
Transforming a Chunker to a Parser

Erik F. Tjong Kim Sang

CNTS - Language Technology Group
University of Antwerp
erikt@uia.ua.ac.be

Abstract

Ever since the landmark paper Ramshaw and Marcus (1995), machine learning systems
have been used successfully for identifying base phrases (chunks), the bottom constituents
of a parse tree. We expand a state-of-the-art chunking algorithm to a bottom-up parser by
recursively applying the chunker to its own output. After testing different training con-
figurations we obtain a reasonable parser which is tested against a standard data set. Its
performance falls behind that of current state-of-the-art parsers. We give some suggestions
for modifications of the parser which may lead to future performance improvements.

1 Introduction

Ramshaw and Marcus (1995) have proposed approaching base phrase identifi-
cation by regarding it as a tagging task. Phrases in a text can be represented by
word-related phrase chunk tags, like I (inside chunk) and O (outside chunk). The
advantage of this approach is that arbitrary simple machine learning algorithms,
for example classifiers, can be used for performing this task. This paper has ini-
tiated a lot of follow-up research, both regarding base noun phrase identification
and finding arbitrary base chunks.

A group of chunkers can build a complete parse tree if each of them identifies
syntactic chunks at a different level of the tree. The first chunker finds base chunks
and send these to the second chunker which identifies syntactic constituents one
level above the base level. This chunker sends its output to another one which
identifies constituents at the next level and so on. The chunkers can be imple-
mented with any classification algorithm which enables researchers from different
segments of the machine learning field to build a parser.

The idea of using chunkers in a parser is not new. Ejerhed and Church (1983)
describe a grammar for Swedish which includes noun phrase chunk rules. Abney
(1991) built a chunk parser which first finds base chunks and then attaches them
with a separate attachment process. Brants (1999) used a cascade of Markov
model chunkers for obtaining parsing results for the German NEGRA corpus.

In this paper, we expand a state-of-the art chunking algorithm to an algorithm
for full parsing. Our approach is most similar to Brants (1999) : we use a chunker
for retrieving all parse tree levels. However, we apply the chunk parser to a stan-
dard data set for English in order to allow a comparison with earlier parser results.
We describe the chunker-parser transformation process in detail and examine dif-
ferent training configurations of the chunk parser. After this we test the parser and
compare its performance with a state-of-the-art statistical parser.

178 Erik F. Tjong Kim Sang

VBN NN VBD DT JJ CD CD NNS

NP QP

NP

VP

S

Estimated volume was a light 2.4 million ounces

Figure 1: Example parse tree from the Penn Treebank. The bottom row contains the words
(Estimated...), the row above that one contains the part-of-speech tags (VBN...) and the
next the chunk tags (NP QP).

2 Chunking

Identifying the phrases at the bottom part of the tree is called chunking. For exam-
ple, the tree in figure 1 contains two base phrases, a noun phrase and a quantifier
phrase:

(NP Estimated volume) was
a light (QP 2.4 million) ounces .

The first report on applying statistical methods to this task dates back to 1988
(Church 1988). The most influential work in this area is Ramshaw and Marcus
(1995). They showed that this task can be approached as a tagging task by replac-
ing the common bracket notation for chunks with a tagging representation:

Estimated/B-NP volume/I-NP was/O
a/O light/O 2.4/B-QP million/I-QP ounces/O ./O

Their tagging scheme contains three types of tags: B-XX for the first word of a
chunk of type XX, I-XX for non-initial words in such chunks and O for words
outside of any chunk.1 The tagging representation has an advantages over the
bracket representation: while the latter may suffer from bracket-pairing problems,
the tagging representation requires almost no consistency checks. Furthermore it
allows existing tagging technology to be used for deriving chunks in text.
1The original Ramshaw and Marcus (1995) chunk format was slightly different from the one shown
here. It included an extra punctuation chunk type (P) and the tags did not contain hyphens.

Transforming a Chunker to a Parser 179

IOB1 IOB2 IOE1 IOE2 O+C
Estimated I-NP B-NP I-NP I-NP [-NP O

volume I-NP I-NP I-NP E-NP O]-NP
was O O O O O O

a O O O O O O
light O O O O O O

2.4 I-QP B-QP I-QP I-QP [-QP O
million I-QP I-QP I-QP E-QP O]-QP
ounces O O O O O O

. O O O O O O

Table 1: Five representations of the chunk structure of the sentence Estimated volume was a
light 2.4 million ounces . IOB1 and IOE1 only use a B-XX or an E-XX tag at the boundaries
of adjacent chunks of the same type (not present in this sentence). IOB2 and IOE2 use B-
XX and E-XX tags at boundaries of all chunks. O+C is the bracket representation.

