Phonotactic Constraint Ranking for Speech Recognition

Julie Carson-Berndsen, Gina Joue and Michael Walsh
University College Dublin

Abstract

The aim of this paper is to highlight areas in which a compaita linguistic model of
phonology can contribute to robustness in speech techpapglications. We discuss a
computational linguistic model which uses finite state radtiogy and an event logic to
demonstrate how declarative descriptions of phonologicaistraints can play a role in
speech recognition. The model employs statistics derivech fa cognitive phonological
analysis of speech corpora. These statistics are used kingafeature-based phonotac-
tic constraints for the purposes of constraint relaxatiod autput extrapolation in syllable
recognition. We present the model using a generic framewdrich we have developed
specifically for constructing and evaluating phonotactinstraint descriptions. We demon-
strate how new phonotactic constraint descriptions careleldped for the model and how
the ranking of these constraints is used to cater for undeiied representations thus mak-
ing the model more robust.

1 Introduction

While the success of commercial speech recognition agjitahas led to a more
widespread acceptance of spoken language interfaceg, stifrseems to be a
need for further investigation into the interactions bedwgurely stochastic ap-
proaches and more linguistic-symbolic approaches to irgtbe robustness of
multilingual speech systems. The starting point for disaus in this paper is
a formally-specified computational linguistic model whiths been enhanced by
statistical information from various sources to improve thbustness of the model
in dealing with the variability of speech and with 'noisyjiat data. Although this
paper will concentrate primarily on the extensions to thepatational model, we
assume also that the fine-grained knowledge represergatibith are used by
the model can be applied to fine-tune stochastic models byiding important
underlying structural information (cf. also Jusek et ab%a)).

The computational linguistic model is ti@ne Mapmodel (Carson-Berndsen
1998) which uses a description of the constraints on the igsilabe combinations
of sounds in a language (phonotactic constraints) to rasegmell-formed sylla-
ble structures. The phonotactic constraints describe niytthose words in the
system lexicon but can make predictions as to which wordddvoe considered
well-formed by a native speaker of a language. In contrastitchastic approaches
to speech recognition, tiEme Mapmodel interprets the speech signal in terms
of overlap and precedence relations between propertigs.allbws variability of
speech utterances to be modelled by avoiding a segmentdtiba speech signal
into strictly non-overlapping units. In order to be robubte model must also cater
for imperfect or 'noisy’ input representations and therefeequires a mechanism
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by which the phonotactic constraints may be relaxed undéaiceconditions. This
paper discusses a methodology for constraint ranking wirickides a principled
basis for constraint relaxation in the model, based not onlgomain knowledge,
but also on cognitive factors which influence human produncéind interpretation.
When enhanced by such motivated constraint relaxationegiares, the compu-
tational linguistic model will be able to offer insights mhow robustness can be
addressed in spoken language interface design.

In what follows, we will firstly sketch th@ime Mapmodel within a generic de-
velopment environment which facilitates the extensiorheftechnology to other
languages (in particular languages which have receiviseldittention thus far) and
feature systems. Secondly, we will introduce the notionsarfstraint relaxation
and output extrapolation as assumed by the model and dibousthese mecha-
nisms are employed using a ranking of the constraints. We discuss how the
constraint ranking is achieved based on a functional cagritnalysis of phono-
logical data. The paper concludes with some referencesrtiociudevelopments
with respect to the extension of the language functionality

2 LIPS and the Time Map Model

TheTime Mapmodel was proposed as a computational linguistic modelfeesh
recognition by Carson-Berndsen (1998) and has been tegtsid & speech recog-
nition architecture for German. The model has recently lie¢anded to English
and has been provided with an interface which allows usedefme and evalu-
ate phonotactic descriptions for other languages and sgbkges. This generic
development environmentis known as the Language Indep¢Rtienotactic Sys-
tem (Carson-Berndsen and Walsh 2000a). LIPS aims to premitiggnostic eval-
uation of the phonotactic descriptions in the context oespearecognition. That is
to say, rather than just providing recognition resultstiphanalyses can be output
indicating which constraints have or have not been satigfietwhere the parsing
breaks down. This, together with the constraint relaxatind output extrapola-
tion procedures to be discussed below, allows adequatengtess to be chosen
that define a compromise between maximal recognition ratgsranimal analysis
overhead.

