Multi-feature Error Detection in Spoken Dialogue Systems

Piroska Lendvai*, Antal van den Bosch*, Emiel Krahmer*, Marc Swerts

x Computational Linguistics and Al, Tilburg University
1 TU/e / CNTS, Eindhoven University of Technology / Antwerpilarsity

Abstract

The present paper evaluates the role selected featuregationlef combinations play for er-
ror detection in spoken dialogue systems. We investigaedlevance of various, readily
available features extracted from a corpus of dialoguek witrain timetable information
system, using RPER a rule-inducing machine learning algorithm. The learrtimgk con-
sists of the identification of communication problems agsin either the previous turn or
the current turn of the dialogue. Previous experiments with corpus have shown that
combining dialogue history and word-graph features is beia¢ for detecting errors (in
particular in the previous turn). Other researchers hapented that combining prosodic
and ASR characteristics is helpful (primarily in the cutréurn). In this paper, we inves-
tigate the usefulness of large-scale combinations of tfesares for the above two tasks.
We show that we are unable to reproduce the benefits of proseatures for learning prob-
lematic situations, even though the overall prosodic tsenaur corpus are similar to those
earlier reported on. Moreover, the best results are obdaiséng just minimal combinations
of two sources of information.

1 Introduction

There is increasing interest in using machine learning (ftir)automatic error
detection in spoken dialogue systems (SDS). Such studidamgely varied with
respect to their definitions of the problem detection takle, learning methods
applied, and the attributes employed in the learning methddvide spectrum
of features is exploited in such experiments, depending loat wources of infor-
mation are regarded to be relevant in the underlying taskatufes are selected
on grounds of their supposed predictive power towards groblduring the in-
teraction between the system and its user. The employedrésatange from
primitive attributes representing entities such as configescores output by the
automatic speech recognition (ASR) module of the systems{Hberg, Litman,
and Swerts, 1999; Litman, Walker, and Kearns, 1999), léxiagput of the ASR
module of a SDS (Hirschberg, Litman, and Swerts, 1999; VanRigsch, Krah-
mer, and Swerts, 2001), experimental parameters and fabatittn of the under-
lying ASR grammar (Hirschberg, Litman, and Swerts, 1999man, Walker, and
Kearns, 1999), aspects of dialogue efficiency and qualitym@n, Walker, and
Kearns, 1999), presence or absence of default assumptimamount of slots
filled (Krahmer et al., 1999) or the system adaptivity (Himserg, Litman, and
Swerts, 1999), to highly complicated features, involvingaaiety of semantics-
based attributes of the user input (Hirschberg, Litman, &warts, 1999; Litman,
Walker, and Kearns, 1999; Walker, Wright, and LangkildeD@Q and aspects of
syntax in the user answer (Krahmer et al., 1999). As oppas#uetprimitive at-
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tributes, the latter types of features cannot be straightdadly extracted from a
SDS, which forms an obstacle for automatic, on-line erraedi&on and recovery.

Recently there is an emerging trend to incorporate prosdefined as the set
of suprasegmental speech features, such as intonatioac{smeelody), tempo,
pausing and loudness, into the modules of automatic speeciymition and un-
derstanding of diverse applications. The various tasksidiecthe attempted use of
prosodic structures as a pre- or a postprocessor, e.graoka-best lists of recog-
nition hypotheses (Veilleux and Ostendorf, 1994; Hiros#95); to run separate
models for words that are or are not accented (Greenberd,)2@0automatically
punctuate transcribed spoken texts; to chunk a continumears of speech into
smaller parts before it is fed into the recognition moduld &m classify speaker
turns in terms of a set of dialogue acts to run act-specifigdage models (Tay-
lor et al., 1996). More recently, people have started to @eplvhether prosody
may also be useful as a resource for error detection. Cug8bP& still make lots
of errors when they have to recognize spoken input from usershe dialogue
manager (DM) of such systems needs a principled strateggdinlel when it can
‘believe’ a certain recognized string. Traditional religp measures, including
acoustic and semantic confidence scores, are still notaffienough. The reason
to investigate prosody for the purpose of error detectiqgraitly motivated by the
fact that it functions eminently well as a cue to problemsumian-human inter-
actions, e.g. (Shimojima et al., 1998). However, resutisnfprevious studies on
prosodically based error detection tools in SDS are a bitnictusive, since they
appear to work well for some systems (Hirschberg, Litman, &werts, 1999), but
are far less successful for others (Lendvai et al., 2002)it Aslargely unknown
why there is so much variance in performance of these diftammls, the current
study aims to gain further insight into the relative impoxta of prosody for error
detection on the basis of a series of experiments.

