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Abstract

In (Buszkowski 1987, Buszkowski and Penn 1990) discovery procedures for CCGs
were defined that accept a sequence of structures as input andyield a set of gram-
mars.

In (Kanazawa 1998) it was shown that some of the classes basedon these
procedures are learnable from structures, and some functions were defined that
learn these classes under certain restrictions on their behaviour. Two variants were
defined, one that is conservative and one that is guaranteed to be set-driven. The
question whether the latter is conservative was still left open, in this paper it is
shown that it is not.

1 Introduction

In (Kanazawa 1998) the learnability (in the sense of identification in the
limit, see (Gold 1967)) of certain classes ofclassical categorial grammars
was studied. These classes were first proposed in (Buszkowski 1987, Busz-
kowski and Penn 1990) and are based on the unification of categorial types.

Among other things it was shown that some of these classes arelearn-
able from structures (derivations), and are even learnableunder quite se-
vere restrictions on their behaviour. This paper solves an open question
regarding the behaviour of certain proposed learning algorithms, in partic-
ular whether they are restricted toconservativeandset-drivenbehaviour.

Unless stated otherwise, anything in this paper that is not familiar to the
reader is defined in (Kanazawa 1998).

1.1 Set-drivenness, Conservativity and Other Constraints

A learning function' is said to be set-driven if for every input sequencehs0; : : : sni, '(hs0; : : : sni) = '(fs0; : : : sng). In other words, such a func-
tion is completely insensitive to repetition and order of presentation.

A learning function' is said to be conservative if for every sentencesn+1 2 L'(hs0; : : : sni), '(hs0; : : : sn+1i) = '(hs0; : : : sni). In other
words, such a function only changes its hypothesis if data isencountered
that was not predicted by its previous hypothesis.

Finally we mention:
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� Responsive learning: the learning function must be defined for all
sequences for languages for its class,� Prudent learning: the learning function must not hypothesize gram-
mars it is not prepared to learn,� Consistent learning: the learning function must hypothesize gram-
mars that generate all the data seen thus far.

Of all these constraints only responsiveness and prudence are not re-
strictive.

In (Kinber and Stephan 1995) it was shown that every class that is learn-
able by a set-driven function is learnable by a conservativefunction with
linear memory. The inclusion is strict, i.e. there are conservatively learna-
ble classes which cannot be learned by a set-driven function.

It was also shown that families learnable by a memory-limited function
are exactly those learnable by a set-driven function.

2 Learning Functions Based onVGk
Treating types as terms, the notions of unification and substitution apply
naturally. They are defined forgrammarsas applying to the types occurring
in these grammars. Let FL be the function that maps grammars to their
structure languages.

The classFLk-valuedconsists of all grammars that assign at mostk types
to any given word. The associated discovery procedure isVGk, the learning
function for this class is'VGk .

Proposition 1 If �[G1℄ � G2, thenFL(G1) � FL(G2).
Corollary 2 If �[G1℄ � G2, thenL(G1) � L(G2).
Proposition 3 If G 2 VGk(D) and T 2 FL(G), thenG 2 VGk(D [fTg).

We could call this ‘conservativity of grammar class’.

Definition 4 Let �FL be a (computable) function that maps a non-empty
finite setG of grammars to a grammarG 2 G such thatFL(G) is a minimal
element offFL(G) jG 2 Gg.
Proposition 5 For any finite setD � �F, if �FL(VGk(D)) is defined, thenFL(�FL(VGk(D))) is a minimal element offL 2 FLk-valued jD � Lg.
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Definition 6 Let 'VGk be the learning function forhCatG;�F;FLi de-
fined as follows:'VGk(hT0i) = �FL(VGk(fT0g)),'VGk(hT0; : : : ; Ti+1i)= � 'VGk(hT0; : : : ; Tii) if Ti+1 2 FL('VGk(hT0; : : : ; Tii)),�FL(VGk(fT0; : : : ; Ti+1g)) otherwise.

This is a construction that is guaranteed to be conservative: it ignores
input that fits into the current hypothesis.1 Only if input is not compati-
ble with the current hypothesis (i.e., is not in the structure language of the
former output grammar), a new hypothesis is considered. Note that the
learning function based on a�-like function and some discovery procedure
may not beinherentlyconservative.

Proposition 7

1. 'VGk is responsive and consistent onGk-valued.

2. 'VGk is conservative.

3. 'VGk learnsGk-valuedprudently.

Theorem 8 'VGk learnsGk-valued from structures.

The function'VGk is not designed to be set-driven or even to learn
order-independently. Kanazawa defines a set-driven learning function'[VGk :

Definition 9'[VGk(hT0; : : : ; Tii) = �FL(VGk(fT0; : : : ; Tig));
where�FL is defined as follows:

Definition 10 Let�FL be a computable total function that maps a finite setG of grammars to the first element offG 2 G j FL(G) is a minimal element ofFL(G)g under the ordering�.

