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Abstract

The oldest restriction in the derivation of context-free grammars is believed to be the matrix
control mechanism, introduced by S. Abraham in 1965. However, in a paper (with solid
linguistic motivations) of I. Bellert, published in the same year, there are in nuce the ideas
of several control mechanisms considered later, as well as an idea which we do not know to
have been explored. In short, conditions about some of the paths from the root to leaf nodes
in the derivation trees of a context-free grammar are considered. Here we investigate this
type of control, with emphasis on a class which generates a mildly context-sensitive family
of languages (in particular, a useful pumping lemma is provided).

1 Introduction

Regulated rewriting is one of the most developed branches of formal language
theory, with roots in the mid-sixties and with several dozens of control mechanisms
well investigated — see (Dassow and Pdun 1989). The motivation started from the
observation that many languages of interest, natural and programming languages
included, are not context-free. Generating such languages by context-sensitive
grammars is not a practical solution, because at the context-sensitive level we have
many difficulties (e.g., many problems are undecidable), and, more important from
a linguistic point of view, the derivation in a context-sensitive grammar cannot be
described by a sufficiently easy to manipulate graph structure. The first restriction
in the derivation of context-free grammars is believed to be that introduced by S.
Abraham, in 1965, the matrix grammars. In short, sequences of rewriting rules are
given, which are applied together in a derivation step (this considerably increases
the power of context-free grammars).

It was a surprise for us to recently discover the paper by 1. Bellert, also pub-
lished in 1965 (submitted on November 19, 1964) in a quite visible journal, Infor-
mation and Control, with a provocative title, where a class of regulated context-
free grammars was introduced which were never — to our knowledge — studied
after that. In particular, this paper is not mentioned in (Salomaa 1973), the first
monograph having a chapter about regulated rewriting.

Two things are rather interesting in the paper (Bellert 1965). First, it is very
well motivated, starting from the assertion that natural language is not context-
free (this was a lenghtily debated issue in linguistics: it was “clear” in the sixties,
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based on arguments of Chomsky, Bar-Hillel, and others; later these arguments
were contested, but it is agreed now that natural language contains at least typical
constructions which are not context-free; the reader can consult the papers we have
included in the bibliography, most of them with self-explanatory titles). However,
the paper not only provides a theoretical study of this assertion, but, after intro-
ducing “relational grammars”, a consistent case study is examined, using the new
formalism for modelling several constructions from Polish. Bellert applies her re-
lational grammar to the generation of Polish kernel sentences. In this application,
13 relations are considered, mainly concerning the agreement in gender, number
or case between the noun and the predicate.

Second, the definition of relational grammars contained several different ideas
which remind us of restrictions on derivation which were widely investigated later,
under different names. Informally, the framework is the following one. One con-
siders a context-free grammar G = (N, T, 5, P) and a way to select from all
possible derivation trees in GG only those trees with certain properties, specified by
a set of tuple-grammars and a relation on the rules of these tuple-grammars. More
specifically, one gives several k-tuples of context-free grammars, (G, ..., Gg), of
the form G; = (N;, NUT, S;, F;). Note that these grammars have as the terminal
alphabet the total alphabet of G. The grammars from such a tuple work in parallel,
over separate sentential forms, also observing the restriction imposed by a relation
p C Py X ...x Pg. In a derivation of the k-tuple of grammars (G4, ...,Gy) we
have to use rules related by p. The k-tuples (w1, ..., wy) of strings generated in
this way by (G1,. .., G},) are then used for selecting from the derivation trees of
G only those trees which have paths starting from a given node which are marked
by wi, ..., w.

Rather complex, but the reader can see here the idea of tuple grammars, inves-
tigated later in a series of papers by several authors, the idea of a matrix grammar
{in the tuples of rules specified by the relation p), the idea of tree controlled gram-
mars (we refer to Dassow and Paun (1989) for references), and to some extent, the
idea of multi-component TAGs (Joshi 1987), where a set of auxiliary trees may
be adjoined to an elementary tree. Of course, there are also essential differences
between all these grammars.

