
CGN to Grail

Extracting a Type-logical Lexicon From the CGN Annotation

Michael Moortgat and Richard Moot

Utrecht institute of Linguistics OTS

Abstract

The tag set for the CGN syntactic annotation is designed in such a way as to enable a trans-
parent mapping to the derivational structures of current ‘lexicalized’ grammar formalisms.
Through such translations, the CGN tree bank can be used to train and evaluate computa-
tional grammars within these frameworks.

In this paper we will discuss some preliminary work on the mapping between the
CGN annotation graphs and the proof net format of the Grail parser/theorem prover
(Moot 2001, Moot 1999). Grail is a general grammar development environment for type-
logical categorial grammars (TLG, (Moortgat 1997, Morrill 1994, Carpenter 1998)). To
a large extent, there is a straightforward transfer between the type-logical format and the
analyses provided by other lexicalized grammar formalisms such as LTAG (lexicalized
Tree Adjoining Grammars, (Sarkar 2001)) and MG (computational versions of Minimal-
ist Grammars, (Stabler 1997)). An attractive feature of TLG, which is not shared by these
other frameworks, is its full support for hypothetical reasoning.

In this paper, we exploit the hypothetical reasoning facilities to extract a type-logical
grammar from the CGN annotation graphs. This task can be naturally divided in two sub-
tasks. The first of these consists in solving type equations: in the TLG setting this means
breaking up the CGN annotation graph into the subgraphs that correspond to lexical type
assignments. In the presence of discontinuous dependencies, the lexical type assignments
will not always be compatible with surface word order. The second subtask then consists in
calibrating the lexicon in such a way that it has controlled access to the structural reasoning
component of the grammar.

1 Introduction

The aim of the Spoken Dutch Corpus CGN (Corpus Gesproken Nederlands) is to
build a database of contemporary spoken Dutch. The final version will contain
around 10 million words. In addition to providing 1000 hours of audio, the corpus
will be annotated in various ways: the entire corpus will be tagged for part-of-
speech information, parts of the corpus will receive a phonetic transcription and
be tagged for prosodic information, and so on.

In this paper we will focus on the syntactic annotation component. A total of
one million words of the corpus will be syntactically annotated, part manually, part
automatically. The annotation software used to this purpose is the annotate tool
(Plähn 2000), which was developed at the university of Saarbrücken and which
has been successfully used for the annotation of the NEGRA corpus.

For data exchange, annotate provides a line-oriented, ASCII based export for-
mat that can be efficiently processed by applications that want to make use of

2 Michael Moortgat and Richard Moot

the annotation information. The philosophy behind the CGN syntactic annotation
schema is to provide an informationally rich, but theory-neutral annotation level.
The export format then allows users to convert the annotation information in the
way which is most convenient for them; that is, we want to derive theory specific
notions from the theory neutral export format.

As an illustration of this approach, we present a translation of the CGN an-
notation graphs into the type-assignments and proof nets of Type Logical Gram-
mar (TLG, (Moortgat 1997, Morrill 1994, Carpenter 1998)). To a large extent,
type-logical analyses are compatible with analyses within other lexicalized com-
putational grammar formalisms—see for example (Moot 2000) on the encoding
of TAGs into TLG proof nets, and (Vermaat 1999) on the embedding of Stabler-
style Minimalist Grammars into TLG. But as a logic-based framework, TLG has
extra inferential possibilities. In this paper, we will exploit the full support for
hypothetical reasoning to induce a type-logical grammar from the CGN syntac-
tic annotation. The first step is to extract a type-logical lexicon from the CGN
annotation graphs: the approach described in

�
4 provides an algorithm based on

hypothetical reasoning for solving the type-assignment equations. To make the so-
lutions for these type equations compatible with surface word order, some form of
structural reasoning is necessary. The CGN annotation graphs provide a tree bank
to determine from data what the appropriate structural package would be. In

�
5,

we discuss the fine-tuning of the interface between the lexicon and the structural
reasoning component of the grammar.

2 CGN Annotation Graphs

The CGN annotation uses directed acyclic graphs (DAGs), where the vertices are
labeled by syntactic categories and the edges labeled by dependency relations. We
will only give a brief exposition of the basic ideas behind the annotation format,
full details can be found in (Hoekstra, Moortgat, Schuurman and van der Wouden
2001) in this volume.