In addition, from a machine learning perspective, it isiiagting to learn how
prosodic features that are essentially continuous in pattwmbine with more
discrete, categorical (symbolic) features, such as a wagtgoutput by the ASR
or various aspects of the dialogue system, which have also bwestigated in
terms of their usefulness for error detection. It is stillgen empirical question
what machine learning approach is best capable of integyatultiple features of
widely different nature.

The current study explicitly investigates the feasibiltyd the usefulness of
combining different knowledge sources for error detectiasks. In doing such
a multi-feature error detection exercise, we will treasthlassification problem
not as one general task applied to a full set of recorded giigds, but rather run
experiments that take into account what the specific di@aguation is in which a
problem has occurred. That is, while different investigasi have brought to light
that prosodic behaviour in relation to dialogue problemyweuch depends on the
specific situation at hand (Litman and Pan, 1999; Swertmait, and Hirschberg,
2000), this fact has not yet fully been exploited in erroreaéibn tasks. We will
propose to do this by looking at the type of question the diaéosystem has posed
to the user most recently in the course of the interaction.
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The paper’s structure is the following. In Section 2 we firsscribe the dia-
logue data used for our study and the schema used for am@tatmmunication
problems. Subsequently, we describe the collection olifeathypothesized to
be predictive in detecting communication problems. In Bec8, the learning
tasks and the learning method are described. Experimesgalts on the differ-
ent feature types are treated in Section 4, after which onclesions are given in
Section 5.

2 Data
2.1  Corpus and labeling

The corpus used in the present study consists of 441 fulbgisds, broken down
into 3738 pairs of system questions and user answers that seenpled from a
range of telephone calls of users with a Dutch human-madhéie information
system. Virtually all dialogues involve a different speakehe SDS prompts the
user for information needed to perform a train timetableadase query. It gives
feedback on what it has understood from the user input vidigihpr explicit ver-
ification, thus the user will always become aware of eventuislinderstandings
from the following system question. The percentage of ucsssful conversations
in our corpus is 47.6%. Problems emerge primarily becaugpeof speech recog-
nition and ineffective dialogue management, and secolydscause of erroneous
user inputs or false default assumptions by the system. frbesavere annotated
by three persons. All data were annotated by at least twosshitand differences
in annotation were resolved through discussion. Labeliagawhether or not the
user’s input gave rise to communication problems in the seof the conversation.
This feature is the one to be predicted by the machine leaFugther annotation
of the dialogues concerns the type of prompt the system has macently given.
The types of system question are the following: Open que$@), Explicit veri-
fication (E), Implicit verification (1), Yes/no question (YMeta-question (M), and
eXceptional behavior (X), if necessary in combination whie suffix Repetition
(R) which indicates that the current system prompt is a repetof the previous
prompt.

To illustrate the labeling task, consider Figure 1 contajrthe first three pairs
of system questions and user answers in a running dialogoueren'S” denotes
a system question, and “U” the user answer. Apparently, tsedser utterance
is not recognised correctly; the second system questidndstahe departure and
arrival stations, which the user has just given. Howeveg, uhsolicited infor-
mation about the day of travel is correctly understood frow tiser input and is
verified implicitly in the prompt. Thus, our labeling marksetfirst user turn as
“PROBLEM’, meaning that processing this utterance caused some caoioation
problem in the dialogue.
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Turn# S/U  Utterance Annotation
1 S Goedenavond(.). Van welk station naar welk (@)
station wilt u reizen3Good evening. Fromwhich
station to which station do you want to travel ?)
U Ik moet volgende week dinsdag van Schiphol naar PROBLEM
Nijmegen. ( need to go from Schiphol to Nijme-
gen on Tuesday next week.)
2 S Van waar naar waar wilt u op dinsdag twaalf de-
cember reizen?Rfom where to where would you
like to travel on Tuesday twelve December?)
U  Van Schiphol naar Nijmegen.F{om Schiphol to NO PROBLEM
Nijmegen.)
3 S Hoe laat wilt u vanuit Schiphol naar Nijmegen I
reizen? At what time do you want to travel from
Schiphol to Nijmegen?)
U Rond kwart over elf 's avonds.Afound quarter PROBLEM
past eleven in the evening.)