The Time Mapmodel uses a finite-state network representation of the @hon
tactic constraints in a language, known as a phonotactansaton, together with
axioms of event logic to interpret multilinear represeiatas of speech utterances.
A subsection of a phonotactic automaton for CC- combinatinEnglish syllable
onsets can be seen in figure 1 and an example multilinearseptaion of a sim-
ple single word utterance in figure 2. The transitions in therptactic automaton
define constraints on overlap relations which hold betweatufres in a particular
phonotactic context (i.e. the structural position witHie syllable domain)

1The monadic symbols written on the arcs in figure 1 are purafemonic for the feature overlap
constraints they represent.
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/—"{ C;: voiceless ® plosive}

C;: approximant ° voiced
C;: alveolar © voiced
C,: approximant ° alveolar

Figure 1: Subsection of phonotactic automaton for Engli€h @nsets

The multilinear representation consists of phonologiealtdires which have
been constructed based on acoustic features extractedHirspeech signal; each
feature has a start and end point in terms of signal time itisadonds.

approximant
alveolar alveolar
voiced voiceless voiced voiceless
central front
openmid openmid
velar
plosive ! plosive
labial-velar I
fricative fricative
508 353 563 647 680 690 748 820 82;08 0 953 983 1039

Figure 2: A multilinear representation of the utterameguest

Phonological parsing in LIPS is guided by the phonotacttoraton which
provides top-down constraints on the interpretation ofrthaétilinear representa-
tion, specifying which overlap and precedence relatioe®apected by the phono-
tactics. If the constraints are satisfied, the parser momds the next state in the
automaton. Each time a final state of the automaton is reachect!l-formed
syllable has been found which is then passed to a corpusolexidhe lexicon
distinguishes between actual and potential syllabledfifgire 3).
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Figure 3: Architecture of th&ime Mapmodel

Since input to the phonological parser is, in general unmimidied due to noise,
theTime Mapmodel must provide a means of minimising the discrepanayoen
the expectations defined in the top-down constraints andd¢hel data by allow-
ing constraint relaxation and output extrapolation. Thissees are the topic of the
next section.

3 Constraint Relaxation and Output Extrapolation

Carson-Berndsen (2000) identified areas in which stagisitnformation can play
a role at different levels of granularity within thiiéme Mapmodel and discussed
these with respect to the overall architecture (cf. figure Bje first area of in-
tegration concernsonstraint rankingwhich is the lowest level of granularity in
that the constraints refer to individual temporal relasioifhe second integration
area is in connection with thieansition weightingof the phonotactic automaton.
Transition weighting is a higher level of granularity in thilae whole transition is
weighted rather than individual constraints. The thireégration area for statistics
is the lexicon that refers to a yet higher level of granujamiamely the syllable.
This paper goes a stage further in that the first two levelsrafglarity, namely
constraint ranking and transition weighting, are addréssere fully and a means
of incorporating them into the model is proposed. We do natrm@nt any further
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on lexicon issues here, however.

The notion of constraint ranking plays an important role amstraint relax-
ation and output extrapolation. Constraint ranking can ased on a number
of factors: linguistic-preferential, cognitive and sgtital. Linguistic-preferential
refers to issues of markedness and defaults, cognitivesrefehuman processing
issues and statistical refers to data-oriented issueso@derndsen (2000) con-
centrated primarily on corpus-based ranking, but did staeit is more likely that
a combination of these factors will be most appropriate @aratraint ranking, and
for this reason LIPS allows parameters to be chosen and milategl in order to
find the optimal balance between maximal recognition ratesminimal analysis
overhead (Carson-Berndsen and Walsh 2000b).

