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Abstract

The aim of this paper is to highlight areas in which a computational linguistic model of
phonology can contribute to robustness in speech technology applications. We discuss a
computational linguistic model which uses finite state methodology and an event logic to
demonstrate how declarative descriptions of phonologicalconstraints can play a role in
speech recognition. The model employs statistics derived from a cognitive phonological
analysis of speech corpora. These statistics are used in ranking feature-based phonotac-
tic constraints for the purposes of constraint relaxation and output extrapolation in syllable
recognition. We present the model using a generic frameworkwhich we have developed
specifically for constructing and evaluating phonotactic constraint descriptions. We demon-
strate how new phonotactic constraint descriptions can be developed for the model and how
the ranking of these constraints is used to cater for underspecified representations thus mak-
ing the model more robust.

1 Introduction

While the success of commercial speech recognition applications has led to a more
widespread acceptance of spoken language interfaces, there still seems to be a
need for further investigation into the interactions between purely stochastic ap-
proaches and more linguistic-symbolic approaches to improve the robustness of
multilingual speech systems. The starting point for discussion in this paper is
a formally-specified computational linguistic model whichhas been enhanced by
statistical information from various sources to improve the robustness of the model
in dealing with the variability of speech and with ’noisy’ input data. Although this
paper will concentrate primarily on the extensions to the computational model, we
assume also that the fine-grained knowledge representations which are used by
the model can be applied to fine-tune stochastic models by providing important
underlying structural information (cf. also Jusek et al. (1994)).

The computational linguistic model is theTime Mapmodel (Carson-Berndsen
1998) which uses a description of the constraints on the permissible combinations
of sounds in a language (phonotactic constraints) to recognise well-formed sylla-
ble structures. The phonotactic constraints describe not only those words in the
system lexicon but can make predictions as to which words would be considered
well-formed by a native speaker of a language. In contrast tostochastic approaches
to speech recognition, theTime Mapmodel interprets the speech signal in terms
of overlap and precedence relations between properties. This allows variability of
speech utterances to be modelled by avoiding a segmentationof the speech signal
into strictly non-overlapping units. In order to be robust,the model must also cater
for imperfect or ’noisy’ input representations and therefore requires a mechanism
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by which the phonotactic constraints may be relaxed under certain conditions. This
paper discusses a methodology for constraint ranking whichprovides a principled
basis for constraint relaxation in the model, based not onlyon domain knowledge,
but also on cognitive factors which influence human production and interpretation.
When enhanced by such motivated constraint relaxation procedures, the compu-
tational linguistic model will be able to offer insights into how robustness can be
addressed in spoken language interface design.

In what follows, we will firstly sketch theTime Mapmodel within a generic de-
velopment environment which facilitates the extension of the technology to other
languages (in particular languages which have received little attention thus far) and
feature systems. Secondly, we will introduce the notions ofconstraint relaxation
and output extrapolation as assumed by the model and discusshow these mecha-
nisms are employed using a ranking of the constraints. We then discuss how the
constraint ranking is achieved based on a functional cognitive analysis of phono-
logical data. The paper concludes with some references to further developments
with respect to the extension of the language functionality.

2 LIPS and the Time Map Model

TheTime Mapmodel was proposed as a computational linguistic model for speech
recognition by Carson-Berndsen (1998) and has been tested within a speech recog-
nition architecture for German. The model has recently beenextended to English
and has been provided with an interface which allows users todefine and evalu-
ate phonotactic descriptions for other languages and sublanguages. This generic
development environment is known as the Language Independent Phonotactic Sys-
tem (Carson-Berndsen and Walsh 2000a). LIPS aims to providea diagnostic eval-
uation of the phonotactic descriptions in the context of speech recognition. That is
to say, rather than just providing recognition results, partial analyses can be output
indicating which constraints have or have not been satisfiedand where the parsing
breaks down. This, together with the constraint relaxationand output extrapola-
tion procedures to be discussed below, allows adequate parameters to be chosen
that define a compromise between maximal recognition rates and minimal analysis
overhead.