The annotation graphs allow us to specify structures which are unlike ‘typical’
tree-based grammatical descriptions. DAGs are allowed to be disconnected, DAGs
can have discontinuous constituents or ‘crossing branches’ and DAGs can have
multiple dependencies, where a single constituent plays a grammatical role in more
than one domain. An example of a CGN annotation graph, which we will use as
a running example throughout this article, is given in Figure 1. The direction of
the edges is implicit in the graph; if we would draw the direction of the edges
explicitly, they would all point downwards. Note that the wh word ‘wat’ (what)
gives an example of multiple dependencies: it has the grammatical role of [whd],
the head of the wh question WHQ, but at the same time it functions as the direct
object [obj1] in the INF domain. The advantage of this form of annotation is that
phrasal category and dependency information can be expressed without traces or
other syntactic elements without phonological realization.

Another point worth noting is that we produce very flat annotation structures;
a syntactic domain is only introduced when it is necessitated by a new head.

CGN to Grail 3

WHQ

body

SV1

VNW8

wat gaan we doen het komend uur

WW2 VNW1 WW4 LID WW6 N1

NPINF

whd hd suobj1 hd det mod hd

vc mod

Figure 1: A CGN annotation graph

3 Categorial Proof Nets

The categorial proof nets presented in this section are essentially the same as those
used by (Moot and Puite 2001). We refer the reader to that paper for formal re-
sults, showing soundness and completeness of these proof nets with respect to the
sequent calculus for multimodal categorial grammar of (Moortgat 1997), and give
only an informal introduction here.

Definition 1 A categorial proof net system consists of the following:

[Terminals] Terminals are the lexical words of our grammar. We denote a word
as a terminal by enclosing it in a square box, as follows.

alcohol Apeldoorn reclame �����

[Nonterminals] Nonterminals denote the syntactic types of expressions.

s, n, np, �����

[Constructors] Finally, we have constructors which allow us to make complex
expressions out of terminals and nonterminals. There are four basic binary
constructors.

4 Michael Moortgat and Richard Moot

A

B C

�
A

B C �

A

B C �

A

B C

The downward branching constructor, the main constructor, has no constraints
associated with its use.

The upward branching constructors, which we will call auxiliary and which we
draw with a black center, denote constraints on the use of their lexical entry, in
a sense to be made precise later. The only difference between the three auxiliary
constructors is which of the three points it connects is the output, as indicated by
the arrow.

More formally, a constructor � is a tuple �����
	����������	����� , where ����	�� is
either � (black) or � (white), � is a sequence of vertices which are ‘above’ � , � is
a sequence of vertices which are ‘below’ � , 	 is a subsequence of � , the outputs
which are ‘above’ � , and � is a subsequence of � , the outputs which are ‘below’
� , such that length ��	! #" length �$�� &%'� , that is, a constructor has at most one
output.

In this notation, we write the four constructors as �(�)
* +�,-
* ./��0,12* ,-
* ,�� ,
���3
* ./��0,12* +4,12* ,-
* +�,5� , �$�3
* ./��0,-
* +�,-
* �0,12* ,�� and �$�32* .67�0,-
* +�,-
* .8,-
* ,�� .
Definition 2 A lexical entry for a categorial proof net system is a free tree made
from constructor nodes such that

1. every root node (there can be multiple root nodes because of the auxiliary
constructors) is labeled with a nonterminal symbol.

2. every leaf is labeled with either a nonterminal or a terminal symbol.

3. at least one leaf of every lexical entry is labeled with a terminal symbol.

Because the auxiliary constructors have more than one parent node, they pre-
vent the graph we are constructing from being a rooted tree. To remove these
auxiliary constructors, we define the following graph contractions on the graphs in
our system.

Definition 3 We define the following graph contractions on categorial proof net
systems, one for each of the auxiliary constructors. Whenever we find one of the
following three configurations of constructors, we can contract this configuration
to a single point.

�

� �

CGN to Grail 5

Note that all contractions are of the same general form: they combine an aux-
iliary constructor with a main constructor on both ends not marked by the arrow
and in a way which respects the up-down and left-right ordering of the nodes.

Also note that drawing these graphs on a plane sometimes requires us to bend
one of the connections, because we want to keep all up-down and left-right dis-
tinctions explicit in the graph. These bends disappear if we draw the graphs on a
cylinder.

Definition 4 A grammatical expression of type
�

in a proof net system is a graph
which contracts to a rooted tree � , with

�
as its root, and where all leaves are

labeled with terminals.