Recent work has shown that with a good method for repairing bracket prob-
lems, a noun phrase chunking system using the bracket representation performs
better than one that uses the tagging representation (Muñoz, Punyakanok, Roth
and Zimak 1999). Even more promising is the approach that combines the out-
put of chunkers that use different data representations (Tjong Kim Sang 2000a).
The idea is build five chunking systems, one which uses the bracket representation
and four which use variants of the tagging representation (see table 1). Because
of the different formats of the data, the five systems will make different errors.
After converting their output to the bracket representation, one can extract a new
chunk segmentation by only accepting brackets which have been predicted by the
majority of the systems. The new chunk segmentation proves to be better than any
generated by the individual systems (Tjong Kim Sang 2000a).

We have used the combination of representations chunking method of Tjong
Kim Sang (2000b). This means training five classifiers with each of the data rep-
resentations shown in table 1. Each of the classifiers performs four passes over the
data. First they determine the chunk boundaries regardless of the type (two passes
for the bracket representation). After this the four systems that use the tagging
representation use the chunk structure found as extra information for producing
an improved segmentation. Next all data is converted to the bracket representa-
tion and each system performs two passes for determining the types of the open
and close brackets, respectively. This process with four passes over the data was
chosen after a comparative chunking study (Tjong Kim Sang 2000b). An example
of the features used in the four passes can be found in figure 2. When the output
of the five systems is available, the five open bracket and five close bracket data
streams are combined with majority voting. Finally, the resulting open and close
brackets are made consistent by throwing away all brackets that cannot be matched
with an adjacent bracket of the same chunk type.

180 Erik F. Tjong Kim Sang

Est JJ vol NN was VBD a DT lig JJ 2.4 CD mil CD oun NNS . .
vol NN I was VBD O a DT O lig JJ 2.4 CD B mil CD I oun NNS O

Figure 2: Features used for classifying light in the sentence Estimated volume was a light
2.4 million ounces . Word length has been limited three characters to make the lines fit in
this figure. The first row contains the features used in the first, third and the fourth pass: the
word and its part-of-speech (POS) tag with the four previous and four next words with their
POS tags. The second row shows the features used in the second pass of the system that
worked with the IOB2 tagging representation: the word, its POS tag and the three previous
and three next words with their POS tag and the chunk tag found in pass one.

Various machine learning methods can be used for the basic task of determining
the most appropriate chunk tag sequences for a text. We use the memory-based
learning algorithm IB1-IG which is part of TiMBL package (Daelemans, Zavrel,
van der Sloot and van den Bosch 1999). In memory-based learning the training
data is stored and a new item is classified by the most frequent classification among
training items which are closest to this new item. Data items are represented as sets
of feature-value pairs. In IB1-IG each feature receives a weight which is based on
the amount of information which it provides for computing the classification of
the items in the training data. These feature weights are used for computing the
distance between a pair of data items (Daelemans et al. 1999). IB1-IG has been
used successfully on a large variety of natural language processing tasks.

The overall results of the chunking process are measured with labeled pre-
cision and recall, respectively the percentage of detected phrases that are cor-
rect and the percentage of phrases in the data that were found by the parser.
We have combined these two in the F ����� rate which is equal to (2*preci-
sion*recall)/(precision+recall).

3 Parsing

In this paper we will perform parsing, generating syntactic analyses for sentences,
with a chunking algorithm. Most parsing work describes a process for finding
base chunks which are combined by another process to trees (for example Ejerhed
and Church (1983) and Abney (1991)). However, like Brants (1999), we want
to build a parser in which constituents et all levels of the parse tree are produced
by a chunking algorithm. This is a natural follow-up of our earlier work (Tjong
Kim Sang 2000a, Tjong Kim Sang 2000b) in which we build a noun phrase chun-
ker, a noun phrase parser and a general chunker. Our general parser performs the
following actions:

Transforming a Chunker to a Parser 181

w Estimated volume was a light 2.4 million ounces .
p VBN NN VBD DT JJ CD CD NNS .
0 (NP NP) (QP QP)
0w volume was a light million ounces .
0p NP VBD DT JJ QP NNS .
1 (NP NP)
1w volume was ounces .
1p NP VBD NP .
2 (VP VP)
2w volume was .
2p NP VP .
3 (S S)

Figure 3: An example of the parsing process: first the base chunks are identified (row 0).
The chunks are compressed and replaced by their heads (0w) and labels (0p). Then the next
level of phrases is identified (1) and compressed to head words (1w) and labels (1p). This
is followed by two more levels of phrase identification (2 and 3) and another compression
(2w and 2p).

1. use a tagger for finding a part-of-speech tag for each word,
2. use a chunker for identifying base phrases,
3. replace all identified phrases with their head and their label,
4. find ‘base’ phrases in the new data stream
5. if the previous step discovered new phrases then repeat steps 3-5.

In this set-up only step 4 requires a training phase. The other actions are either
fixed (3 and 5) or depend on parser-external processes (1 and 2). Ideally steps 2 and
4 would be the same but unfortunately we have discovered that the combination of
representations chunking approach does not work well for non-base phrases. The
systems which use the tagging representation perform much worse than the one
that uses the bracket representation. The reason for this is that, based on a limited
context, it is hard to determine if a word should be included in a chunk at level n or
at level n+1. With the bracket representation, incorrect brackets will be generated
but these will be eliminated in the bracket combination process. However, the
systems that use the tagging representation produce incorrect B and I tags which
cause errors in their output. A combination of the five systems performs worse
than the system that uses the bracket representation and therefore we have decided
to use only the latter for step 4 of the chunk parser.

In order to be able to compare our results with earlier work like Collins (1999),
we have used the Maximum Entropy tagger described in Ratnaparkhi (1996) for
assigning part-of-speech tags to our data. The words in the data have been com-
bined to base chunks by the chunking approach described in the previous section.
After finding the base phrases, each of them will be replaced by their head (the

182 Erik F. Tjong Kim Sang

30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

sc
or

e

chunking level

precision
F

recall

Figure 4: Precision, recall and F ����� rates for one run of the parser applied to the param-
eter tuning data set. The precision decreases when the chunking level increases, the recall
increases at higher levels and the F rate increases until about level 19 and drops slightly
afterwards (not noticeable in this graph).

most important word in the phrase) and their type, conform figure 3. The head
word of each phrase is generated by a list of rules put forward by Magerman (1995)
and modified by Collins (1999). 2 It chooses a head word of a phrase based on
the type of the phrase, the types/POS tags of the phrases/words immediately un-
der the phrase and the order of the latter. The approach of compressing identified
phrases provides us with a standard data format. At all levels of the bottom-up
process, sentences are represented by a sequence of lexical items (usually words)
with associated syntactic tags (POS tags or phrase type tags).

The parsing process generates a unique tree for each sentence. The tree can
be interpreted as a set of phrases. The output of the parser are evaluated with
the same measures as the chunking results: labeled precision, labeled recall and
F ��� � rate, all applied to phrases. Additionally we have used the crossing brackets
measure (CB) for indicating the average number of identified phrases per sentence
that cross phrases in the original data.

4 Results

We have used two segment pairs of the Wall Street Journal (WSJ) part of the Penn
Treebank (Marcus, Santorini and Marcinkiewicz 1993) for training and testing.
First we used sections 15-18 (8,936 sentences) as training material and section 20
(2012 sentences) as test material for determining the optimal parameters of the
parser (tuning data). The best configuration for that data was used for processing
section 23 (2416 sentences) after training with sections 02-21 (39,832 sentences).
The results for that data set have been used for a comparison with performance of
other parsers.