Constraint relaxation should be performed in the model ify@omeof the
constraints specified by the phonotactic automaton cantisfisd. As it stands,
this is a very arbitrary statement. However, when coupleti wiconstraint rank-
ing, it becomes a method for dealing with variability and ergpecification in the
input representation. Constraint ranking is a data-oeiémirdering of constraints
in particular phonotactic contexts. For example, constsainay be ranked with
respect to frequency, duration and percentage overlatidifes in specific struc-
tural contexts. This information can either be specific tingle corpus or may be
based on data from several different corpora. Based ondhidgmg, constraint re-
laxation can be applied when an infrequent feature is erteoeid or a duration is
outside a given standard deviation. Furthermore, it isipést combine this type
of ranking with cognitive factors in order to go beyond a asflependent order-
ing (Carson-Berndsen and Joue 2000). This approach wilidmisised further in
section 5 below. Constraint relaxation can then be regaadeaimeans by which
particular constraints on an input representation can herieg. Output extrapola-
tion, on the other hand, is performed to further specify thgat representation if
the constraints specify expectations that do not conflith wiformation found in
the input. The application of output extrapolation doesqua@rantee that the out-
put syllable structures are fully specified, however, ohitthey are well-formed.
Here again, a ranking of the constraints, which can pasiteifn output extrapola-
tion, is required.

In LIPS, we distinguish between online processing wheredpeaitterances
are interpreted using the constraints and constraint neyskiand offline process-
ing, which is concerned with finding the optimal parameters eonstraint rank-
ings for the system (cf. figure 4). In what follows, the int&@gon of constraint
rankings into the model are discussed. While the constraimkings refer to the
lowest level of granularity, i.e. individually ranked cdraints on temporal over-
lap relations between features, taken collectively thas&ings also provide the
basis for the weighting in the phonotactic automaton thiothg use of transition
thresholds, i.e. the next level of granularity.
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Figure 4: Online and Offline Processing with LIPS
4 Incor porating Constraint Ranking into LIPS

Constraint ranking is incorporated into the phonotactitmenaton during the of-
fline processing stage. A transition in the phonotactic aiation may have a num-
ber of constraints;,, ce, cg, .... Each of these are constraints on overlap and
precedence relations between features that are to beatiBiir example;; can
specify that featurg ; overlaps featurg , ; this is represented as follows:

(1) ci=fiofe.

Each constraint has a ranking value i.e; has a ranking value.,. Thus, a
transition that involves constraints on overlap relatimyesenting a /g/ may look
like this:

C,:velar “ voiced V. =5
C,: voiced ° plosive V.,= 6 =/g/
C;: plosive “velar V.;=3

0 o

Here the second constraint is ranked highest (i.e. largestd the third con-
straint ranked lowest. Rankings of constraints reflect arflte of constraints on
previous transitions (left-context dependencies) anéroffects such as syllable
position. In order for a transition to be traversed, the ltgtdues of constraints
satisfied by the speech input must exceed the threshold otrahsition. If a
threshold of 9 is assigned to this transition, for exampient, is strengthened

2Theo symbol indicates the overlap relation
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which has the effect of enhancing the constraint: it must hewatisfied in order
for the transition to be taken. If the threshold is low, itoal for relaxation of
one or more of the constraints on the speech input reprasmntaAdjusting the
threshold values so that not all constraints need be sdlisfierder to traverse the
transition, copes with underspecification in the input esntation. The thresh-
old is a parameter of the automaton transition that can dperspeech variables
such as rate or register. Ultimately the phonotactic autommay be able to learn
to adjust rankings of constraints and thresholds througjhitrg.

