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Abstract

In (Buszkowski 1987, Buszkowski and Penn 1990) discovesggdures for CCGs
were defined that accept a sequence of structures as inpyteddé set of gram-
mars.

In (Kanazawa 1998) it was shown that some of the classes lmsdiese
procedures are learnable from structures, and some funsctiere defined that
learn these classes under certain restrictions on theavetr. Two variants were
defined, one that is conservative and one that is guarameeel $et-driven. The
guestion whether the latter is conservative was still Igtm in this paper it is
shown that it is not.

1 Introduction

In (Kanazawa 1998) the learnability (in the sense of idexaifon in the
limit, see (Gold 1967)) of certain classesabdissical categorial grammars
was studied. These classes were first proposed in (Buszk@38K, Busz-
kowski and Penn 1990) and are based on the unification of@dbtypes.

Among other things it was shown that some of these classdeare
able from structures (derivations), and are even learnabtier quite se-
vere restrictions on their behaviour. This paper solves penaguestion
regarding the behaviour of certain proposed learning élgos, in partic-
ular whether they are restricted tonservativeandset-drivenbehaviour.

Unless stated otherwise, anything in this paper that isarotlfar to the
reader is defined in (Kanazawa 1998).

1.1 Set-drivenness, Conservativity and Other Constraints

A learning functiony is said to be set-driven if for every input sequence
(805 --8n), ©((s0,---5n)) = p({s0,-...sn}). Inother words, such a func-
tion is completely insensitive to repetition and order cégentation.

A learning functiony is said to be conservative if for every sentence
sSn+1 € Lo((so,---5n)), ©((s0,---8Sn+1)) = ©({S0s---Sn)). In other
words, such a function only changes its hypothesis if daenuntered
that was not predicted by its previous hypothesis.

Finally we mention:



¢ Responsive learning: the learning function must be defiloedl
sequences for languages for its class,

e Prudent learning: the learning function must not hypotregjram-
mars it is not prepared to learn,

e Consistent learning: the learning function must hypotteegiram-
mars that generate all the data seen thus far.

Of all these constraints only responsiveness and prudemecad re-
strictive.

In (Kinber and Stephan 1995) it was shown that every clagsgthearn-
able by a set-driven function is learnable by a conservdtinetion with
linear memory. The inclusion is strict, i.e. there are covesvely learna-
ble classes which cannot be learned by a set-driven function

It was also shown that families learnable by a memory-lichftesnction
are exactly those learnable by a set-driven function.

2 Learning Functions Based onVGy

Treating types as terms, the notions of unification and gukish apply
naturally. They are defined fgrammarsas applying to the types occurring
in these grammars. Let FL be the function that maps gramnoatiseir
structure languages.

The classF L.vaueqCoOnsists of all grammars that assign at mostpes
to any given word. The associated discovery proceduvé&ig, the learning
function for this class i®vq, .

Proposition 1 If 0[G1] C Go, thenFL(G,) C FL(G2).
Corollary 2 If o[G1] C Gy, thenL(G;) C L(G2).

Proposition 3 If G € VG,(D) andT € FL(G), thenG € VGy(D U
{T}).

We could call this ‘conservativity of grammar class’.

Definition 4 Let upr, be a (computable) function that maps a non-empty
finite setg of grammars to a grammag € G such thaff'L.(G) is a minimal
element of FL(G) | G € G}.

Proposition 5 For any finite setD ¢ XV, if upr, (VG (D)) is defined, then
FL(upL(VGk(D))) is a minimal element ofL € FLy-vaed| D C L}.
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Definition 6 Let pvg, be the learning function fofCatG, ©F, FL) de-
fined as follows:

eva, ((To)) = prL(VGr({To})),

ova, (To, .., Tiy1))

:{ ova, ((To, .-, T;)) if Ti11 € FL(pva, ((To, - - -, T3))),
MFL(VGk({TOa C aTi—I—l})) otherwise.

This is a construction that is guaranteed to be conservaitiignores
input that fits into the current hypothesisOnly if input is not compati-
ble with the current hypothesis (i.e., is not in the struetlanguage of the
former output grammar), a new hypothesis is considered.e Nt the
learning function based onalike function and some discovery procedure
may not benherentlyconservative.

Proposition 7
1. pvg, is responsive and consistent GR.yaiued
2. pva, Is conservative.
3. pvg, learnsGyi.vaueqd prudently.

Theorem 8 ¢y, learnsGy yaued from structures.