We do not persist here in this direction, but we observe that the restriction from
Bellert (1965) also contains an idea which we do not know to have been investi-
gated in the regular rewriting area: to impose some restriction on the paths present
in a derivation tree of a context-free grammar. This is the new—old restriction
which we discuss here.

In short, we take two context-free grammars, Gy, Gz, where (G5 generates a
language over the total alphabet of (1. A string w generated by G is accepted
only if there is a derivation tree 7 of w with respect to G; such that there exists
a path in 7, from the root to a leaf node, which is marked by a string which is in
L(G4). We say that such a pair v = (G, G>) is a path-controlled grammar.

For an intuitive representation of this idea, one should have in mind the fact
that a string w is generated by v = (G, G3) by considering two derivation trees,
71, T2, the first one with respect to G; and the second one with respect to G3; the
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first tree has w as the frontier, while the second tree is “orthogonal” to the first
tree and its frontier string describes a path in the first tree. Figures 1, 2 contain
illustrations of this idea.

Here we mainly investigate the generative power and the linguistically oriented
properties of path-controlled grammars. When one of the grammars G'1, G is reg-
ular, we do not obtain new families of languages, but more interesting are the cases
when the two grammars are both linear or context-free. We prove that in the first
case we get a family of mildly context-sensitive languages (a pumping lemma is
used for obtaining the bounded growth property, while the polynomial parsability
is obtained for the case when (1 has a bounded degree of ambiguity), strictly in-
cluded into the family of languages generated by matrix grammars (actually, this is
true also for the case of using context-free grammars), not able to “count to five”,
but able to cope with the three basic non-context-free contructions: replication,
crossed dependencies, and multiple agreements.

We close this introduction by also pointing out the remote similarity of path-
controlled grammars (G, G2), where the grammar G is linear, with a variant of
contextual grammars (Marcus 1969), the so-called external contextual grammars
with a control language (Pdun 1997), where contexts are added in the ends of a
string, like in a linear grammar, in a sequence prescribed by a language on a set of
Iabels for these contexts.

2 Path-Controlled Grammars

We use the standard formal language theory notions and notations, as available in
many monographs. In particular, V™" is the free monoid generated by the alphabet
V under the operation of concatenation, A is the empty string, || is the length
of the string z € V*, and REG, LIN,CF are the families of regular, linear,
and context-free languages, respectively. A grammar is given in the form G =
(N,T,S,P), where N is the nonterminal alphabet, T is the terminal alphabet,
S is the axiom, and P is the set of rewriting rules. As usual, when comparing
two languages, the empty string is ignored, that is, we consider L1 equal to Lo if
L —{A} = Ly = {A}.

Given a context-free grammar G = (N, T, S, P), with derivations in G we
associate derivation trees in the well-known manner. Remember that each node
in such a tree is marked by an element of N, with the exception of leaves, which
are marked with elements of 7'; the root is marked with S. Let S —™* w be a
terminal derivation in G and 7 its associated tree. Each path from the root of 7 to
a leaf is described by a string of the form SA;, As, ... Aya, with 4; € N1 <
i <r,r > 0,and a € T. We denote by path(r) the language of all these strings,
describing paths in 7, by path(z) the union of all the languages path(r), where 7
is a derivation tree for x in G, and by path(G) the union of all these languages.

Proposition 1 If G is a context-free grammar, then path(G) € REG.

Proof. Starting from G = (N, T, S, P), we construct the regular grammar
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G =({STu{l4]|Ae N}, NUT,S', P"), with

P = {8 - S[S]}U{[4] = B[B] | A= uBv e P, u,ve (NUT)"}
U {4 —»a|A—uaweP, uve (NUT)}

The equality path(G) = L(G") is obvious, hence path(G) € REG. B

Let us now introduce the control mechanism we have announced: a path-
controlled grammar is a pair v = (G, G"), where G = (N,T,5,P) and G' =
(N',NUT,S", P') are context-free grammars. The language generated by -y is

L(v) = {w € L(G) | path(w) N L(G") # 0}

That is, we accept a string w generated by G only if there is a derivation tree
for w such that at least one path in this tree is described by a string which can be
generated by . In other words, the language generated by +y is the yield of the
tree language obtained from the derivation trees of (1 which are “accepted” by
Go.