Figure 1: The first three turns of an example dialogue.

2.2  Feature representations

The primary hypothesis underlying our study is that comroatidon problems have
concrete correlates in what the user is saying at a certéim pfithe dialogue. The
relevant attributes should be selected, and training daiald be represented ac-
cording to these features in order to train a ML algorithmloa problem detection
task. We designed a conversion step of the SDS data to iestawtere one in-
stance represents a “current” state in the dialogue sysfidme. selected features
that make up these representations are deliberately legl:Imoreover, they can
all be automatically extracted in real time from the onligstem, of which the in-
ternal states were available to us in logs and audio filesleThhsts the dialogue
characteristics used. We distilled features both from theesof the system and
from what is recognised from the user’s reply.

From the user, we use both the output of the ASR module ancatheudio.
The ASR output of this particular system produced a word lgréom which we
stripped all recognised words, encoding these in total &9abit binary bag-of-
words vector. The 759 bits represent all words that occumrexlir corpus. This
bag-of-words representation originates from the vectacspnodel for document
representation, used in information retrieval (Saltor89)9 Further user features
extracted from the word graph are the duration of the injiatse, the speech
tempo, and the degree of branching in the word graph. Andéxécal attribute
used is the most confidently recognized string in the worg@lgra

The initial pause in the utterance (the length of the siletheg precedes the
utterance) is assumed to indicate the degree of hesitdtitie aser in responding,
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Aspect Feature

DM: prompt Six previous question types

ASR: confidence | summed confidence score of most confident path
ASR: branching | branching factor in the word graph of current and previous |ut

terance

ASR: lexical bag-of-words of previous and current user turn; most confide
recognized string

Prosody: pitch maximum and minimum FO; position of maximum and mini-

mum; mean FO and standard deviation
Prosody: energy | maximum energy (RMS); position of maximum; mean RMS
and standard deviation

Prosody: duration| length of utterance in seconds; length of initial pause amfes
Prosody: tempo | number of syllables per second

Table 1: Overview of the employed features

cf. (Krahmer et al.,, 2001). The speech tempo of the utteraocesponds to

the number of uttered syllables per second. To compute théauof syllables

in an utterance, we used a memory-based syllabifier for D(Deelemans and
van den Bosch, 1992). The branching factor in the ASR worglyraas also

calculated both for the current and the preceding utterati@racterizing a degree
of confusion in the graph; a lot of branching in the word gragh be an indicator
of system uncertainty, or noisy user input. The confidencasuements of the
ASR were also converted into a feature: we used the total demde, summed
over nodes, of the overall most confident path.

From the audio we automatically extracted FO (fundamenggjiency) mea-
surements, RMS (energy, amplitude) measurements andatuddtthe utterance
from initial silence to final silence, using the GIPOS softevgpackage. The
method used to determine FO is Hermes’ method of subharnsanienation (Her-
mes, 1988) combined with dynamic programming to smooth thedntour and
remove any possible pitch measuring errors.

To conclude our feature selection, we selected the sequeEnite six most
recent system question types as a superficial represantdttbe dialogue so far.
The number of six is arbitrarily chosen; the assumption & ome patterns in
the sequences of questions may mark typically problematiat®ons at the next
utterance (such as two or more repetitions of the same a@uestpe), but it is
unlikely that essential parts of these patterns will orégénin the questions asked
five or more turns before.

2.3  Descriptive Statistics

A statistical description of the prosodic properties of data is given in tables
2 and 3 that show the mean values of prosodic features ctdduileom all non-
problematic and all problematic utterances in the corpus.péfformed a paired
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Qt=E Qt=1 Qt=0 Q=Y

Feature —Pr Pt —Pr Pt —Pr Py —Pr P
FO max(Hz) | 217.8 224.2 236.0 237.6 241.6 238.8 213.3 207.6
FO mean(Hz) | 144.4 148.4 159.9 161.Y 160.7 163.8 147.5 150.7
RMS max |5507.2  5421.8683.7 ** 5540.77325.9 ** 6091.05173.7 ** 4290.(
RMS mean | 241.8 264.9 378.3 ** 330.5 447.2* 379.6 248.1 240.8
Duration(s) 19* 26 27* 29 36* 34 18* 2.0
Tempo(syll/s) 1.0 14 20 21 24+ 25 1.0* 1.3