In our first experiment we tested the influence of varying context size and
2Available on http://www.research.att.com/˜mcollins/papers/heads

Transforming a Chunker to a Parser 183

k=1 k=3
c=1 74.13 (18) 70.20 (13)
c=2 77.17 (19) 75.13 (15)
c=3 77.05 (16) 76.02 (16)
c=4 76.33 (15) 75.33 (14)

Table 2: F ����� rates for four context sizes combined with two sizes of nearest neighborhood.
The parser was tested on the tuning data. The numbers between brackets are the optimal
levels at which processing was stopped. We obtained the best F ����� rate for context size 2
combined with nearest neighborhood size 1.

neighborhood size in step 4 of the parser, the non-base chunking process. The
context size is the number of words and syntactic tags that are used as features, for
example context size 2 means that the classification of a word is determined while
using the word, the two previous words, the next two words and the syntactic tags
of all these words. The size of the neighborhood size determines the number of
nearest neighbor regions that the memory-based learner uses to determine the class
of the current data item. We have performed experiments with the tuning data with
four different symmetric context sizes (1, 2, 3 and 4) and two neighborhood sizes
(1 and 3).

Our parsing process works bottom-up, level by level. At each level it finds
new phrases and therefore the number of detected phrases is expected to increase
which means that the recall rate increases. Unfortunately, since we use one level of
training data at a time (like Brants (1999)), the amount of available training data
decreases at higher levels and therefore the precision of the recognition process
decreases at higher levels (figure 4). Our goal is to optimize the F ��� � rate of the
results. In our experiments with the tuning data set, we have found that this rate
reaches an optimum after about 15 levels of phrase recognition. At that point the
parser is still finding new phrases but the improved recall rate cannot compensate
for the drop in precision rate. For this reason we have decided to stop the cas-
caded phrase recognition processes in the tuning experiments when the F rate was
optimal. We have added a post-processing stage which adds a top S node to trees
which do not contain such a node. The results of the eight experiments, F rates
and halting levels, can be found in table 2. The configuration with context size 2
and nearest neighborhood size 1 performed best. The best context size found here
is the same as used by Ratnaparkhi (1998).

In the next series of experiments, we tested the influence of training data seg-
mentation on parsing performance. In our previous experiments, we only used
training data from one level at a time. For example, during identification of phrases
at level 1, the ones immediately above the base chunks, we only used training data
from level 1. This causes problems at higher levels, for which there are fewer
examples available. Ideally, we should be able to use one body of training data
for all levels. We have performed two extra experiments with context size 2 and

184 Erik F. Tjong Kim Sang

F � � �
using current training level only 77.17 (19)
using current, previous and next 77.13 (17)
using all training data 67.69 (20)
disregarding open bracket types 72.33 (24)
disregarding close bracket types 76.06 (29)

Table 3: The performance of five training variants. In these experiments we used the same
context size (2) and nearest neighborhood size (1) but varied the amount of training material
used at each chunk level or disregarded the types of the open brackets or close brackets
during the bracket combination process. We obtained the best performance when using
training data from the current chunking level.

nearest neighborhood size 1: one using all training data apart from the base chunk
level (levels 1-31) and another which uses the previous, current and next level. The
results can be found in table 3. Neither of the two set-ups performed better than
the configuration which uses one level of training data at a time.

Our bracket combination algorithm is very strict: it only uses adjacent brack-
ets if they have the same type and appear next to each other in the correct or-
der (first open and then close) without intervening brackets. Chunkers which use
this approach obtain high precision rates and low recall rates because they gener-
ate phrases which are likely to be correct and disregard all other phrases (Tjong
Kim Sang 2000a). We have tested two alternative approaches: one which uses the
type of the close brackets and disregards the type of the open brackets and another
which uses the type of the open brackets and ignores close bracket types. The sec-
ond approach performed better than the first but neither of them improved on the
standard method we used for bracket combination (see table 3).

We have applied the best training configuration (context size 2, neighborhood
size 1, train with current level and use 19 iterations plus post-processing stage)
to the large data set. After training we obtained an F ����� rate of 80.49 on ar-
bitrary sentences of the test data (precision 82.34%, recall 78.72% and crossing
bracket rate 1.69). Figure 5 contains an overview of the progression of precision,
recall and F ��� � rate measured at different levels. The performance of the chunk
parser is reasonable but it does worse than state-of-the-art statistical parsing sys-
tems (Collins 1999, Charniak 2000) which achieve F ��� � rates close to 90 and CB
rates under 1.10.3
3Obviously the parser has problems with deeply embedded sentences, because of the maximum parsing
depth (19). However, its performance on short sentence (10 words or shorter) is not perfect either
(F ����� = 89.5). We have not spotted systematic errors in the parsing output yet.