We denote by PC(Fy, Fy) the family of languages L(y) generated by path-
controlled grammars v = (G,G") with G of type F; and G’ of type I, where
Fy, Fy can be one of REG, LIN, CF.

In Proposition 5 we will consider three (standard) examples, so we pass directly
to investigating the power of path-controlled grammars.

When the control on paths is imposed only by regular grammars, we do not
increase the power of regular, linear, or context-free grammars:

Proposition2 F = PC(F,REG), forall F ¢ {REG,LIN,CF}.

Proof. By taking G' a grammar which generates the language (N U T')*, for
any v = (G,G") one obtains L(v) = L(G), that is, F' C PC(F, REG) for all
families F'.

Also the converse inclusion is true: Let v = (G, G’) be a path-controlled
grammar with G = (N, T, S, P) of type F' and G’ regular. Let FA = (K, N U
T, 50, fin,d) be a deterministic finite automaton for the language L(G') with
the mapping § totally defined. We construct the grammar G" = (N x K,T U
{c},(S, s0), P""), where ¢ is a new symbol,

P" = {(As) = X|,.. X, |]A=>X;.. X, eP,n>1,X;€ NUT, and
(X;,0(4,s)), if X; € N,
X! =< Xc, if X; € T,8((4,s),X;) € fin, 1 <i<n}.
X;, otherwise,

From this definition, one sees that the nonterminals of G together with the
rules from P check the existence of strings describing paths in the derivation
tree under construction which are in L(G'). Clearly, a path exists in a derivation
tree of frontier w, with respect to G, if and only if a string having at least one
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occurrence of the new letter ¢, which can be reduced to w by removing all the
occurrences of ¢, appears in the language generated by G”. We now define a
gsm which removes all the occurrences of ¢ in the input string and terminates
successfully if at least one occurrence of ¢ is removed. Consequently, the
image of L(G") by this gsm is exactly L(vy). Since all the families mentioned
in the theorem statement are closed under gsm mappings, the proof is complete. B

When the generating grammar of a path-controlled grammar is regular, the
obtained language can be produced by a grammar of the same type as the control
grammar.

Proposition3 PC(REG,F) C F, forall F € {LIN,CF}.

Proof. We present a proof for F = LIN only, the case when F' = C'F can
be handled in a similar way. Let v = (G, ") be a path-controlled grammar with
G = (N,T, S, P) regular and G' a linear grammar such that L(G") C {S}N*T.
We consider the linear grammar G = (N1, {(4,B),(4,a) | A,B € N,a €
T}, Sy, P1), Ny N N = (3, which generates the language

L(Gl) = {(S, Al)(Al,Az) - (An_l,An)(An,a) ‘ SAlAz L. Ana & L(GI)}

We now construct the linear grammar Gy = (Na, T, Sy, P2), where Np = N U
Ny U{S5} and P, contains the following rules:
1. S — 51, and A — Sy, forall A € N,
2. Sy, — Aqg, forall A — a € P, and B — Aa, forall A — aB € P,
3. A — s(z), where A — z € Py and s is a finite substitution defined by
s((A,B))={a€eT|A—aBe P}, s((4,a)={aeT|A—ac P}
and s(X) = {X}, forall X € N».

We obtain L(G3) = L(y). If w € L(), then there exists a derivation

S = g1 4] = qa0ds = ... = a1as...0p_14An_1 —

10y . ..apB1 => alaz...anan.HBg = ... == Q102 ...0p1tym = W

and SA; As A, _1a, € L(G). Tt follows that (S, A1)(A1, As) ... (An—1,0n) €
L{G1). Moreover, the following derivation exists in G:

S9 = Bmlpim == ... = Biapy10n42 - - tppm =

S10n 410042 « - - Qpbn, =" Q1 -« - GpOngl - - - Opam = W.
The converse inclusion is obtained in the same way. [
There are linear languages which cannot be generated by any path-controlled

grammar v = (G, G'), with G aregular grammar. Indeed, let us consider the linear
language L = {a™b™ | n > 1} U {a}, and assume that v = (G, G") generates L.
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Clearly, Sa must be in L(G"), hence any derivation tree in G has a path described
by a string, Sa, in L(G"), that is L(y) = L(G), a contradiction. However, the
following result holds.