Table 2: Prosodic means of unproblemati®¢) and problematic (Pr) current turns for four
system question types (1Q. “*” denotes statistical differences between the two mea
a pairedt-test withp < .05 significance; “**” denotegp < .01 significance.

t-test on these pairs of means to check whether the diffesdneveen them are
of statistical significance. The utterances are, furtheengrouped according to
their co-occurence with the four most common types of systesmpts during the
dialogue, characterizing the utterances per prompt typel{&it verification, Im-
plicit verification, Open question, and Yes/no questionguFes for the remaining
prompt types are not included in the table; they occur lesgufently and produce
fewer statistically significant outcomes. Figures are rie¢ig for all prosodic at-
tributes, but typically the other FO and RMS measurement®lzie statistically,
as calculated in a Pearson’s correlation test, thus for pl@mhigh FO maximum
often is accompanied by a high FO mean measurement.

If we compare the actual values of the means for problematitstaccording
to the most recently asked system question)(@e find that these vary across
prompt types: for example, the mean length of problematswens following a
Yes/no question is generally much shorter than the meartHesfgproblematic
answers following an Explicit verification question (cf.bla 2). Table 3 reveals
such subtilities that a user’'s answer following an Impligrification of a mis-
understood information does not tend to be spoken loudesnaswvould expect
(Hirschberg, Litman, and Swerts, 2000; Oviatt, McEachand Levow, 1998) as a
consequence of hyperarticulation. Judged by the outcofrtbs t-test, character-
istics of some of the prosodic attributes are in accordarittefimdings concerning
hyperarticulate speech, but others are clearly not, whamgdiuishing according to
the actual prompt type. Furthermore, thiest reveals that the scales of the differ-
ences between means of problematic and unproblematicdepend on whether
the communication problem occurs in the current turn (T&bler in the previous
turn (Table 3) of the dialogue. What follows from Tables 2 &nd that it may be
useful to decompose the error detection task into two teashd,that the type of
system prompt just given may hold predictive power towaretecting problems.
The importance of the system question type was exploitedimachine learning
method, as set out in the following subsection.
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Qt=E Qt=1 Qt=0 Q=Y

Feature -Pr Pr  —Pr Pr  —Pr P -Pr P
FO max(Hz) | 209.8 ** 236.5 234.4 240.8 236.6 ** 272.71 211.8 * 263.8
FO meanHz) | 142.1 * 151.3 159.2 163.6 161.4 * 175.1 147.7 * 181.7

RMS max |5050.6 * 6253.%133.3 5910./6637.5 5936.5010.0 5189.3
RMS mean | 206.9 * 320.3 348.7  356.5411.3 * 353.7 246.4 2952
Duration(s) 18* 271 26* 31 35 33 18* 26
Tempo(syll/s|  0.9* 1.4/ 2.0 21 25* 19 10* 16

Table 3: Prosodic means of the current turn, depending orihehéhe previous turn was
unproblematic tPr) or problematic (Pr), given for four system question &y§&¢"). “*”
denotes statistical differences between the two meansaireds-test withp < .05 signif-
icance; “**” denotesp < .01 significance.

3 Machine Learning applied to automatic error detection
3.1  Task specification

Drawing on the statistical characteristics of our corpusyredetection is carried
out by means of two different series of experiments: (1) @@ty miscommunica-
tion in the current user utterance versus (2) detecting agnisnunication problem
in the previous user utterance given the most recent queatiswer pair. Predict-
ing whether the current user utterance will cause probldmeaceforth: current-
turn-problem, CTP) has been reported being more difficidn(dfen Bosch, Krah-
mer, and Swerts, 2001; Lendvai et al., 2002), since this hasknot only to deal
with problems that are due to cognitive misunderstandired®/ben the two par-
ties, such as assumptions and presuppositions, but al#etofit technical factors
that pose problems to the given dialogue system itself, agéts inability to cope
with hyperarticulation or with noisy input.

The second task, aimed at identifying problems that emeirgéuke previous
turn of the dialogue (henceforth: previous-turn-probl®mP), consists of spotting
turns signaling that the processing of the previous usertiment wrong. The clas-
sifier of the PTP task can thus draw additional informatia@nfrthe subsequent,
aware turn of the user; cf. (Litman, Hirschberg, and Swet®)1), where peo-
ple give feedback about the progress of the communicatiomégns of prosody
(Hirschberg, Litman, and Swerts, 2000) and by means of kit@hd explicit lex-
ical cues (Van den Bosch, Krahmer, and Swerts, 2001; Kraketadr, 1999).