Transforming a Chunker to a Parser 185

30
40
50
60
70
80
90

100

0 5 10 15 20

sc
or

e

chunking level

precision
F

recall
30
40
50
60
70
80
90

100

0 5 10 15 20

sc
or

e

chunking level

precision
F

recall

Figure 5: Per-level precision, recall and F ����� rates for sentences shorter than 100 words
obtained by our chunk parser applied to section 23 of the Penn Treebank (left) compared
with the parser of Collins (1999) (right). The parsers have generated 20 levels of chunk tags
(0-19). An extra post-processing step (20) has added top S nodes to incomplete parse trees.
The precision of the chunk parser drops faster and the recall grows slower than that of the
Collins parser. The final F rates are respectively 80.49 and 87.08.

5 Related work

A lot of work has been done on natural language parsing. In this section we men-
tion some of the work which uses machine learning methods for building parsers
rather than hand-crafted grammars. Black et.al. (1992) introduce history-based
grammars: a statistical parsing model which obtains probabilistic clues of the
optimal parses from training data. It is hard to compare their performance with
other work because they used different test data and different evaluation methods.
Magerman (1995) built SPATTER, a statistical parser which uses decision trees.
It obtained an F rate of 86.0 on sentences shorter than 40 words of section 00 of
the Penn Treebank.

The parsing method used by Ratnaparkhi (1998) is closely related to our ap-
proach. He uses a classification algorithm, maximum entropy models, for building
parse trees in a bottom-up, left-to-right fashion. The parser performs better than
the previous two and obtains F=86.9 on Penn Treebank section 23. Collins (1999)
describes different statistical parsing models. They use complex statistical predi-
cates for deriving optimal parse trees. His best model obtains F=88.2 on section
23. Charniak (2000) combines earlier work by Ratnaparkhi, Collins and himself
and creates a parser which obtains an F rate of 89.5 on section 23 of the Penn
Treebank. Finally Bod (2000) mentions a parser which performs slightly better
by using a big database of stored subtrees of limited depth.

Regarding parsing with chunking techniques, three more papers need to be
mentioned. Ejerhed and Church (1983) approach parsing of Swedish by starting
with identifying noun phrase chunks. Their approach requires a partial order the
non-terminal symbols which limits the format of the trees that can be produced.
Abney (1991) describes a parser which starts with identifying base phrases which
are combined to a complete tree by an attachment process. Brants (1999) built

186 Erik F. Tjong Kim Sang

a bottom-up parser which identifies chunks in German text with Markov models.
An interesting feature of his parser is that it is capable of correcting errors made at
earlier stages.

6 Discussion

The parsing method described here leaves open many options for future work. An
important difference between statistical parsers and our approach is the informa-
tion that is available to the parser. For example, our chunk parser does not have ac-
cess to the internal structure of a chunk apart from its type and its head word. If we
compare it performance with a study of Charniak (1997) , we note that our parser
performs better than a standard probabilistic context-free grammar (F ����� =73.7)
but worse than than the Minimal extension of this grammar (F ����� =82.8). How-
ever, even this Minimal extension is provided with more information than our
parser: the rule probabilities depend on the head and the type of the phrase and
the type of the parent. The bottom-up parser described in this paper does not have
access to information about the parents. The availability of this information would
probably improve the parser’s performance although it would also complicate the
chunk identification processes.

The parser would also benefit from using a less greedy method of bracket pre-
diction which would enable it to backtrack from earlier phrase structures choices
at later processing levels. At this moment, it attempts to find the best bracket struc-
ture at each level and sticks with that. This is different from most other parsers,
like for example the one of Ratnaparkhi (1998) which is capable of storing up to
20 intermediate trees and examines structural extensions of all of them.

Another opportunity for performance enhancement lies in using a different
bracket estimation algorithm. At this moment, we feel that we do not have used
the best method for finding chunks at the non-base level. We have achieved a
reasonable improvement by using combinations of classifiers for chunking rather
than a single classifier (Tjong Kim Sang 2000a). Something similar should be
possible while identifying higher level chunks, possibly by using a variety of ma-
chine learning algorithms. It would also be interesting to examine the process
which combines open with close brackets. At this moment combinations are made
without regarding more than two brackets. A combination method which exam-
ines the complete sentence before creating a bracket pair, like the one of Muñoz,
Punyakanok, Roth and Zimak (1999), might improve performance.