Given the input representation of the speech utterance andgtactic au-
tomaton, there may potentially be no best transition fromatrrent node in the
automaton. This ambiguity may arise because the input spéees not satisfy
enough constraints on all possible transitions from theenirnode to provide
enough weight to traverse any of the transitions. If the spéaput does not sat-
isfy anyconstraints on the possible current transitions, theroatjh parsing fails,
the diagnostic evaluation procedure of LIPS allows pastiedlyses which indicate
whether output extrapolation at the level of the transibould be undertaken . If
some constraints are satisfied, a further constraint rétax# done by consider-
ing right context constraints.

Right-context information can either contribute as imnag¢eliransition re-
solversor to diagnostically rankhe hypothesis space of the phonotactic automa-
ton. In either case, right-context dependency in the pregasodel requires a set
of constraint variation tendencidsetween the sets of constraints on each possible
transition pai€ In a sense, these tendencies indicate what could be missing i
underspecified speech input or what processes could havereddn the speech
input to cause a change from the intended speech and arearsmafut extrapo-
lation. Weights associated with each constraint variatmaency allows different
constraints to be relaxed to different degrees. AlthoughwRights on these ten-
dencies can also be used collectively to adjust the thrdsbiaihe transitions in
question, we favour adjusting values on individual constsaas it provides finer
tuning and finer distinctions of the influence of differenhstraints.

Each constraint variation tendency has the basic form

(2) pot(C;) < pot(C;) = Ci < Cr,w
where
e pot(C;) is a potential constraint (or set of constraints) on a givandition,

e pot(C}) is a potential constraint (or set of constraints) on a foltaytran-
sition,

e (' is a constraint or a set of constraints on the given transiti@mt was
actually satisfied by the speech input,

e (C, is a constraint or a set of constraints on a following traosithat is
satisfied by the speech input, and

3For now, right context is considered as the next possiblgisittansition from the current transition.
Thus the constraint variation tendencies relate the cainssron pairs of transitions.
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e w is the probability that the given constraint variation tendy holds.

The tendency can be read in several ways: when the satisfiesiramtsC;, on
transitiont ; precede the satisfied constraintson a following transitiort ., then
there is aw probability that constraintpot(C;) ont; and constraintot(C)
should be relaxed. Similarly, it can be read as: When thedagg specifies that
feature overlap relations @bt(C;) should precedgot(C}), there is a likelihood
of w that only the feature events;, precedingC; will be seen in the real speech
input.

In order for a precedence relation to apply, the speech inust satisfy the
implication of the relation @, < C;) and the conditiongot(C;) < pot(C,))
must include constraints that exist on the transitions efithonotactic automaton
in question. If such is the case, the constraints in the ¢immddf the relations are
hypothesised to be potentially present in the speech inpiieatrapolated in the
output, but its ranking value on the transition in the auttomas scaled by the per-
centage indicated by. In other words, if there is a value for a given sequence
of satisfied constraint§';, < C, and a sequence of possibly satisfied constraints
pot(C;) < pot(C;), thenw scales the ranking value(s) 6f; to account for the
possibility that a subset of constraintsih does not occur because of constraints
C;. Not all constraints on transition pairs need to be involiredrecedence rela-
tions, and such a relation can exist for any combination gfisaces of constraints.

Once all constraint ranking adjustments are completedgustevant prece-
dence relations, the adjusted constraint rankings aréetbfar each transition.
The best transition is the one with the greatest scaledipesdtal distance from
the threshold:

(3) dt = (27),5 - 9;)/9;

If d for each candidate transition is the same, then the transitith the highest
scaled total of actually satisfied constraints will be cdaggd the better transition.
That is, the best transition would have the highkgst = (Xv;,, —0:)/6:, where
eachw;,,, is only a value of constraints explicitly satisfied by theeg®einput with

no adjustments from the constraint variation tendenc#s li

apical apical
voiced
nasal plosive

Figure 5: Example multilinear input representation
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(Cy, ¢ apical’voiced); vy =4
(Cy, 2 voiced"plosive); vy 4 ,=4
(Cy 5 apical’plosive); vy, 4 =5