Example 1 An example lexicon for a categorial proof net system is given in Fig-
ure 2. We have simple lexical entries, like ‘Albanië’ (Albania) and ‘politie’ (po-
lice), which simply assign a syntactic category to a word, but also more complex
lexical entries, like ‘de’ (the) which combines with a syntactic expression of cat-
egory � to its right to form a syntactic expression of category � 	 . Similarly, the
transitive verb ‘steunt’ (supports) combines with an � 	 to its right and with an � 	
to its left to form an expression of type � .

� 	
Albanië

� 	
alcohol

� 	
Milosevic

�

tram

�

school

�

politie

� 	

de �

�

ernstige �

�

amsterdamse �

�

� 	 slaapt eist � 	

�

� 	

steunt � 	

�

� 	

Figure 2: Some simple lexical graphs

We can use the auxiliary constructors to assign quantifiers like ‘iemand’ (some-
one) the lexical graph given in Figure 3.

This lexical entry indicates that ‘iemand’ selects an � to produce an � , where we
can use an � 	 inside this � , subject to the condition that the special constructor can

6 Michael Moortgat and Richard Moot

�

�

� 	

�

iemand

Figure 3: Lexical graph for a generalized quantifier

be contracted according to Definition 3. The difference between the assignment of
‘iemand’ to that of simple � 	 ’s like ‘Albanië’ is that the assignment above allows
‘iemand’ to take scope at sentence level as a generalized quantifier.

Example 2 We can derive ‘iemand slaapt’ (someone sleeps) to be a well-formed
expression of type � by the derivation shown in Figure 4. First, we connect the
bottom � of ‘iemand’ to the � of slaapt, which results in the structure on the left.
After identifying the two � 	 nonterminals, the structure will look as shown in the
middle of Figure 4. Note that this structure is of the proper form to apply the
contraction for the auxiliary constructor, as indicated by the dotted box around
the redex. The resulting tree after the contraction is pictured on the right.

� 	 slaapt

�� 	

�

iemand

�
Connect

slaapt

�

�

iemand

�
Contract

�

iemand slaapt

Figure 4: Derivation of ‘iemand slaapt’

CGN to Grail 7

To give a direct correspondence to the multimodal sequent calculus, the full
system described in (Moot and Puite 2001) is more extensive than the one de-
scribed above in a number of ways. We will see later that we need some of these
extensions for our proposed translation.

First of all, we allow our lexical graphs to have unary branches, which look as
follows.

�
�

As with the binary constructors, the only difference between the unary auxil-
iary constructors is in the arrow which indicates the output connection. We can
contract a main and an auxiliary unary connector if they are connected at the point
which is not the output of the auxiliary constructor, just like with the binary con-
structors.

Secondly, we allow our constructors to have different modes of composition by
writing an index � , out of a finite set of possible indices � , inside the constructor,
as follows.

�
�

�
�

�

�
�

�
�

�
�

�

Finally, in addition to the contractions we allow a grammar to specify structural
conversions which convert one tree of main constructors into another tree of main
constructors with the same leaves. An example of a structural conversion, where 0
and 1 are elements of � , would be the following.

�

�

�
�

�

�

�

� �
�

�

�

�

There is a straightforward correspondence between the nets described in this
section in terms of unary and binary constructors and the type language of TLG

8 Michael Moortgat and Richard Moot

(Moortgat 1997), where we build complex types out of atoms by means of unary
and binary connectives (indexed for composition modes, in the case of a multi-
modal system):

Type ����� Atom
���

Type
���

Type
�
Type 	 Type

�
Type
 Type

�
Type � Type

As an example, type assignments corresponding to the lexical nets from (1)
would take the following form:

de � � 		 � amsterdamse � ��	 � steunt � � � 	�� �� �	 � 	 �����

This correspondence extends to the contractions and structural operations de-
fined on nets. The deductive counterpart of the graph contractions of Definition 3
are the residuation laws below.

� +�� . iff +�� � .
+��/��	 . iff +�
 .�� � iff .�� +����

Structural conversions on the nets correspond to structural postulates (non-
logical axioms) in the deductive presentation. Below, as an example, the postulate
corresponding to the structural rewriting we gave before. Note that the structural
conversions perform, from the logical point of view, a type of backward chain-
ing proof search and therefore the direction of the structure postulate needs to be
reversed.