Extra improvements of this parser will undoubtfully make it slower and in-
crease its memory requirements. The present process already requires a lot of
computational resources: close to 100 megabytes of internal memory for generat-
ing base chunks with the small training data at a processing speed of more than
a second per word. This is orders of magnitude slower than for example Ratna-
parkhi’s parser which in 1998 achieved a processing speed of 0.14 seconds per
sentence which achieving a higher performance rate (Ratnaparkhi 1998). It is
doubtful whether extension of the work reported on here is worth the trouble.

Transforming a Chunker to a Parser 187

7 Concluding remarks

We have presented a method for transforming a chunker to a full parser. It consists
of using a cascade of phrase recognition algorithms for building parse trees in a
bottom-up fashion. The advantage of this approach is that it enables building a
parser by using the same simple machine learning algorithms (classifiers) which
have successfully been used for base phrase recognition. We have tested this ap-
proach by converting a chunking algorithm to a parsing algorithm and evaluated
the resulting chunk parser on a standard data set. The parser performed reasonably
(F=80) but it did not reach the performances of the state-of-art statistical parsers
(F=90).

References

Abney, S.(1991), Parsing by chunks, Principle-Based Parsing, Kluwer Academic
Publishers.

Black, E., Jelinek, F., Lafferty, J., Magerman, D. M., Mercer, R. and Roukos,
S.(1992), Towards history-based grammars: Using richer models for prob-
abilistic parsing, Proceedings DARPA Speech and Natural Language Work-
shop, Morgan Kaufmann.

Bod, R.(2000), Parsing with the shortest derivation, Proceedings of COLING 2000,
Saarbruecken, Germany.

Brants, T.(1999), Cascaded markov models, Proceedings of EACL’99, Bergen,
Norway.

Charniak, E.(1997), Statistical parsing with a context-free grammar and word
statistics, Fourteenth National Conference on Artificial Intelligence, MIT
Press.

Charniak, E.(2000), A maximum-entropy-inspired parser, Proceedings of the
ANLP-NAACL 2000, Seattle, WA, USA. Morgan Kaufman Publishers.

Church, K. W.(1988), A stochastic parts program and noun phrase parser for unre-
stricted text, Second Conference on Applied Natural Language Processing,
Austin, Texas.

Collins, M.(1999), Head-Driven Statistical Models for Natural Language Process-
ing, PhD thesis, University of Pennsylvania.

Daelemans, W., Zavrel, J., van der Sloot, K. and van den Bosch, A.(1999), TiMBL:
Tilburg Memory Based Learner, version 2.0, Reference Guide, ILK Tech-
nical Report 99-01. http://ilk.kub.nl/.

Ejerhed, E. and Church, K. W.(1983), Finite state parsing, Papers from the Seventh
Scandinavian Conference of Linguistics, University of Helsinki, Finland.

Magerman, D. M.(1995), Statistical decision-tree models for parsing, Proceedings
of the 33rd Annual Meeting of the Association for Computational Linguis-
tics (ACL’95), Cambridge, MA, USA.

Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A.(1993), Building a large
annotated corpus of english: the penn treebank, Computational Linguistics.

Muñoz, M., Punyakanok, V., Roth, D. and Zimak, D.(1999), A learning ap-

188 Erik F. Tjong Kim Sang

proach to shallow parsing, Proceedings of EMNLP-WVLC’99, Association
for Computational Linguistics.

Ramshaw, L. A. and Marcus, M. P.(1995), Text chunking using transformation-
based learning, Proceedings of the Third ACL Workshop on Very Large
Corpora, Cambridge, MA, USA.

Ratnaparkhi, A.(1996), A maximum entropy model for part-of-speech tagging,
Proceedings of EMNLP-1, University of Pennsylvania, PA, USA.

Ratnaparkhi, A.(1998), Maximum Entropy Models for Natural Language Ambigu-
ity Resolution, PhD thesis Computer and Information Science, University
of Pennsylvania.

Tjong Kim Sang, E. F.(2000a), Noun phrase recognition by system combination,
Proceedings of the ANLP-NAACL 2000, Seattle, Washington, USA. Mor-
gan Kaufman Publishers, pp. 50–55.

Tjong Kim Sang, E. F.(2000b), Text chunking by system combination, Proceed-
ings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, pp. 151–153.