Proposition 4 If L is a language in F' € {LIN, CF'} without words of length
one, then L € PC(REG, F).

Proof. Let us consider the grammar G = (N, T, S, P), and the morphism
h:T* — {[a] | a € T}* defined by h(a) = [a] fora € T'. Foreacha,b € T, let
7 (L) = {w | wab € L}. We consider the language

L'={S}(|J hm@L){(a)b}).

a,beT

Clearly, L' € F;let G’ = (N',{[a], (a) | a € TYUT U{S}, S, P') be a grammar
of type F" for this language. We also consider the regular grammar G' = ({[a], (@) |
a € THU{S},T,S, P), with the following rules:

P = {5 alal, S - ala), [a] = b[b], [a] = b(), (a) = b|a,beT}.

The grammar G generates the language T (remember that we ignore the
empty string), and from all the derivation trees only paths which are described by
strings of the form S[a;][as] ... [an)(@ns1)b, fora; € T,1 <i<n+1beT,
where n > 1, are in the language L'. By the definition of L/, the string
410 - . . G an 110 belongs to L. However, this is exactly the string generated in the
grammar G by the tree which has a path marked with S[as][az] - . . [an](@n+1)b.
Consequently, for v = (G, G') we have L(y) = L. B

Thus, from the generative point of view, the path-controlled grammars ~y of
types (Fy, F») with at least one of Fy, F5 equal to REG are not very interesting.
This is definitely not the case when Fj, Fy are equal to LIN or to CF. It is
known that the set of all derivation trees of a context-free grammar is a regular tree
language and the yield of any regular tree language is context-free, see (Thatcher
1967). Next proposition states that the set of derivation trees of a linear grammar
accepted by another linear grammar is not a regular tree language anymore.

At the same time we point out that the three usually discussed non-context-free
constructions from natural language, duplication, crossed dependencies, and mul-
tiple agreements (up to four related positions) can be handled by path-controlled
grammars of type (LIN, LIN).

Proposition 5 The languages Ly = {a™b"c"d" | n > 1}, Ly = {a™b™a™0™ |
n,m > 1}, Ly = {zcz | © € {a,b}*} are in PC(LIN, LIN).

Proof. Let us consider the linear grammars:

Gy = ({S,B,D},{a,b,c,d}, S, Py), with
P, = {S = aSd,S — aBd,B — bBc,B — D, D — bc},
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Gy = ({S,A,B,C,D},{a,b}, S, P»), with
Py ={S—aS,5—aB,B— BbB— A A—>bAA— C,
C = Ca,C - D,D — a}, and
G; = ({S,4,B,C},{a,b,c}, S, P3),
Py = {8 — Aa, A= Sb, S— B, B—aC, C = bB, B — ¢},

as well as the linear grammars G, G, G4 generating the languages

C1 ={S"B"Db|n>1}, Cy={S"B"A™C"Da|n,m > 1},
Cs = {w h(mi(w))c | w € {S, A}*},

respectively, where h is the morphism defined by h(S) = B,h(4) = C, and
mi(x) is the mirror image (the reversal) of z.

One can see that we have the equalities L((G;,GL)) = L;, i = 1,2, 3.

The first two cases are left to the reader and we discuss here only the last one.
Consider a terminal derivation in the grammar G3. If the path from S to ¢ in the
associated derivation tree is in the language C's, then it is described by a string
of the form Sayas ... apBfy ... f2f1c, where o € {S, A}, 8, € {B,C}, such
that 8; = h(o;),1 <4 < k. This means that the string ), ... 858 ca, . .. aha)
is in the language L(v), where 8, = o} = o if §; = S (hence o; = B), and
Bi = a =bif §; = A (hence o; = C). This proves that all strings in L(v) are of
the form wew, w € {a,b}*.

However, the families PC(F, F'), F € {LIN,CF}, are not “too large”. First,
let us point out an “upper approximation” for them, the classic family M AT of
languages generated by matrix grammars.

Proposition 6 PC(CF,CF) C MAT.