TheTime Mapmodel uses a finite-state network representation of the phono-
tactic constraints in a language, known as a phonotactic automaton, together with
axioms of event logic to interpret multilinear representations of speech utterances.
A subsection of a phonotactic automaton for CC- combinations in English syllable
onsets can be seen in figure 1 and an example multilinear representation of a sim-
ple single word utterance in figure 2. The transitions in the phonotactic automaton
define constraints on overlap relations which hold between features in a particular
phonotactic context (i.e. the structural position within the syllable domain).1

1The monadic symbols written on the arcs in figure 1 are purely mnemonic for the feature overlap
constraints they represent.
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Figure 1: Subsection of phonotactic automaton for English CC- onsets

The multilinear representation consists of phonological features which have
been constructed based on acoustic features extracted fromthe speech signal; each
feature has a start and end point in terms of signal time in milliseconds.

Figure 2: A multilinear representation of the utterancerequest

Phonological parsing in LIPS is guided by the phonotactic automaton which
provides top-down constraints on the interpretation of themultilinear representa-
tion, specifying which overlap and precedence relations are expected by the phono-
tactics. If the constraints are satisfied, the parser moves on to the next state in the
automaton. Each time a final state of the automaton is reached, a well-formed
syllable has been found which is then passed to a corpus lexicon. The lexicon
distinguishes between actual and potential syllables (cf.figure 3).
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Figure 3: Architecture of theTime Mapmodel

Since input to the phonological parser is, in general underspecified due to noise,
theTime Mapmodel must provide a means of minimising the discrepancy between
the expectations defined in the top-down constraints and theactual data by allow-
ing constraint relaxation and output extrapolation. Theseissues are the topic of the
next section.

3 Constraint Relaxation and Output Extrapolation

Carson-Berndsen (2000) identified areas in which statistical information can play
a role at different levels of granularity within theTime Mapmodel and discussed
these with respect to the overall architecture (cf. figure 3). The first area of in-
tegration concernsconstraint rankingwhich is the lowest level of granularity in
that the constraints refer to individual temporal relations. The second integration
area is in connection with thetransition weightingof the phonotactic automaton.
Transition weighting is a higher level of granularity in that the whole transition is
weighted rather than individual constraints. The third integration area for statistics
is the lexicon that refers to a yet higher level of granularity, namely the syllable.
This paper goes a stage further in that the first two levels of granularity, namely
constraint ranking and transition weighting, are addressed more fully and a means
of incorporating them into the model is proposed. We do not comment any further
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on lexicon issues here, however.
The notion of constraint ranking plays an important role in constraint relax-

ation and output extrapolation. Constraint ranking can be based on a number
of factors: linguistic-preferential, cognitive and statistical. Linguistic-preferential
refers to issues of markedness and defaults, cognitive refers to human processing
issues and statistical refers to data-oriented issues. Carson-Berndsen (2000) con-
centrated primarily on corpus-based ranking, but did statethat it is more likely that
a combination of these factors will be most appropriate for constraint ranking, and
for this reason LIPS allows parameters to be chosen and manipulated in order to
find the optimal balance between maximal recognition rates and minimal analysis
overhead (Carson-Berndsen and Walsh 2000b).

Constraint relaxation should be performed in the model if only someof the
constraints specified by the phonotactic automaton can be satisfied. As it stands,
this is a very arbitrary statement. However, when coupled with a constraint rank-
ing, it becomes a method for dealing with variability and underspecification in the
input representation. Constraint ranking is a data-oriented ordering of constraints
in particular phonotactic contexts. For example, constraints may be ranked with
respect to frequency, duration and percentage overlap of features in specific struc-
tural contexts. This information can either be specific to a single corpus or may be
based on data from several different corpora. Based on this ranking, constraint re-
laxation can be applied when an infrequent feature is encountered or a duration is
outside a given standard deviation. Furthermore, it is possible to combine this type
of ranking with cognitive factors in order to go beyond a corpus-dependent order-
ing (Carson-Berndsen and Joue 2000). This approach will be discussed further in
section 5 below. Constraint relaxation can then be regardedas a means by which
particular constraints on an input representation can be ignored. Output extrapola-
tion, on the other hand, is performed to further specify the output representation if
the constraints specify expectations that do not conflict with information found in
the input. The application of output extrapolation does notguarantee that the out-
put syllable structures are fully specified, however, only that they are well-formed.
Here again, a ranking of the constraints, which can participate in output extrapola-
tion, is required.