�$+�
 � . �
 � � � ��� +�
 � ��.�
 � � � �
Since it is proved in (Moot and Puite 2001) that the proof nets and the type

language of TLG are two ways of expressing the same information, we will feel
free in the rest of the paper to shift between the nets and the formula presentation
where this is appropriate.

4 Extracting the lexicon

The remainder of this paper will be devoted to translating the DAGs of the CGN
corpus into the proof nets of the previous section. This translation is parametric in
a number of ways.

Firstly, we need to be able to identify the functor of every local domain. Usu-
ally, this will be the head, indicated by the edge label ��� , but in some cases we
might want to diverge from this.

Secondly, we need to be able to identify the modifiers of every domain. Usually
modifiers will be indicated by the edge label ����� but we might want to assign
some other syntactic roles a modifier function.

A final parameter is whether we want to translate the annotated CGN graphs
into a set of lexical graphs or into a single graph where all connections of nonter-
minals are already explicit. The first choice will be useful to test the predictions of
the annotated corpus on new sentences, whereas the second choice will be useful
to see which structural conversions we need to add to the system to produce the
right word order. We return to this issue in

�
5.

CGN to Grail 9

4.1 Basic Entries

When translating the basic entries, the issue of granularity surfaces. The tags for
some words differ only in the morphological information. For example, at the
level of the leaves of the CGN annotation graphs, the syntactic category VNW for
‘voornaamwoord’ (pronoun) has 19 different instantiations depending on whether
it is a personal pronoun, a reflexive pronoun, a demonstrative pronoun, and so on.
Do we want to distinguish all of these in the translation, or do we want to conflate
some of these distinctions?

Determining the appropriate level of granularity is a matter of grammatical
fine-tuning. For expository purposes, we stay at a rather coarse level in this paper.
We will translate the syntactic categories of our example sentence into nonterminal
categories as follows.

VNW1 �
� 	

VNW8 �
� 	

N1 �
�

INF � inf
SV1 �

� � �
WHQ ��� � �

With this translation in hand, we can immediately assign two of the words of
the example a lexical entry, as shown below.

� 	
we

�

uur

4.2 Modifiers

The example sentence of Figure 1 has two modifiers: ‘komend’ (next) is a modifier
at the � 	 level, whereas the phrase ‘het komend uur’ (the next hour) is a sentence
level modifier. We repeat the relevant part of Figure 1 in Figure 5.

The � modifier is lexically anchored and is in fact the same lexical graph used
for noun modifiers in the example lexicon in Figure 2. The translation for the � � �
modifier is still partial, since it depends on the translation of the functor of the NP
domain.

�

komend �

� � �

� � � ?

10 Michael Moortgat and Richard Moot

SV1

het komend uur

LID WW6 N1

NP

det mod hd

mod

Figure 5: Modifiers from Figure 1

4.3 Functors

For functors, we again have to make a choice: do we want to follow the surface
structure as much as possible and basically generate the words of the sentence in
the right order, or do we want to assign functors a structure which is as canonical
as possible, which would reduce the number of different lexical assignments and
require us to derive the other possibilities from this canonical structure via some
appropriate form of structural rewriting. For the moment we choose the first option
and we defer the discussion of structural reasoning to

�
5.

The functor ‘doen’ (to do) selects a direct object � 	 to its left to produce an inf
category. This is coded by the following lexical graph.

doen

� 	 WW4

obj1 hd

INF

�

inf

� 	 doen

The functor ‘het’ (the) selects a noun to its right to produce the translation of
the � 	 category.

CGN to Grail 11

het

�LID

det hd

NP

�

?

het �

As we have seen in the previous section this translation is an � � � modifier, so
the final result will select an � to its right to produce an � � � modifier as follows.

het �

� � �

� � �

The auxiliary verb ‘gaan’ (go) selects for a subject � 	 and an infinitival com-
plement inf, which is translated as follows.

gaan

� 	 infWW2

hd su vc

SV1

�

gaan � 	

� � �

inf

4.4 Multiple Dependencies

Because the auxiliary links for lexical proof structures have more than one parent,
it seems evident we can use auxiliary links to encode the multiple dependencies
which are possible in the CGN annotation graphs.

The multiple dependency in our example, schematically repeated as Figure 6 fo
convenience, will be converted as follows, indicating that the question word ‘wat’
(what) produces an expression of type � � � if it finds a constituent of type � � �
to its right with a hypothetical subconstituent of type � 	 in it. For some readers
it may be helpful to picture this hypothesis as the ‘trace’ bound by the question
word.