Proof. Let v = (G, G') be a path-controlled grammar with G = (N, T, S, P),
G' = (N',NUT,S' P') being context-free grammars; without loss of the gen-
erality we may assume that L(G") C {S}N*T. We define the matrix grammar
G" = (N",T", S" M), with
N' = NUN'U{X,X | X e NUT}U{S"},
T" = TU{[A,B]|A€ N,Be NUT},
M = {(8" =85 u{(r)|re PYU{X = h(x)) | X -2 € P}
{(A—uXv,A->[AX]))|AcuXve X e NUT}
{@—=a,ad—0a)|acT}

C C

where h is a morphism from (N’ U N U T)* into (N’ U{X | X € NUT})*

A

defined by h(X) = X,if X € N’,and h(X) = X,if X e NUT.

The idea behing this construction is the following: we start by constructing
a string of the form SA; Ay ... Apd, where A1 As... Aga € L(G2); then we
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start a derivation in the grammar (; taking care that always when rewriting a
barred symbol A; which introduces a barred symbol 5; (always there is exactly
one barred symbol), the corresponding symbol A; is replaced by [4;, B]. The
derivation is finished only after removing all symbols with a hat. If in the obtained
string the couple symbols [A;, B;] are such that B; = A, 1, this means that the
rules used in the derivation with respect to 3 which contain barred symbols have
followed a path which is described correctly by the string A1 4s ... Aga € L(Gs)
constructed initially.
A more formal counterpart of this explanation can be given.

Claim. A derivation S =* zay,a € T,z,y € T, with respect to G, with
the derivation tree containing a path described by A1 A ... Apa € L(G' ), exists
if and only if tA;y[A1, As)[Ag, As) .. [Ai1, Ai]Aj Ay ... A € L(G").

We leave to the reader the technical task of proving (by induction on %) this
claim, and we now define a gsm A which reads and leaves unchanged the prefix
of its input string till the first symbol [A4, B] is met, then removes the rest of the
input string, checking at the same time the following conditions (if one of them
is not satisfied the machine is blocked and no output is produced): (i) For each
consecutive symbols [A, B][C, D] on the input tape, B = C must hold. (ii) The
last two symbols of the input string are [A, a]a for some A € N anda € T

By the previous claim and since each terminal string produced by the matrix
grammar is of the form z[A;, As)[As, A4].. . [A2n-1,0]b, z € T, a,b € T,
A; e N1 <i1<2n-1, A =S, it follows that the image of L(G"") through the
gsm M is equal to L(vy). Because the family of matrix languages is closed under
gsm mappings, the proof is complete. |

Unfortunately, the fact that each path-controlled language is a matrix language
does not say too much, because not so many (linguistically appealing) properties of
matrix languages are know; in particular, no pumping property is known for matrix
languages. Fortunately, such a property can be direcily obtained for languages in
the family PC(C'F, CF'), with a stronger form for PC(LIN, LIN).

Proposition7 If L C V*, L € PC(CF,CF), then there are two constants p
and q such that each string z € L with |z| > p can be written in the form z =
U101 UaVa U3 V3 U4V Us, Such that 0 < |v1vevsvs| < g and uiviugviusviugviug €
Lforalli> 1.

Proof. Consider a path-controlled grammar v = (G, G’), with context-free
components G = (N,T,S,P),G' = (N',NUT,S', P).

[tis clear that without any loss of the generality, we may suppose that the gram-
mar G' contains no A-rule and no chain rule (rule of the form A — B, for A, B
nonterminals) — we deal with the language L(G"), not directly with the grammar
@', hence we can apply classic erasing and chain rule reduction algorithms in order
to obtain a grammar equivalent with G’ and having these properties.

Now, if L(7) is finite, then the proposition holds by default. Assume that
L(+) is infinite, and consider an arbitarily long string in L(y). (Because of space
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restriction, we give here only a partially formal argument — based on the so-called
pigeon hole principle —, which can be followed on the graphical representation
from Figure 1.) Consider a derivation tree 7 for z with respect to the grammar G
which has a path described by a string from the language L(G'). Denote by § this
path, and let @ = SA; Ay ... Aga be the string from L{G’) which describes it,
with A; e N1 <i<k,aeT.