(Cy ,: labial " nasal); v, ;=6
(Cy, 2 nasal”voiced); vy, ,=3
(Cy, 5: labial®voiced); vy, ;=5

By =5

»{n,

(Cy,q: velarinasal); v, ,=6
[(Cm: apical’voiced); vy, =4

(C 2t nasal”voiced); v, ,=2
(Cy 5: velar'voiced); vy, 4=2 (Cy, 2t voiced plosive); vy, 4, , =3

(Cy. ;7 apical’plosive); vy, ;=2

Figure 6: Example transitions of phonotactic automaton

To illustrate this constraint ranking method for relaxatiand enhancement,
suppose we have a multilinear speech input representationfgure 5, a phono-
tactic automaton as in figure 6, and a set of constraint vana¢ndencies:

(4) labialo nasal< apicalo plosive=> apicalo nasal< apicaloc plosive,w =20%

(5) velaro voiced< apicalo voiced=- apicalo voiced~ apicalo voiced,w =10%

As shown in figure 5, the rankings of constraints on transitip depend on
the constraints on transition i.e. v, ~;, (likewise for transitiont, ontyz), so
even though the exact constraints#@noccur also ort,, the different respective
preceding constraints (an andtz) lead to different ranking values of the con-
straints.

The threshold on transitioty is 6;, = 8 (to enhance constraints, ;, orc, s
in conjunction with at least another constraint) and theghold on transition, is
6., =9, but our input speech stream satisfies en)y. andc;, 2. Since the speech
stream is too ambiguous, the model looks ahead to the negtlhp@dransitions
(ts andt,) for possibilities of constraint relaxation on transitgty or ¢g. It
checks which constraints ag andt, are satisfied and compares all the satisfied
constraints to a list of constraint variation tendenciesqiir example, there are
only two tendencies as given in variation 4 and variation 5).

A constraint variation tendency can only be applied if thestmints to the
right of the implication are satisfied by the speech input irlde conditions of
the tendency are constraints that actually occur in the ptamtic automaton. Al-
though the the implication of variation 5 (apicaoiced< apicalo voiced) occurs
as constraints on transition and are constraints satisfied by the speech input in
Figure 5, the first part of the condition of variation 5 (vetaroiced) does not
occur as constraints on transitiop. Thus, constraint variation tendency 5 does
not apply at all. Constraint variation tendency 4, howeapplies to the transition
pairt; — tg as the implication of variation 4 is satisfied by the speeguirin
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the current and next windows and its condition covers cairgs which occur on
transitionst; andts of the automaton.

The tendency formulated in variation 4 informs us that weredax constraints
ct,,1 andeg, 5. To indicate that these constraints were relaxed, the ngnialues
of these constraints can either be scalednf variation 4, or the threshold of the
transition ¢,) be scaled. We chose to adjust ranking values instead aallinigs
finer tuning of constraint ranking. Thus, the new valuedgr; is 1.2 (zwxv;, ; =
0.2 *6) and forc, 5 is 1.0 (= 0.2 * 5). With these new values, the total value from
satisfied and possibly satisfied constraints is 5.2 (=1.2}3,3#hich does not clear
the threshold of 8 on transitian . If variation 4 were applicable to the transition
pairt; ~ t,, adjusting ranking values should also be done.

Transitiont ; is a better transition thar,, as its scaled distance from the thresh-
old is closer. The path ultimately traversed fremonwards might not lead to the
best syllable hypothesis, however. The sum of scaled distafiom the transition
threshold (Equation (3)), provides a method of rankinggitons, and ultimately
paths, through the automaton. It offers a diagnostic etiainaf the automaton’s
hypotheses. As a diagnostic tool, it does not force a detisithin n-arcs time,
but the decision is made based on comparison of the confideaiaes for the
hypotheses for the entire path through the automaton.