12 Michael Moortgat and Richard Moot

wat

VNW8

SV1

WHQ

whd body
�

�

� � �

� 	

� � �

wat

Figure 6: The multiple dependency from Figure 1

The introduction of an auxiliary constructor in the lexical graph commits us to
contract this constructor, thus withdrawing the � 	 hypothesis. Creating the appro-
priate configuration for contraction may require the use of structural conversions.
We will return to the topic of structural conversions in

�
5, where they allow us to

derive discontinuous constituents.

4.5 Edge Labels

So far, we have treated the edge labels as only providing us with the information we
need to determine which structures are functors and which structures are modifiers.
We now want to refine the translation function to also take the information about
the dependency relations into account.

In the example below, ‘doen’ (to do) selects an � 	 which functions as a di-
rect object [obj1]. One possibility is to encode this information into the mode of
composition, assigning ‘doen’ the type np � obj1inf, as in the graph below. Note
that the [hd] syntactic relation is implicit in this encoding, in the sense that func-
tors and heads are identified. Note also, that in a language (like Dutch) with
both head-initial and head-final phrases, one would have to take the head posi-
tion into account. This can be done by distinguishing, say, l(M) versus r(M) for
left- versus right-headed structures, assigning the dependency role

�
to the non-

head component. In the case of our head-final transitive infinitive, this yields the
type np � r(obj1)inf.

CGN to Grail 13

doen

� 	 WW4

obj1 hd

INF

�

inf

� 	 doen

� �

An alternative solution would be to encode the grammatical relations as unary
branches in the lexical graph. This allows us to code also the [hd] edge label
explicitly, as in the graph below. In the remainder, we go for the first option,
because we want to reserve the unary connectives for another purpose — they will
act as control features for structural reasoning.

doen

� 	 WW4

obj1 hd

INF

�

inf

� 	
� �

doen

���

4.6 Implementation

As already suggested by the previous sections, the translation from the CGN anno-
tation graphs to the TLG framework can be fully automated. The implementation
of the conversion, given in Figure 7 proceeds on the assumption, which does not
necessarily hold of general DAGs, but which is true of the DAGs we use for the
CGN annotation, namely that every connected component of the DAG has a unique
root vertex.

An implementation of the conversion utility is available through ftp at the fol-
lowing URL.

ftp://ftp.let.uu.nl/pub/users/moot/cgn.tar.gz

5 Discontinuous dependencies and structural reasoning

As remarked above, the dependency relations coded in the CGN annotation graphs
can be at odds with surface order and constituency. In our example of Figure 1,
we already see an illustration of such a discontinuous dependency: the secondary
edge linking the question word ‘wat’ to the direct object role within the infinitival
complement headed by ‘doen’ crosses the finite verb and subject edges.

To make the lexical type-assignments compatible with surface order, we have
to combine the categorial base logic with some form of structural reasoning. Ear-
lier versions of categorial grammar were ill equipped to deal with the combination

14 Michael Moortgat and Richard Moot

BEGIN
FOR EVERY component � of �

LOOK UP the formula
�

corresponding the the unique root vertex �

TRANSL(� ,
�

)
END FOR
END

PROC TRANSL(� ,
�

)
IF � is a leaf corresponding to word �

add � with formula
�

to the lexicon
ELSE

FOR EVERY daughter � with edge label � of �

IF � is a modifier
TRANSL(� ,

� � �)
ELSE IF � is a complement

LOOK UP the formula � corresponding to �
TRANSL(� , � � �����	��
� ����� � � �����	�����)
WHERE � �

����� � � are the formulas corresponding to
secondary edges of descendants of �

ELSE IF � is a head
TRANSL(� , ��� � �����	�
 � ����� � � �����	� � � � �	����	��������� ����� 	����	���������)
WHERE � �

����� � � are the formulas corresponding to
complements occurring to the left of �

WHERE ��� ����� ��� are the formulas corresponding to
complements occurring to the right of �

END IF
END FOR

END IF
END PROC

Figure 7: The translation algorithm

of logical and structural inference, because they were operating from an essen-
tially one-dimensional perspective on grammatical composition. If there is only
one composition operation around in the grammar, attributing structural properties
to this operation (such as associativity, or commutativity) has a global effect, de-
stroying structural discrimination (for constituency or linear order) throughout the
grammar. What is needed instead of such global choices, is lexically controlled,
local options for structural reasoning.

