dallas to San Francisco

3 from ()X1
San Francisco (to Dallas)X2

4 from (Dallas to)X1
San Francisco ()X2

5 from (San Francisco to)X3
Dallas ()X4

6 from ()X3
Dallas (to San Francisco)X4

7 from (San Francisco)X5
to (Dallas)X6

8 from (Dallas)X5
to (San Francisco)X6

Figure 9: Unintended constituents

select the better alignment. Another solution is
to simply generate all possible alignments (us-
ing a completely different alignment algorithm)
and let the bracket selection phase of the algo-
rithm select the best alignment.

A better cost function should be biased to-
wards alignments with a small relative distance.
This can be accomplished by letting the cost
function return a high cost when the difference
of the relative offsets of the words is large. The
relative distance between the two San Fran-
ciscos in sentences 3 and 4 in figure 9 is larger
compared to the relative distance between the
two tos in sentences 7 and 8. Therefore the total
edit cost of sentences 7 and 8 will be less than
the edit cost of sentences 3 and 4 or sentences 5
and 6.

When all possible alignments are generated,
there is a large probability the intended align-
ment will also be found. Unfortunately, it is not
known which of the possible alignments is the
intended. The bracket selection phase should
select the best constituents from all possible
constituents that are generated by the align-
ment learning phase. When the probabilistic
bracket selection methods are used, we just have
to assume that the intended alignment gen-



erates more probable constituents, or equiva-
lently that the intended alignment contains con-
stituents that occur more often in the corpus
than the unintended constituents.

6.2 Alternative Probabilistic Models

The results of the application of the algorithm
on the ATIS corpus show that the probabilistic
methods generate less fluctuating results (i.e.
they have a smaller standard deviation) than
the non-probabilistic method. The results of the
ABL:branch method show less deviation than
the results of the ABL:leaf method. Further-
more, the ABL:branch method generates the
best results. These results indicate that a more
specific probabilistic method works better in
bracket selection.

As future research, a DOP-like probabilistic
method (Bod, 1998) of bracket selection will be
implemented. In this approach, all possible con-
stituents are broken into fragments (cf. elemen-
tary subtrees in DOP). The probability of such
a fragment f is:

P (f |root(f) = r) =
|f |

∑

f ′:root(f ′)=r |f
′|

When combining these fragments, the struc-
ture of constituent c can be generated. This
can be seen as a derivation of the structure of
the constituent. The probability of a derivation
f1 ◦ . . . ◦ fn is:

P (f1 ◦ . . . ◦ fn) =
∏

i

P (fi)

Usually, there is more than one way of deriving
the structure of the constituent. The probabil-
ity of the constituent is now the combination of
all derivations that yield the structure of c:

P (c) =
∑

d derives c

P (d)

The probabilistic model of DOP does not only
use the counts of terminals or non-terminals
like in the ABL:leaf and ABL:branch meth-
ods, but also uses the internal structure of con-
stituents. This yields a much more specific
stochastic model.

The ABL:branch bracket selection method is
comparable to the probabilistic model of SCFGs
(cf. (Booth, 1969)), where probabilities of

context-free grammar rules (terminals and their
root non-terminal) are used. Since DOP clearly
outperforms SCFGs (as shown in (Bod, 1995)),
a DOP model in bracket selection is expected
to increase performance.

6.3 Adding Context

Some problematic cases exist where ABL might
seem unable to learn the correct syntactic type.
Consider sentences as in figure 10. The ABL
algorithm finds that morning and nonstop are
of the same type, since the rest of the two sen-
tences is identical. However, morning is tagged
as NN (a noun) and nonstop as JJ (an adjec-
tive).

Show me the (morning)X1
flights

Show me the (nonstop)X1
flights

Figure 10: Inconsistent syntactic types

On the other hand, one might argue these
words are of the same type, exactly because
they occur in the same context. Both words
might be seen as some sort of adjective phrase.

This is a difference between syntactic type
and functional type. Morning and nonstop have
a different syntactic type, a noun and an ad-
jective respectively, but both modify the noun
flights, i.e. they have the same functional type.
ABL finds the functional type, while the words
are tagged according to their syntactic type.

Since the overall use of the two words differs
greatly, they occur in different contexts. Morn-
ing may in general occur in places where nouns
or noun phrases belong, while nonstop may not.
This discrepancy can be used to differentiate
between the two words. Instead of giving the
words only one type, they get two: one type
describes the context (i.e. the functional type),
which is the same for both words and the other
type describes the syntactic type, which is dif-
ferent for both words.

The distribution of syntactic types combined
with functional types can be used to find words
that belong to the same syntactic type. Morn-
ing and nonstop have the same functional type
but different syntactic types, since morning nor-
mally occurs in other contexts than nonstop.

Since the functional type should describe the
context of a constituent, merging of constituents
as in figure 4 and figure 5 should only ap-



ply to functional types. Merging of syntactic
types is only done when the distribution of the
constituents is similar enough. This effectively
loosens the assumption that constituents in a
certain context have the same (syntactic and
functional) type.

6.4 Weakening Exact Match

The algorithm described in this paper is unable
to learn any structure when two completely dif-
ferent sentences are compared. (This is not an
insurmountable problem, since other sentences
can be used to learn structure on the two sen-
tences.)

The algorithms described so far all try to
align using exactly matching words. Sometimes
this is a too strong demand; it is enough to
match similar words. Imagine sentences 1 and
2 in figure 11, which are completely distinct.
The standard ABL learning methods would con-
clude both are sentences, but no more structure
will be found. When the algorithm knows Book
and List are words of the same type (represent-
ing verbs), it would find the structures in sen-
tences 3 and 4 where the type X1 represents a
noun phrase.

1 Book Delta flight 430
2 List the cost for limousines

3 Book (Delta flight 430)X1

4 List (the cost for limousines)X1

Figure 11: Sentences without identical words

An obvious way of implementing this is by us-
ing equivalence classes. (See for example (Red-
ington et al., 1998).) Words that are closely
related are grouped together in the same class.
Words in the same equivalence class are similar
enough to be aligned.

A big advantage of equivalence classes is
that they can be learned in an unsupervised
way. Even when the algorithm is extended with
equivalence classes, it still does not need to be
initialised with structured training data.

7 Conclusion

In this paper a new language learning algorithm
based on aligning sentences is introduced. It
uses distinctions between sentences to find pos-
sible constituents during the alignment learn-
ing phase and selects the most probable con-

stituents afterwards in the bracket selection
phase.

Three instances of the algorithm have been
applied to the ATIS corpus (716 sentences)
and the OVIS corpus (6,797 sentences). The
alignment learning phase in the three systems
is the same, but the bracket selection phase
differs. ABL:incr assumes earlier constituents
learned are correct, ABL:leaf and ABL:branch
select brackets based on their probability. The
ABL:branch method, which uses the most spe-
cific stochastic model, performs best.

The ABL algorithm is an unsupervised gram-
mar learning and bootstrapping system. It uses
plain sentences to learn structure, so neither
pre-tagged, pre-labelled nor pre-bracketed sen-
tences are used. There is no need to train the
system on a structured corpus and the system
does not use any parameters that need to be
set.

Possible constituents are found by looking at
an unlimited context. The algorithm does not
use a fixed window size. Alignments (and thus
constituents) of arbitrarily large size may be
considered.

Furthermore, the ABL algorithm is able to
learn recursion from a finite set of sentences.
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