5 A Functional Cognitive Basisfor Constraint Rankings

So far this paper has generally discussed how constraiakatbn and output
extrapolation can be incorporated into thigne Mapmodel to improve robust-
ness. However, we have avoided to specify the exact natunewfranking of
the constraints is achieved. There are doubtless manggteat but we argue for
a functional cognitive paradigm for ranking constraintdiisTparadigm is based
on Phonology as Human Behavior (PHB), a combinatorial plagical analysis
which argues that the skewed distribution of speech souredstaictured because
of a collaborative relationship between human articulatamstraints and percep-
tual constraints for efficient communication (Tobin 1997yéd 1995). Thus, to
explain the nonrandom structure in speech sounds, PHBésarsidentifying the
constraints and the interactions among them, and idengfifie features of speech
sounds which are involved in these interactions.

PHB posits features which are indicative of gestural cdreénal coordination
including, for example, active articulatorsgex velum larynx), the type of gestu-
ral movementifobile stablg, or number of articulators involved in the production
of a given speech sound. The theory describes the interdepew of these fea-
tures with perceptual constraints for the goal of commutiocein terms of inter-
acting disfavourings or tendencies. For example, PHB pdisé disfavouring for
the same active articulator to be used in adjacent soundstlaand the favouring
of vowels (easy to articulate) but the disfavouring of tooaowels (difficult to
make perceptual distinctions).

Understanding these direct factors that shape speech s@mtlthe interac-
tions of such factors, leads to motivated predictions ofdjy@amic structural ten-
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dencies or changes in speech. Moreover, since in speecbisaints are based
on human physiological considerations, the set of comggahould be similar

across languages. The interaction of constraints with esiodr (the ranking of

constraints) is then language-specific and even speakecariext-specific.

The ranking value of each constraintin our model is based on corpus analyses
of pairwise distributions of temporal relations betweeattres, i.e., how likely
the sequence of a given set of overlap relations precediothpanset occurs. The
higher the value of), the more frequently sounds with these features occur, and
satisfying the constraints of these events have greativelweight and are less
likely to be relaxed. The lower the value of the less frequent the sequence of
events occurs and thus the more frequent these constramitdse relaxed.

The ranking value for a constraint can also be dependent pmamber of
constraints in the preceding transition. For example, #reing value ofc;, ;
may depend on the fact that it follows, ; o ¢, 3. The ranking value is not the
actual distribution of the relevant feature relations ia torpus, but is scaled by
the total percentage of all the constraints on the tramsjirs. So if according to
the corpus the distribution @f;, ; o ¢, 3 < ¢t,,1 IS 20% then the ranking value
for c¢,, 1 is 20/(20 e, 2 ¥ U, 3+ .). This allows a scaled evaluation of how
likely transitiont, is to be traversed.

In this cognitive approach, the constraint variation terelist is compiled
according to favourings/disfavourings that constraindbeelopment and produc-
tion of speech as defined by PHB. The constraint variatioteroies then indicate
the type of variations on the automaton constraints that atayr due to human
physiological and behavioural factors.

6 Conclusion

This paper has been concerned with constraint relaxatidnoarput extrapola-
tion procedures in a computational linguistic model forexge recognition. In
this model, a constraint ranking provides the basis fordtiitg these procedures
for robust interpretation of multilinear representatiarisspeech utterances. The
generic development environment for the computationgllistic model has both
an online and an offline functionality which allows optimuntorporation of sta-
tistical information to be further investigated. The demhent environment has
been specifically designed to extend to phonotactic desmnigpof other languages
allowing, on the one hand, specific constraint rankings tmtegyrated and, on the
other hand, facilitating the investigation of more langaaglependent constraints
based on cognitive factors such as those suggested by Plggrad Human Behav-
ior. Current work now involves diagnostically evaluatinggmotactic descriptions
of other languages in the context of speech recognition tisdainticipated that
this will provide insights into the choice of feature setsiethare optimal to the
task.
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