The functiongy, is not designed to be set-driven or even to learn
order-independently. Kanazawa defines a set-driven legrfiinction

b .
SDVG)C )

Definition 9

Ve, (To...., T) = prL (VG ({To, ..., T})),
wherepu gy, is defined as follows:

Definition 10 Letupr, be a computable total function that maps a finite set
G of grammars to the first element of
{G € G | FL(G) is a minimal element d&fL(G) } under the ordering<.

INote that it is only ignored ‘locally’. Once input does not fite input that was formerly
ignoredis taken into account when constructing a new hypothesis.



Here, < is defined by:

Definition 11 Let < be a computable well-order on CatG such tldat <
G, whenever one of the following conditions holds:

1. sizéG,) < sizedGs).
2. sizéG,) = sizdG2) and |Var(G1)| > |Var(G2)|.

3. sizé(G1) = sizdGy) and|Var(G1)| = |Var(G2)|, thenG; < G2 by
some arbitrary lexicographic ordering of grammars.

The size of a grammar is defined as:

Definition 12 For any grammarG, define thesize of G, size(G), as fol-

lows:
size(G) =Y Y |4

cEX G:c— A
where for each typel, | A| is the number of symbol occurrencesAn

Lemma 13 If G; C G9, thensize(G1) < size(G3).
Lemma 14 G C G, impliesGy < Gs.

Proposition 15 Let(T;);cn be an infinite sequence enumerating sdime
F L valued Thengo{,Gk converges ofT;);cn to the first element of

G1, = {G € Givaied| FL(G) = L}
under the ordering<.

While gp{,Gk is set-driven, Kanazawa left it an open question whether it
is conservative.

Our proof of non-conservativity Oﬁ%k was inspired by a footnote on
page 102 of (Kanazawa 1998):

2Even though it is not clear why Kanazawa chose this particaidering, this definition
suggests the adapted versionuef, is intended to pick the ‘simplest’ (in an informal sense)
grammar from a set.

There exists a learning strategy callsuinplicity. (See (Osherson, Stob and Weinstein
1986).) This strategies constrains learning functionstaatonjecture grammars that are
arbitrarily more complex than simpler alternatives for t@me language. For any size
measure and any bound on the size difference between corgeantd simpler alternative,
this strategy severely restricts the class of learnablguages in the recursive case.

4



Although I have not had time to prove tha?(,Gk is indeed
nonconservative, it is conceivable that the following sxri-
tuation can obtainGy = upr,(VGi(D)). G1 < Gy, Gy €
VGg(D), there is noG| € VGg(D) such that7] C Gy, but
FL(G)) is not minimal inFL(VGg(D)). Go,G1 € VGg(D U
{T}), andFL(G1) is minimal inFL(VG(D U {T})).

To summarize, under the following conditiom%,Gk is non-conservative:

1. Go,G1 € VG(D), FL(Gy) is minimal, Gy < Gy , @}, (D) =
Go.

2. Go,G1 € VGi(D U {T}), FL(Gy) is not minimal,wi,Gk(D U
{T}) = G;.

It turns out that such a situation can occur, and implies dHewing:

There is a finite (possibly empty) set of gramma&i& C VG (D) such
that allG € FG, FL(G) € FL(Gy) andFL(Gy) € FL(G), andGy < G.
ForallG € VG,(D) — FG, FL(Gy) C FL(G).

SinceG; < Gy and ,uFL(VGk(D)) = Gg,ﬂ(FL(Go) C FL(Gl))
Then,G; is not minimal inVGy (D), so there is a gramma¥, € VG (D)
such thatFL(G2) C FL(G4) andGgy < Ga.

Moreover, Gy cannot be inVGy(D U {T'}). If it would, prr, would
chooseGy over GG, so condition 2 could not be satisfied. So we have
FL(GQ) ¢ FL(G()), andGy < Ga,s0G < Gy < G.

By Proposition 3, sinc&?s € VGg(D) andGy ¢ VGg(D U {T}),
T ¢ FL(G5).

Since for anyG € VG (D), D C FL(G), {T} C FL(Gy), {T} C
FL(Gy).

We have designed a set of grammars that fulfills all of the almmndi-
tions. Before we give the proof, the following definition Wk convenient:

Definition 16 Let UNI(G) denote the function that generates a finite set
of grammarsg given the gramma¢z, such that every membét; of G is
0i[G], where for every andj, i # j,o; # o;, and every; is a result of
unifying two types assigned to the same wordfin

In other words,UNT nondeterministically unifies all pairs of typesah
that are under obligation to unify, and associates a new greamwith each
of these pairs.