The multimodal architecture of TLG provides for this form of structural con-
trol. In the presence of multiple modes of composition, one can differentially treat
the structural behavior of individual modes and of their interaction. A constituent

CGN to Grail 15

bearing the [obj1] dependency role, for example, could have a different structural
behavior from a subject constituent. The unary type-forming connectives (

�
and

the residual
�

in the type language) in this respect act as licensing features, pro-
viding controlled access to structural inferences.

The expressive power of the unary constants is by now well understood. The
embedding results of (Kurtonina and Moortgat 1997) show that every corner of the
categorial landscape is in effect reachable by means of the unary control features.
(If one goes beyond resource-sensitive composition modes, the unary operators
even allow an embedding of Intuitionistic Logic, as shown in (Lambek 1993).)
Where exactly in this landscape the natural languages have to be localized, is a
big open research question in TLG. An annotated corpus such as CGN provides a
valuable tree bank to address this question from a data-oriented perspective.

5.1 The structural package

We are currently experimenting with the structural package below (from (Moortgat
1999)) that seems to have a pleasant balance between expressivity and structural
constraint. We first discuss the postulates in schematic form — further fine-tuning
in terms of mode distinctions for the
 and

�
operations is straightforward.

� +
 �$.�
 � � � � � +�
0. �
 � ����� �
 � +
 �$.�
 � � � .�
 � � +�
 � �������)
��+�
0. �
 � � � � ��+�
 � �
0. �������
��+�
0. �
 � � � � +�
 ��.�
 � � ����� ��

The postulates can be read in two directions. In the Output � Input direction,
they have the effect of revealing a

�
marked constituent, by promoting it from an

embedded position to a dominating position where it is visible for the logical rules.
In the Input

�
Output direction, they hide a marked constituent, pushing it from a

visible position to an embedded position. Apart from the
� � asymmetry, there is

a left-right asymmetry: the ��� postulates have a bias for left branches; for the ���
postulates only right branches are accessible.

We highlight some properties of this package.

Control The postulates operate under
�

control. Because the logic doesn’t allow
the control features to enter a derivation out of the blue, this means they have
to be lexically anchored.

Linearity The postulates rearrange a structural configuration; they cannot dupli-
cate or waste grammatical material.

Locality The window for structural reasoning is strictly local: postulates can only
see two products in construction with each other (with one of the factors
bearing the licensing feature).

Recursion Non-local effects arise through recursion.

16 Michael Moortgat and Richard Moot

5.2 Calibrating the lexicon/syntax interface

In order to give the lexical type assignments of
�
4 access to structural reasoning,

we have to systematically refine them with the licensing control features. We fol-
low the ‘key and lock’ strategy of (Moortgat 1999), which consists in decorating
positive subtypes with a

� �
prefix. For a constituent of type

� � + , the
�

com-
ponent provides access to the structural postulates discussed above. At the point
where such a marked constituent has found the structural position where it can be
used by the logical rules, the control feature can be cancelled through the basic
law

� � +��6+ — the
�

key unlocking the
�

lock.
We illustrate the effect of the

� �
decoration on the lexical type assignments

for our running example of Figure 1. Note that the positive subtype � 	 in the
type assignment to the question word ‘wat’ (the ‘gap’ hypothesis) gains access to
structural reasoning by means of its se decoration (for secondary edge).

doen � � ���
�
��� � � 	������ � � � � � � � �

gaan � � ���
�
��� � � �)��	 ��������� � � � 	 ��������� � 	!

het � � � �	� � � �
� � � � � �
� � � � � � � � �)�� �	���� ��� � � 	!

komend � � � � �
� � � � � � � � �

� � � � � � � � �)�� �	 � � � �
� � � � � � � � � ��

uur � � 	
wat � ���

���
��

� � � � � � 	���� � � ��� � � � ��� � ��� � 	������ � � � � � � �

we � � 	

For reasons of space, we shorten the example to ‘Wat gaan we doen?’ (‘what
shall we do’) — this provides enough information to see how the discontinuous de-
pendency is established, and step through the proof net derivation of the simplified
sentence. Figure 8 shows the net with the right connections on the left. Note that
the two occurrences of � correspond to the same vertex in the graph. For a success-
ful contraction as required by Definition (4), the direct object hypothesis labeled �
has to be moved upward. For this we need the following mode-instantiated version
of postulate ����� .