It is important to distinguish between these two tasks beeau this way we
have a two-fold approach to error detection in SDS. Note Hisp there can be
different labels assigned to the same feature values attresw/o tasks, as certain
utterances are unproblematic in the current turn (CTP teskhat the same time
reflect awareness of problems that occurred in the previausdf the dialogue
(PTP task). By differentiating between the two tasks, thasing separate clas-
sifiers on the tasks, we reuse the data in a unified, but stilb#eperspective way
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of error detection, enabling classification of subtle peses within one utterance.

For illustration, compare again the respective values inléf2 and Table 3
for discovering the dissimilarity between actual featuadues in the two tasks.
The figures in the tables are rather different not only withire dialogue attribute
(across a row), but also with respect to the same attributisat¢he two tasks. For
example, in the learning task of the CTP, the classifier migget the information
that problematic utterances tend to be produced with arfaptech tempo after an
Open question, whereas utterances that signal a miscoratiami in the preced-
ing turn (the PTP task) are produced with a slower tempo tharutproblematic
ones.

3.2  Learning method

In a previous study (Lendvai et al., 2002) we employed a mtkiction method
with domain knowledge incorporated as enforced conditigron the induced
rules, the knowledge being the type of question the systesrablked in its most
recent prompt. In other words, all induced rules conditibieast on a question
type value, in combination with zero or more conditions oheotfeatures. This
approach enhanced learner performance on all attributéseiprevious-turn-task
it resulted in an average 25% improvement of learning aaguiraidentifying er-
rors, indeed indicating that the scale of difference betwbe prosodic means is
correlated with the type of system question to which usespaad.

In the current study we uselRPER (Cohen, 1995) to automatically perform
error detection, based on the above methodrPRRis a fast rule induction al-
gorithm that induces a ruleset based on the training exanptefirst separates
the training set in two, then on the basis of one part it inducdes, heuristically
maximizing coverage and accuracy for each rule, with paéeaverfitting. When
the induced rules classify instances in the other part baloartain threshold, they
are not stored. Rules are induced per class, ordered frorfremuency classes to
high-frequency ones, leaving the most frequent class addfalt rule, which is
generally beneficial for the size of the rule setPRERwas used with its standard
settings.

During the experiments training and testing was done by dl@-tross-
validation, where partitioning was done with complete dgales as units, thereby
ensuring that no material from the same dialogue could bisgpaoth the training
and the test set. The performance of the classifier was eealaacording to mea-
sures of predictive accuracy on deciding between problieraad unproblematic
instances, and precision, recall, and F-score of the codegection of errors. The
latter metric combines precision and recall in a single fguie employ the un-
weighted variant of F-score, which is definedd3R /(P + R) (P = precision,R
= recall) (van Rijsbergen, 1979). In evaluating a class#fiperformance in error
detection more importance should be given to values of Festtean to predic-
tive accuracy as the given F-score characterizes the rateeoision and recall for

1We used RePERversion 1, release 2.4.
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the prediction of the problem class while accuracy can bejoely biased to the
majority non-problem class.

3.3 Baselines

Because of the inherent differences in the two predictiskgatwo different base-
lines were established. For predicting miscommunicatithé current turn of the
dialogue, a majority-class baseline is calculated.Whenddtta are split accord-
ing to the last system question type, some question typefologied by more
problematic utterances than unproblematic ones, such as gpestions (“O"),
repeated open questions (“OR”), and implicit verificatiaregtions (“1"). Always
guessing the majority class given the prompt type produdessaline of 65.2%
accuracy and an F-score of 62.4%.

For the task of identifying a communication problem in theyious turn of
the conversation, we make use of the fact that the systermdadyl aware of a
lot of problems; this is signalled directly whenever theteys repeats its previous
prompt. Applying a strategy of always identifying a problamen the last system
promptis repeated gives a higher baseline for the secokdhaaceforth referred
to as the “system knows” baseline. There are 974 of thesdiqnsesn the corpus,
yielding 82.9% accuracy and 75.3% F-score.

4 Results

We describe the results in three steps. First, we investithet predictive power
of prosodic features in detecting communication problemthée current and the
previous utterance, to test the hypothesis that prosodyroffoncrete correlates
with problems. Second, we discuss the results on the sarke tag all non-
prosodic features from the ASR wordgraph and the systemtignss Third, we
review the results obtained with combinations of both typiefeatures.