1Note that it is only ignored ‘locally’. Once input does not fit, the input that was formerly
ignoredis taken into account when constructing a new hypothesis.
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Here,� is defined by2:

Definition 11 Let� be a computable well-order on CatG such thatG1 �G2 whenever one of the following conditions holds:

1. size(G1) < size(G2).
2. size(G1) = size(G2) and jVar(G1)j > jVar(G2)j.
3. size(G1) = size(G2) and jVar(G1)j = jVar(G2)j, thenG1 � G2 by

some arbitrary lexicographic ordering of grammars.

The size of a grammar is defined as:

Definition 12 For any grammarG, define thesizeof G, size(G), as fol-
lows: size(G) =X2� XG: 7!A jAj
where for each typeA, jAj is the number of symbol occurrences inA.

Lemma 13 If G1 v G2, thensize(G1) � size(G2).
Lemma 14 G1 < G2 impliesG1 � G2.
Proposition 15 Let hTiii2N be an infinite sequence enumerating someL 2FLk-valued. Then'[VGk converges onhTiii2N to the first element ofGL = fG 2 Gk-valuedj FL(G) = Lg
under the ordering�.

While '[VGk is set-driven, Kanazawa left it an open question whether it
is conservative.

Our proof of non-conservativity of'[VGk was inspired by a footnote on
page 102 of (Kanazawa 1998):

2Even though it is not clear why Kanazawa chose this particular ordering, this definition
suggests the adapted version of�FL is intended to pick the ‘simplest’ (in an informal sense)
grammar from a set.
There exists a learning strategy calledsimplicity. (See (Osherson, Stob and Weinstein
1986).) This strategies constrains learning functions notto conjecture grammars that are
arbitrarily more complex than simpler alternatives for thesame language. For any size
measure and any bound on the size difference between conjecture and simpler alternative,
this strategy severely restricts the class of learnable languages in the recursive case.
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Although I have not had time to prove that'[VGk is indeed
nonconservative, it is conceivable that the following sortof si-
tuation can obtain:G0 = �FL(VGk(D)). G1 � G0, G1 2VGk(D), there is noG01 2 VGk(D) such thatG01 < G1, butFL(G1) is not minimal inFL(VGk(D)). G0; G1 2 VGk(D[fTg), andFL(G1) is minimal inFL(VGk(D [ fTg)).

To summarize, under the following conditions'[VGk is non-conservative:

1. G0; G1 2 VGk(D), FL(G0) is minimal,G1 � G0 , '[VGk(D) =G0.
2. G0; G1 2 VGk(D [ fTg), FL(G0) is not minimal,'[VGk(D [fTg) = G1.

It turns out that such a situation can occur, and implies the following:
There is a finite (possibly empty) set of grammarsFG � VGk(D) such

that allG 2 FG, FL(G) 6� FL(G0) andFL(G0) 6� FL(G), andG0 � G.
For allG 2 VGk(D)� FG, FL(G0) � FL(G).

SinceG1 � G0 and�FL(VGk(D)) = G0,:(FL(G0) � FL(G1)).
Then,G1 is not minimal inVGk(D), so there is a grammarG2 2 VGk(D)
such thatFL(G2) � FL(G1) andG0 � G2.

Moreover,G2 cannot be inVGk(D [ fTg). If it would, �FL would
chooseG2 over G1, so condition 2 could not be satisfied. So we haveFL(G2) 6� FL(G0), andG0 � G2, soG1 � G0 � G2.

By Proposition 3, sinceG2 2 VGk(D) andG2 62 VGk(D [ fTg),T 62 FL(G2).
Since for anyG 2 VGk(D), D � FL(G), fTg � FL(G0), fTg �FL(G1).
We have designed a set of grammars that fulfills all of the above condi-

tions. Before we give the proof, the following definition will be convenient:

Definition 16 Let UNI(G) denote the function that generates a finite set
of grammarsG given the grammarG, such that every memberGi of G is�i[G℄, where for everyi and j, i 6= j; �i 6= �j , and every�i is a result of
unifying two types assigned to the same word inG.

In other words,UNI nondeterministically unifies all pairs of types inG
that are under obligation to unify, and associates a new grammar with each
of these pairs.

Note that noGi 2 UNI(G) can be an alphabetic variant ofG. The functionUNI(G) is at the heart of the algorithms of Buszkowski and Penn.
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Proposition 17 For anyG0 2 UNI(G), FL(G) � FL(G0).
Proof: G0 2 UNI(G) implies that there exists a substitution� such

that�[G℄(= G0) � G. By Proposition 1,FL(G) � FL(G0) follows. �
Proposition 18 The set-driven learning function'[VGk is non-
conservative.