In LIPS, we distinguish between online processing where speech utterances
are interpreted using the constraints and constraint rankings, and offline process-
ing, which is concerned with finding the optimal parameters and constraint rank-
ings for the system (cf. figure 4). In what follows, the integration of constraint
rankings into the model are discussed. While the constraintrankings refer to the
lowest level of granularity, i.e. individually ranked constraints on temporal over-
lap relations between features, taken collectively these rankings also provide the
basis for the weighting in the phonotactic automaton through the use of transition
thresholds, i.e. the next level of granularity.
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Figure 4: Online and Offline Processing with LIPS

4 Incorporating Constraint Ranking into LIPS

Constraint ranking is incorporated into the phonotactic automaton during the of-
fline processing stage. A transition in the phonotactic automaton may have a num-
ber of constraints1 , 2 , 3 , : : :. Each of these are constraints on overlap and
precedence relations between features that are to be satisfied. For example,1 can
specify that featuref1 overlaps featuref2 ; this is represented as follows:2

(1) 1 = f1 Æ f2 .

Each constraint has a ranking value i.e.1 has a ranking valuev1 . Thus, a
transition that involves constraints on overlap relationsrepresenting a /g/ may look
like this:

Here the second constraint is ranked highest (i.e. largestv) and the third con-
straint ranked lowest. Rankings of constraints reflect influence of constraints on
previous transitions (left-context dependencies) and other effects such as syllable
position. In order for a transition to be traversed, the total values of constraints
satisfied by the speech input must exceed the threshold on thetransition. If a
threshold of 9 is assigned to this transition, for example, then2 is strengthened
2TheÆ symbol indicates the overlap relation
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which has the effect of enhancing the constraint: it must nowbe satisfied in order
for the transition to be taken. If the threshold is low, it allows for relaxation of
one or more of the constraints on the speech input representation. Adjusting the
threshold values so that not all constraints need be satisfied in order to traverse the
transition, copes with underspecification in the input representation. The thresh-
old is a parameter of the automaton transition that can depend on speech variables
such as rate or register. Ultimately the phonotactic automaton may be able to learn
to adjust rankings of constraints and thresholds through training.

Given the input representation of the speech utterance and phonotactic au-
tomaton, there may potentially be no best transition from the current node in the
automaton. This ambiguity may arise because the input speech does not satisfy
enough constraints on all possible transitions from the current node to provide
enough weight to traverse any of the transitions. If the speech input does not sat-
isfy anyconstraints on the possible current transitions, then although parsing fails,
the diagnostic evaluation procedure of LIPS allows partialanalyses which indicate
whether output extrapolation at the level of the transitionshould be undertaken . If
some constraints are satisfied, a further constraint relaxation is done by consider-
ing right context constraints.

Right-context information can either contribute as immediate transition re-
solversor to diagnostically rankthe hypothesis space of the phonotactic automa-
ton. In either case, right-context dependency in the proposed model requires a set
of constraint variation tendenciesbetween the sets of constraints on each possible
transition pair.3 In a sense, these tendencies indicate what could be missing in
underspecified speech input or what processes could have occurred in the speech
input to cause a change from the intended speech and are used for output extrapo-
lation. Weights associated with each constraint variationtendency allows different
constraints to be relaxed to different degrees. Although the weights on these ten-
dencies can also be used collectively to adjust the threshold of the transitions in
question, we favour adjusting values on individual constraints as it provides finer
tuning and finer distinctions of the influence of different constraints.

Each constraint variation tendency has the basic form

(2) pot(Ci ) � pot(Cj )) Ck � C l ; w
where� pot(Ci ) is a potential constraint (or set of constraints) on a given transition,� pot(Cj ) is a potential constraint (or set of constraints) on a following tran-

sition,� Ck is a constraint or a set of constraints on the given transition that was
actually satisfied by the speech input,� C l is a constraint or a set of constraints on a following transition that is
satisfied by the speech input, and

3For now, right context is considered as the next possible single transition from the current transition.
Thus the constraint variation tendencies relate the constraints on pairs of transitions.
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The tendency can be read in several ways: when the satisfied constraintsCk on
transitiont1 precede the satisfied constraintsC l on a following transitiont2 , then
there is aw probability that constraintspot(Ci ) on t1 and constraintspot(Cj )
should be relaxed. Similarly, it can be read as: When the language specifies that
feature overlap relations ofpot(Ci ) should precedepot(Cj ), there is a likelihood
of w that only the feature eventsCk precedingC l will be seen in the real speech
input.