�
��� +�
���� � � � � � ��.�
 ���������!� � .�
 ��������� � � ��� +
���� � � � � �!� �$��� �

After the ����� structural rewriting, the unary and binary redexes are all in the
right configuration for contraction, as shown in Figure 8 on the right. The resulting
tree is displayed in Figure 9.

Note that in this derivation, only the licensing feature on the hypothesis � 	
subtype for ‘wat’ played an active role — the inert control features in that type
assignment could be simplified away. We can anticipate that the mod feature for
the sentential modifier ‘het komend uur’ (‘the next hour’) will be active too, if we
want to derive our running example and the variant ‘wat willen we het komend uur
gaan doen’ from the same type assignments. In this variant the modifier separates
the infinitival complement from its head — a structural conversion that can be
accomplished by ����� (in the ‘hiding’

�
direction).

CGN to Grail 17

we

� � � � � � � � � �

� 	 �
 � 	

�
��

gaan

�
� �

�
�
��

doen

��� ���
� � � � �

�
� � � � �

�

� � �
� � � 	 �

� � 	

��
��

wat

we

� � � � �

� � � � �

� 	

�
��

gaan

�

�
� �

�

� 	

�
��

doen

� � � � �

�
� � � � �

�

� � �
� � � 	 �

� � 	

��
��

wat

Figure 8: The application of the �! #" conversion

gaan we

� � � � � doen

� � � � �

� � �

wat

� � � 	 �

Figure 9: The resulting tree

6 Concluding Remarks

We have shown that the theory neutral annotation format used by CGN contains
enough information to construct a type logical lexicon from it. The translation we

18 Michael Moortgat and Richard Moot

have proposed is parametric in a number of respects. Our general strategy now is
to use the growing CGN tree bank to determine which dependency modes should
have access to which structural postulates, and to find out what the proper balance
is between storage (the tolerated amount of lexical ambiguity) and computation
(the complementary amount of on-line structural reasoning needed).

References

Carpenter, B.(1998), Type-logical Semantics, MIT Press.
Hoekstra, H., Moortgat, M., Schuurman, I. and van der Wouden, T.(2001), Syntac-

tic annotation for the spoken Dutch corpus project (CGN), in W. Daelemans
(ed.), Proceedings of CLIN2000.

Kurtonina, N. and Moortgat, M.(1997), Structural control, in P. Blackburn and
M. de Rijke (eds), Specifying Syntactic Structures, CSLI, Stanford, pp. 75–
113.

Lambek, J.(1993), From categorial grammar to bilinear logic, in K. Došen and
P. Schröder-Heister (eds), Substructural Logics, Oxford University Press,
Oxford, pp. 207–237.

Moortgat, M.(1997), Categorial type logics, in J. van Benthem and A. ter Meulen
(eds), Handbook of Logic and Language, Elsevier/MIT Press, chapter 2.

Moortgat, M.(1999), Constants of grammatical reasoning, in G. Bouma, E. Hin-
richs, G.-J. Kruijff and R. Oehrle (eds), Constraints and Resources in Nat-
ural Language Syntax and Semantics, CSLI, Stanford, pp. 195–219.

Moot, R.(1999), Grail: an interactive parser for categorial grammars, in R. Del-
monte (ed.), Proceedings of VEXTAL’99, University Cá Foscari, Venice,
pp. 255–261.

Moot, R.(2000), Proof nets and their relation to LTAGs, Manuscript.
Moot, R.(2001), Grail.

http://www.let.uu.nl/˜Richard.Moot/personal/grail.html.
Moot, R. and Puite, Q.(2001), Proof nets for the multimodal Lambek calculus, in W. Busz-

kowski and M. Moortgat (eds), Studia Logica, Kluwer. Special Issue Dedicated to
Joachim Lambek.

Morrill, G.(1994), Type Logical Grammar, Kluwer Academic Publishers.
Plähn, O.(2000), Annotate.

http://www.coli.uni-sb.de/sfb378/negra-
corpus/annotate.html.

Sarkar, A.(2001), Xtag. http://www.cis.upenn.edu/˜xtag.
Stabler, E.(1997), Derivational minimalism, in A. Lecomte (ed.), LACL97, Vol. 1582 of

Lecture Notes in Computer Science, Springer.
Vermaat, W.(1999), Controlling movement. minimalism in a deductive perspective, Master’s

thesis, Utrecht University.