Proof: By example. LetD be the following sample:

ba(fa(a,fa(b,fa(x,x))),g) g
ba(fa(fa(y,y),fa(fa(y,y),fa(x,x))),g) ba(a,e)
ba(b,e) e
ba(ba(fa(z,z),a),j) j
ba(ba(fa(z,z),fa(w,w)),j) ba(fa(y,y),c)
ba(fa(w,w),c) ba(d,e)
ba(ba(fa(z,z),d),j) ba(fa(a,fa(f,fa(x,x))),g)
ba(f,e)

It’s useful to note that with a2-valued grammar, given a structure of the
form fa(x,x) (or ba(x,x)), x must be assigned the same types when-
ever it occurs. The discovery procedureVGk-valued outputs the following
three grammars.3 Note that they differ only in the types assigned toa, b,
d, e, andf.

G1 :
a 7! B=B;DnE
b 7! B=B
c 7! (B=B)nt; (DnE)nt
d 7! B=B;DnE
e 7! (B=B)nt; t
f 7! B=B
g 7! Bnt; t
j 7! Ent; t
w 7! (DnE)=W;W
x 7! B=X;X
y 7! (B=B)=Y; Y
z 7! D=Z;Z

3This has been verified using the Prolog implementation from (Kanazawa 1998), more
specifically with the predicatevalued grammar/3.
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G2 :
a 7! B=C;DnE
b 7! B=C;C=B
c 7! (B=B)nt; (DnE)nt
d 7! B=C;DnE
e 7! (B=C)nt; t
f 7! B=C;C=B
g 7! Bnt; t
j 7! Ent; t
w 7! (DnE)=W;W
x 7! B=X;X
y 7! (B=B)=Y; Y
z 7! D=Z;Z

G3 :
a 7! B=C;DnE
b 7! C=B;DnE
c 7! (B=B)nt; (DnE)nt
d 7! DnE
e 7! (DnE)nt; t
f 7! C=B;DnE
g 7! Bnt; t
j 7! Ent; t
w 7! (DnE)=W;W
x 7! B=X;X
y 7! (B=B)=Y; Y
z 7! D=Z;Z

Note thatG1 is the result of unifyingC with B in G2, andFL(G1)
properly includesFL(G2). FL(G2) andFL(G3) are incomparable andsize(G2) > size(G3), so the set-driven learning function based on� picksG3 for this sample.

Now consider adding
ba(b,c)

to the above sample and see what grammars are output:
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G01 :
a 7! B=B;DnE
b 7! B=B
c 7! (B=B)nt; (DnE)nt
d 7! B=B;DnE
e 7! (B=B)nt; t
f 7! B=B
g 7! Bnt; t
j 7! Ent; t
w 7! (DnE)=W;W
x 7! B=X;X
y 7! (B=B)=Y; Y
z 7! D=Z;Z

G02 :
a 7! B=B;DnE
b 7! B=B;DnE
c 7! (B=B)nt; (DnE)nt
d 7! DnE
e 7! (DnE)nt; t
f 7! B=B;DnE
g 7! Bnt; t
j 7! Ent; t
w 7! (DnE)=W;W
x 7! B=X;X
y 7! (B=B)=Y; Y
z 7! D=Z;Z

G03 :
a 7! B=B;DnE
b 7! B=B;DnE
c 7! (B=B)nt; (DnE)nt
d 7! B=B;DnE
e 7! (B=B)nt; t
f 7! B=B
g 7! Bnt; t
j 7! Ent; t
w 7! (DnE)=W;W
x 7! B=X;X
y 7! (B=B)=Y; Y
z 7! D=Z;Z
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G04 :
a 7! B=C;DnE
b 7! C=B;DnE
c 7! (B=B)nt; (DnE)nt
d 7! DnE
e 7! (DnE)nt; t
f 7! C=B;DnE
g 7! Bnt; t
j 7! Ent; t
w 7! (DnE)=W;W
x 7! B=X;X
y 7! (B=B)=Y; Y
z 7! D=Z;Z

Note thatG01 is the same asG1, andG04 is the same asG3. G02 is
the result of unifyingC with B in G04, andG03 is G01 plus one additional
type assignment:b 7! DnE. SoFL(G02) properly includesFL(G04) andFL(G03) properly includesFL(G01). FL(G01) andFL(G04) are incompa-
rable. Butsize(G01) < size(G04), soG01, notG04 (= G3), is the grammar
picked by the set-driven learning function for this expanded sample. �
3 Conclusions

It has been demonstrated that a learning function proposed in (Kanazawa
1998) is set-driven but not conservative. The proof is by example, and
we feel that the techniques used for constructing a sample that forces the
algorithm to display (un)wanted behaviour are sufficientlygeneral to be
applicable to a wide range of language classes.
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