S

Uy v U3 U2 (7% V3 U4 V4 Us

Figure 1

Consider the rules A; — z; A;y1y; used when passing from A4; to A; 1 on this
path, as well as the rule A, — z,ay used in the last step of the derivation in ¢
corresponding to the path §. If any z;y; contains a nonterminal B such that the
substring of z derived from this nonterminal is long enough, then in the subtree
7 we can find a recurrent nonterminal: there is a path from B to a leaf where
a nonterminal C € N appears twice, hence the derivation in-between the two
occurrences of C' can be iterated — note that this path, as all paths in the subtree
7B, is not under the control of G, because this subtree is independent of the path ¢
and the path § ensures the correctness of all trees obtained from 7 where the path
§ is present). In this way, we have obtained a pair of pumped substrings of z in
the usual way for context-free languages. The fact that the pumped substrings are
bounded in length is ensured by the similar property from the pumping lemma for
context-free languages.

Assume now that there is no such a nonterminal B. On the one hand, this
means that all derivations starting from the nonterminals which are not appearing
on the path § are of a bounded length — denote this bound by 7. On the other hand,
the previous assumption implies that the path 4, and hence the string « describing
it, are arbitrarily long.

This means that we can find a symbol D € N’ which is repeated arbitrarily
many times on a path in the tree 7. Thus, we can find at least two such occurences
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of D, let us denote them by D;, Ds, such that the corresponding subderivations
D; =~ /Bi,lDi/Bi,Q from 7' have 5@1 = F, ﬁi,g = Eg,i = 1, 2.

Consequently, the subderivation Dy =" Ej 11D E>02, can be iterated in
the grammar &’ and, also, the derivations corresponding to the substrings £1 61 1
and F3f3 1 of o can be iterated in G.

Therefore, we have found two substrings v and z of « such that a = wvwazy
and the following two assertions hold: (1) uviwz'y € L(G'),4i > 1, (2) for each i
we can iterate a subderivation of the derivation in G described by 7 such that the
subderivations described by v and z are repeated.

Now, if we iterate the subderivations of 7 which correspond to the iteration of
v and 2 in the string «, this will lead to the pumping of four substrings of z, two in
the left hand of the path § and two in the right hand of this path (see again Figure
1). However, we have assumed that the derivations starting from nonterminals
which are placed outside the path § produce only substrings of a length bounded
by the constant r. Also the strings v,z pumped in « can be bounded. Therefore,
also the substrings of z which are obtained by starting from the nonterminals of v
and z are bounded in length by a given constant, that is, the total length of the four
pumped substrings of z is bounded by a constant, ¢. This concludes the proof.
(The reader with a mathematical background can easily fill in the combinatorial
arguments described in a rather informal manner here, following the classic proof
of pumping lemma for context-free grammars). B

The classic pumping lemma for context-free languages has a special form for
linear languages: if L € LIN, then there are p, ¢ € N such that each string z € L
with |z| > p can be written in the form z = wvwzy, with 0 < |vz| < |uvzy| < ¢,
such that uvwz'y € L for all 7 > 1 (that is, the pumped positions can be chosen
at a bounded distance from the ends of the string). As it is easy to see from the
proof of Proposition 7, the same property can be obtained also for languages in the
family PC(LIN, LIN), just by choosing the iterated nonterminals D which are
the closest to the root of the tree 7' with respect to G’ (then, the iterated substrings
of o will be close to the ends of the string, hence two of the iterated substrings of
z will be close to the ends of z, too). Thus, we obtain:

Proposition8 If L C V*,L € PC(LIN,LIN), then there are two constants
p and q such that each string z € L with |z| > p can be written in the form
Z = U1 UaVaUugUsUaUsis, such that 0 < |viveusvs| < ¢ lusvivaus| < ¢, and
2; = uw{uzvgugv%uw}i% € Lforalli > 1.

There are several consequences of the previous pumping lemmas:

e The inclusion PC(CF,CF) C MAT is proper. An example of a ma-
trix language which does not have the pumping property from Proposition 7 is
{alafa}a}a? | n > 1}. This language also illustrates the next assertion.