In order for a precedence relation to apply, the speech inputmust satisfy the
implication of the relation (Ck � C l ) and the condition (pot(Ci ) � pot(Cj ))
must include constraints that exist on the transitions of the phonotactic automaton
in question. If such is the case, the constraints in the condition of the relations are
hypothesised to be potentially present in the speech input and extrapolated in the
output, but its ranking value on the transition in the automaton is scaled by the per-
centage indicated byw. In other words, if there is a valuew for a given sequence
of satisfied constraintsCk � C l and a sequence of possibly satisfied constraintspot(Ci ) � pot(Cj ), thenw scales the ranking value(s) ofCi to account for the
possibility that a subset of constraints inCi does not occur because of constraintsC l . Not all constraints on transition pairs need to be involvedin precedence rela-
tions, and such a relation can exist for any combination of sequences of constraints.

Once all constraint ranking adjustments are completed using relevant prece-
dence relations, the adjusted constraint rankings are totaled for each transition.
The best transition is the one with the greatest scaled positive total distance from
the threshold:

(3) dt = (�vt � �t )=�t
If d for each candidate transition is the same, then the transition with the highest
scaled total of actually satisfied constraints will be considered the better transition.
That is, the best transition would have the highestdtat = (�vtat � �t )=�t , where
eachvtat is only a value of constraints explicitly satisfied by the speech input with
no adjustments from the constraint variation tendencies list.

Figure 5: Example multilinear input representation
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Figure 6: Example transitions of phonotactic automaton

To illustrate this constraint ranking method for relaxation and enhancement,
suppose we have a multilinear speech input representation as in figure 5, a phono-
tactic automaton as in figure 6, and a set of constraint variation tendencies:

(4) labialÆ nasal� apicalÆ plosive) apicalÆ nasal� apicalÆ plosive,w =20%

(5) velarÆ voiced� apicalÆ voiced) apicalÆ voiced� apicalÆ voiced,w =10%

As shown in figure 5, the rankings of constraints on transition t3 depend on
the constraints on transitiont1 i.e. vt1_t3 (likewise for transitiont4 on t2 ), so
even though the exact constraints ont3 occur also ont4 , the different respective
preceding constraints (ont1 andt2 ) lead to different ranking values of the con-
straints.

The threshold on transitiont1 is �t1 = 8 (to enhance constraintst1 ;1 , or t1 ;3
in conjunction with at least another constraint) and the threshold on transitiont2 is�t2 = 9, but our input speech stream satisfies onlyt1 ;2 andt2 ;2 . Since the speech
stream is too ambiguous, the model looks ahead to the next possible transitions
(t3 and t4 ) for possibilities of constraint relaxation on transitions t1 or t2 . It
checks which constraints ont3 andt4 are satisfied and compares all the satisfied
constraints to a list of constraint variation tendencies (in our example, there are
only two tendencies as given in variation 4 and variation 5).

A constraint variation tendency can only be applied if the constraints to the
right of the implication are satisfied by the speech input andif the conditions of
the tendency are constraints that actually occur in the phonotactic automaton. Al-
though the the implication of variation 5 (apicalÆ voiced� apicalÆ voiced) occurs
as constraints on transitiont3 and are constraints satisfied by the speech input in
Figure 5, the first part of the condition of variation 5 (velarÆ voiced) does not
occur as constraints on transitiont1 . Thus, constraint variation tendency 5 does
not apply at all. Constraint variation tendency 4, however,applies to the transition
pair t1 _ t3 as the implication of variation 4 is satisfied by the speech input in
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the current and next windows and its condition covers constraints which occur on
transitionst1 andt3 of the automaton.

The tendency formulated in variation 4 informs us that we canrelax constraintst1 ;1 andt1 ;3 . To indicate that these constraints were relaxed, the ranking values
of these constraints can either be scaled byw of variation 4, or the threshold of the
transition (t1 ) be scaled. We chose to adjust ranking values instead as thisallows
finer tuning of constraint ranking. Thus, the new value fort1 ;1 is 1.2 (=w�vt1 ;1 =
0.2 * 6) and fort1 ;3 is 1.0 (= 0.2 * 5). With these new values, the total value from
satisfied and possibly satisfied constraints is 5.2 (=1.2+3+1), which does not clear
the threshold of 8 on transitiont1 . If variation 4 were applicable to the transition
pair t2 _ t4 , adjusting ranking values should also be done.