Note that na&; € UNI(G) can be an alphabetic variant@f The function
UNI(G) is at the heart of the algorithms of Buszkowski and Penn.
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Proposition 17 For anyG’ € UNI(G), FL(G) C FL(G').

Proof: G' € UNI(G) implies that there exists a substitutiensuch
thato[G](= G') C G. By Proposition 1FL(G) C FL(G') follows. O

Proposition 18 The set-driven learning functiomp{,Gk is  non-
conservative.

Pr oof : By example. LetD be the following sample:

ba(fa(a, fa(b,fa(x,x))), ) g
ba(fa(fa(y,y).fa(fa(y,y),fa(x,x))),g9) ba(a, e)

ba(b, e) e

ba(ba(fa(z,z),a),j) ]
ba(ba(fa(z,z),fa(ww),j) ba(fa(y,y),c)

ba(fa(w,w), c) ba(d, e)
ba(ba(fa(z,z),d),j) ba(fa(a,fa(f,fa(x,x))),0)
ba(f, e)

It's useful to note that with &-valued grammar, given a structure of the
formf a( x, x) (orba(x, x) ), x must be assigned the same types when-
ever it occurs. The discovery procedVeéx . vaiueq OUtpUts the following
three grammarg. Note that they differ only in the types assignedatob,

d, e, andf .

B/B,D\E
B/B
(B/B)\t, (D\E)\t
B/B,D\E
(B/B)\t, t
B/B

B\t,t

E\t,t
(D\E)/W, W
B/X,X
(B/B)]Y,Y
D/Z, 7

G

N X s—7@Q 00 oT®
111111111111

3This has been verified using the Prolog implementation fritan@zawa 1998), more
specifically with the predicateal ued_gr anmar/ 3.



B/C,D\E
B/C.C/B
(B/B)\t, (D\E)\t
B/C,D\E
(B/C)\t,t
B/C.C/B
B\t,t

E\t,t
(D\E)/W, W
B/X,X
(B/B)]Y,Y
D/Z.Z

Gy :

N< X s—@Q "0 Q 0o

1113177717111 171 1117111111111

B/C,D\E
C/B,D\E
(B/B)\t, (D\E)\t
D\E
(D\E)\t,
C/B,D\E
B\t,t

E\t,t
(D\E)/W, W
B/X,X
(B/B)]Y,Y
D/Z, 7

Note thatG; is the result of unifyingC with B in G5, andFL(G;)
properly includesFL(G5). FL(G2) and FL(G3) are incomparable and
size(G2) > size(G3), SO the set-driven learning function based-opicks
G for this sample.

Now consider adding

@Q
w
N Xs—@Q"0a0o®

ba(b, ¢)

to the above sample and see what grammars are output:



N< X s—@Q "0 Q 0o
N A A A

N X s—7@Q 00 oT®

N< X s—@Q +*0 Q0o

B/B,D\E
B/B
(B/B)\t, (D\E)\t
B/B,D\E
(B/B)\t, t
B/B

B\t t

E\t,t
(D\E)/W, W
B/X,X
(B/B)]Y,Y
D/Z, 7

B/B,D\E
B/B,D\E
(B/B)\t, (D\E)\t
D\E
(D\E)\t,
B/B,D\E
B\t,t

E\t,t
(D\E)/W, W
B/X,X
(B/B)]Y,Y
D/Z, 7

B/B,D\E
B/B,D\E
(B/B)\t, (D\E)\t
B/B,D\E
(B/B)\t, t
B/B

B\t,t

E\t,t
(D\E)/W, W
B/X,X
(B/B)]Y,Y
D/Z, 7



B/C,D\E
C/B,D\E
(B/B)\t, (D\E)\t
D\E
(D\E)\t, t
C/B,D\E
B\t t

E\t,t
(D\E)/W, W
B/X,X
(B/B)]Y,Y
D/Z, 7

N< X s—@Q "0 Q 0o
111111111111

Note thatG is the same a&/;, and G/, is the same a&';. G is
the result of unifyingC with B in G/, andGY} is G plus one additional
type assignmentb — D\E. SoFL(G)) properly includesFL(G/) and
FL(GY%) properly includesFL(G)). FL(G}) andFL(G)) are incompa-
rable. Butsize(G)) < size(G)), soG), not G/, (= G3), is the grammar
picked by the set-driven learning function for this expashdample. [

3 Conclusions

It has been demonstrated that a learning function propaosédanazawa
1998) is set-driven but not conservative. The proof is byngxa, and
we feel that the techniques used for constructing a samplefdinces the
algorithm to display (un)wanted behaviour are sufficiemggneral to be
applicable to a wide range of language classes.
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