® The path-controlled grammars, even with context-free components, “cannot
count to five” (but, as we have seen in Proposition 5, path-controlled gramamars
with linear components “can count to four”).
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e The languages in the family PC(CF, C'F') (and hence also those from the
family PC(LIN, LIN) have the bounded growth property, for each infinite lan-
guage L € PC(CF,CF) there is a constant r such that for each string z € L there
is z' € L such that |z/| — |z| < r. This is important from a linguistical point of
view, as languages with “jumps in length” do not look “natural”, see (Joshi 1985).

e The family PC(LIN, LIN) is not closed under concatenation: the language
L = {ata%a}a} | n > 1} is in PC(LIN, LIN) (Proposition 5), but LL is not,
because it does not fulfill the condition in the pumping lemma for this family, see
Proposition 8.

This last language is not context-free, but there also are context-free languages
which are not in PC(LIN,LIN). This can be proved by using another classic
necessary condition for a language to be linear: if L C V*, L € LIN, then there
are two regular languages L1, Lo such that I. C L Ly and for each string x € L
(each string y € L) there is a string y € Lo (a string £ € Ly, respectively) such
that zy € L.

Proposition 9 For each language L CV* L € PC(LIN, LIN), there are three
linear languages Ly C V*{c}V*, Ly C V*{c}V* L3 C V*, where c ¢ V, such
that:

() L C {ujusuguqus | urcus € Ly, uscug € Lo, ug € L3},

(ii) For each string uycus € Ly (for each string uscuy € Lo, for each string
us € Lg3) there are a string uscuy € Lo and a string ug € Ls (a string
uicus € Ly and a string us € Ls, respectively, a string uijcus € Ly and a
string uscuy € Lo) such that uyusugusus € L.

Proof. Instead of a completely formalized proof, we choose again to use a
picture to explain the reasoning. Consider the situation illustrated in Figure 2,
for a given path-controlled grammar v = (G, G’) with linear grammars G, G,
G=(N,T,5,P).

We have a derivation tree 7 with respect to the grammar (7, where a path §
exists which is described by a string « from L(G'). Assume that this path ends
when using a rule B — wuay. The language L3 we look for is the union of all
languages generated by the linear grammars Gg = (N, T, B, P), B as above.
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Uy U2 a U3 Ug U

Figure 2

Now, consider the previously mentioned property for the linear language
L(G"). Two regular languages R, R exist such that L(G') C RiRy, and all
strings from R, Ry are useful, in the sense specified above. We construct two
path-controlled grammars y; = (G1,G1), 72 = (G2, GY), where

Gy = (N, TU{c},S,PU{A—c|Ae N},
G, :(N,TU{C},So,PU{SO —)A,A—>CtA€N}),

and G),G) are regular grammars generating the languages Ri{c} and
{SoHUaer 04(R2)){c}, respectively. Then, Ly = L(y1) and Ly = L(72)
have the desired properties. First, in view of Proposition 2, the languages L1, Lo
are linear. Then, each string from L(-y) can be obtained by interleaving strings
from the three languages L1, Lo, L3: from the property of languages R, Fo, the
path § is cut into two parts, each one from one of the regular languages E1, Rs.
The definition of the path-controlled grammars +;,7» follows this separation
according to -Ry, Ry. The derivations in Gy start as any derivation with respect
to G from S and end by introducing the symbol ¢. The derivations in G5 start
from the new axiom Sy, which directly introduces any nonterminal of G, and also
ends by introducing the symbol ¢. These two derivations can be “concatenated”,
ignoring the symbols ¢, and can be completed with a derivation corresponding to
the linear language Lg, so that the obtained derivation is correct with respect to
~. Because no string from Ry, R» is useless, no string from Ly, Lo is useless; the
same is true for the strings of L. B

From this proposition we get two important consequences:

Proposition 10 (i) CF — PC(LIN,LIN) # . (i) The inclusion
PC(LIN,LIN) Cc PC(CF,CF) is proper.