Transitiont1 is a better transition thant2 , as its scaled distance from the thresh-
old is closer. The path ultimately traversed fromt1 onwards might not lead to the
best syllable hypothesis, however. The sum of scaled distances from the transition
threshold (Equation (3)), provides a method of ranking transitions, and ultimately
paths, through the automaton. It offers a diagnostic evaluation of the automaton’s
hypotheses. As a diagnostic tool, it does not force a decision within n-arcs time,
but the decision is made based on comparison of the confidencevalues for the
hypotheses for the entire path through the automaton.

5 A Functional Cognitive Basis for Constraint Rankings

So far this paper has generally discussed how constraint relaxation and output
extrapolation can be incorporated into theTime Mapmodel to improve robust-
ness. However, we have avoided to specify the exact nature ofhow ranking of
the constraints is achieved. There are doubtless many strategies, but we argue for
a functional cognitive paradigm for ranking constraints. This paradigm is based
on Phonology as Human Behavior (PHB), a combinatorial phonological analysis
which argues that the skewed distribution of speech sounds are structured because
of a collaborative relationship between human articulatory constraints and percep-
tual constraints for efficient communication (Tobin 1997, Diver 1995). Thus, to
explain the nonrandom structure in speech sounds, PHB focuses on identifying the
constraints and the interactions among them, and identifying the features of speech
sounds which are involved in these interactions.

PHB posits features which are indicative of gestural control and coordination
including, for example, active articulators (apex, velum, larynx), the type of gestu-
ral movement (mobile, stable), or number of articulators involved in the production
of a given speech sound. The theory describes the interdependency of these fea-
tures with perceptual constraints for the goal of communication in terms of inter-
acting disfavourings or tendencies. For example, PHB posits the disfavouring for
the same active articulator to be used in adjacent sounds, asin tl, and the favouring
of vowels (easy to articulate) but the disfavouring of too many vowels (difficult to
make perceptual distinctions).

Understanding these direct factors that shape speech sounds and the interac-
tions of such factors, leads to motivated predictions of thedynamic structural ten-
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dencies or changes in speech. Moreover, since in speech the constraints are based
on human physiological considerations, the set of constraints should be similar
across languages. The interaction of constraints with eachother (the ranking of
constraints) is then language-specific and even speaker- and context-specific.

The ranking valuev of each constraint in our model is based on corpus analyses
of pairwise distributions of temporal relations between features, i.e., how likely
the sequence of a given set of overlap relations preceding another set occurs. The
higher the value ofv, the more frequently sounds with these features occur, and
satisfying the constraints of these events have greater relative weight and are less
likely to be relaxed. The lower the value ofv, the less frequent the sequence of
events occurs and thus the more frequent these constraints should be relaxed.

The ranking value for a constraint can also be dependent on any number of
constraints in the preceding transition. For example, the ranking value oft2 ;1
may depend on the fact that it followst1 ;1 Æ t1 ;3 . The ranking value is not the
actual distribution of the relevant feature relations in the corpus, but is scaled by
the total percentage of all the constraints on the transition pairs. So if according to
the corpus the distribution oft1 ;1 Æ t1 ;3 � t2 ;1 is 20% then the ranking value
for t2 ;1 is 20/(20 +vt2 ;2 + vt2 ;3 + : : :). This allows a scaled evaluation of how
likely transitiont2 is to be traversed.

In this cognitive approach, the constraint variation tendency list is compiled
according to favourings/disfavourings that constrain thedevelopment and produc-
tion of speech as defined by PHB. The constraint variation tendencies then indicate
the type of variations on the automaton constraints that mayoccur due to human
physiological and behavioural factors.

6 Conclusion

This paper has been concerned with constraint relaxation and output extrapola-
tion procedures in a computational linguistic model for speech recognition. In
this model, a constraint ranking provides the basis for initiating these procedures
for robust interpretation of multilinear representationsof speech utterances. The
generic development environment for the computational linguistic model has both
an online and an offline functionality which allows optimum incorporation of sta-
tistical information to be further investigated. The development environment has
been specifically designed to extend to phonotactic descriptions of other languages
allowing, on the one hand, specific constraint rankings to beintegrated and, on the
other hand, facilitating the investigation of more language independent constraints
based on cognitive factors such as those suggested by Phonology as Human Behav-
ior. Current work now involves diagnostically evaluating phonotactic descriptions
of other languages in the context of speech recognition and it is anticipated that
this will provide insights into the choice of feature sets which are optimal to the
task.
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