Proof. The context-free language {a™ b™a™2b™ ... a"6b" | nq,...,ng > 1}
does not have the property from Proposition 9, as one can easily check. [
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Consequently, the family PC(LIN, LIN) is incomparable with the family of
context-free languages (and includes the family of linear languages). This corre-
sponds to the speculation that this is probably the case with the classes of gram-
mars which are adequate for modeling the syntax of natural language, see, e.g.,
(Manaster-Ramer 1999; Marcus, Martin-Vide and Paun 1998).

One of the most important properties of any class of grammars which aims to
be considered a model of syntax is the polynomial parsability.

This can be achieved for path-controlled grammars v = (G, G') with linear
components and such that Gy has a bounded ambiguity (for each string in the
language L((G) there are at most k different derivation trees, for a given constant
k) in the following manner. Let G = (N,T,S,P),G' = (N',NUT,S, P').
Assume that there is no derivations of the form A =* B with respect to G (if
such derivations exist, then we remove all chain rules from GG by the well known
algorithm, and this requires a polynomial time). We now construct a gsm M which
scans strings from {S}N*T and, nondeterministically, for each symbol A € N
either leaves it unchanged, or removes it provided that tere is a rule B — A in
P and B was just scanned before A (this can be “remembered by the state of
M). Therefore, substrings which correspond to recurrent derivations in G which
produce nothing are either erased or not (the second case prevents the possibility
to also have productive derivations with the same nonterminals). Consider the
language M (L(G")). Because LIN is closed under gsm mappings, this language
is linear; let G’ be a grammar for it and consider the path-controlled grammar
' = (G,G"). The equality L(y) = L(') is obvious (note that we have L(G") C
M(L(G")))-

Consider a string w € T™*. We construct as above the path-controlled grammar
' (this takes a polynomial time). The string w is generated by ' if and only if
there is a tree with respect to G of height at most card(N)|w|. Thus, we first decide
whether or not w € L((G) (this can be done in polynomial time). If w ¢ L(G),
then w ¢ L(v). fw € L(G), then we consider all the derivation trees T for w
with respect to 7. Because we have assumed that G has the degree of ambiguity
at most k, the number of such trees 7 at most k.

For each tree, we have |w| paths from the axiom S to a leaf node. For each
such a path we check whether or not it is described by a string in L{G""). Because
the height of the derivation trees we consider are bounded, the length of the paths
in these trees are bounded, hence the membership of the associated strings to the
language L(G") can be decided in polynomial time (with respect to the length of
the strings, which in turn is polynomially bounded with respect to the length of
w). If at least such a path, for at least a tree 7/, exists, then w € L(+y), otherwise
w ¢ L(y).

In total, the decision takes a polynomial time. We formulate this important
conclusion as a proposition.

Proposition 11 If v = (G, @) is a path-controlled grammar with linear compo-
nents G, G' and such that G has a bounded ambiguity, then the parsing of strings
in L(7y) can be done in polynomial time.
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It is a natural (and interesting) open problem whether or not the previous propo-
sition can be extended to all path-controlled grammars, that is, without imposing
the bounded ambiguity condition.

3 Final Remarks

Starting from an “old” paper by I Bellert, which has introduced a (complicated)
class of regulated context-free grammars in the aim of formalizing constructions
from natural languages (with a detailed application to Polish), we have considered
a new type of restriction in derivation: a derivation tree in a context-free gram-
mar is accepted only if it contains a path which is described by a string which can
be generated by another context-free grammar. We have found many properties
of such devices (generative power, pumping properties, properties related to the
mildly context-sensitive concept), but still many problems remain to be solved,
both of a language theoretic type — for instance, closure and decidability prop-
erties — and of a linguistical type — concerning the adequacy/relevance of these
grammars. Irrespective of the answer to such questions, we believe that at least
from a historical point of view, this new-old type of regulated mechanism deserves
to be investigated and further examined.

As the control by considering only one path from a derivation tree does not
look very restrictive (also for capturing linguistics constraints), stronger controls
could be of interest. Here are iwo posibilities: to have all path from a derivation
tree described by strings in a given language, or, an intermediate case, to select
some paths (by a “pre-condition”, for instance, a regular language) and to impose
a condition as above only to the selected paths. The formal study of such variants
remains to be carried out; we hope to return to this topic in a forthcoming paper.
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