4.1 Prosodic features in the error detection task

As indicated in the introductory section, some studiesntltiiat prosody offers
strong clues in automatic error detection. We tested tlaigcfor our Dutch data
by creating a matrix of combinations of prosodic featurempst to the CTP and
PTP tasks. The results of our experiments show no clearifatehces between
performance of prosodic features in isolation or in combores. For the CTP
task, no features or combinations could even outperfornttimebined-majority-
class baseline, as can be seen in the left half of Table 4. tébis illustrates the
performance (in terms of accuracy and F-score) of only tipossodic features that
outperform the baseline for the PTP task (right column). e that for the PTP
task at least some prosodic features show a significant weprent: more than
20% error-reduction in terms of F-score for duration and gkt of all prosodic
features produces a fair result.

It is worth noting that duration has proven to be an overall\werforming fea-
ture in the course of the experiments, isolated as well asnimoination with other
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Current Turn/ CTP Previous Turn/ PTP

feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + FO mean 64.7+1.4 60.6:2.6 | 82.4:2.0 76.5:2.9

Qt + FO minpos 63.+2.1 60.5:2.3 | 84. 419 79.&29
Qt + RMS maxpos| 63.%1.9 59.4£2.9 | 84.3£2.2 79.4:3.1
Qt + RMS mean 64.1+£2.3 57.9:3.6 | 83.3+1.8 78.5:3.0
Qt + Duration 64.2+1.4 58.446| 85.2+1.6 81.H25
Qt + Tempo 64.8£2.4 59.0t3.5 | 84.2+1.6 78.43.0
Qt + All Prosodic | 64.1+2.2 57.3t2.2 | 84.74£2.2 80.8:2.8

Table 4: Most prominent test performances in terms of acyuead F-score trained on
detecting miscommunication originating from the currenttte previous turn, based on
prosodic features

prosodic features. This corresponds to reports of (Batkihal., 2001; Hirschberg,
Litman, and Swerts, 1999). In the latter study durationqent with an error rate
of 17.1% (corresponding to 82.9% accuracy), which is comaipiarto the 85.2%
accuracy that our classifier gives.

4.2  Non-prosodic features in the error detection task

Table 5 lists the accuracies and F-scores of both error tletetasks based on
(combinations of) non-prosodic features, viz. those festextracted from the
word graph that outperform the “system-knows” baselinenficience, branching
factor, bag-of-words vector, most confident string), areddfsstem history (the five
previously asked question types, 5Q).

The CTP task is performed only slightly above baseline byhistory of five
before-previous questions, as well as by the combinatiail afon-prosodic fea-
tures; recall that none of the prosodic features helped dohréhe baseline (cf.
Table 4). The baseline for the PTP task, however, is beatetrbgst all the non-
prosodic features; only slightly by the wordgraph confideand branching factor
features, but largely beaten by the bag-of-words vectoradirather tested combi-
nations of non-prosodic features that include the bag-afds vector, all leading
to an accuracy of about 91% and an F-score of about 89%.

It is worth paying attention to the lexical features, nam@the two sets of
bag-of-words (BoW) and the most confident string in the woep (ASR string).
Other studies (Hirschberg, Litman, and Swerts, 1999; Litpvsalker, and Kearns,
1999) reported that the ASR string is highly relevant in jicBdg recognition er-
rors (which partly corresponds to our CTP task). In the stoflyHirschberg,
Litman, and Swerts, 1999) the recognized string was thedmfrming isolated
feature, yielding an error rate of 14.4% (85.6% accuracyhisTcore is much
higher than the result that we get (65.3% accuracy),thus amat regard the
most confident ASR string as a well-performing feature for goal. Note that
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Current Turn/ CTP Previous Turn/ PTP
feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + Confidence 63.9+-1.8 58.0t4.0 | 84.9+2.0 80.5:2.8
Qt + BF 66.3+3.1 58.9:5.1 | 84.8£1.8 81.2:2.9
Qt + ASR string 65.3+1.8 62.22.2 | 83.6£1.5 77.0t1.9
Qt + Bow 66.3+1.9 61.A43.1| 90.8£1.8 88.A2.2
Qt +5Q 66.9+-3.5 64.3t4.9 | 83.6t1.4 76.9:2.7
Qt +5Q + Bow 67.7+1.6 63.23.1| 91.1+1.1 89.4:1.3
Qt +5Q +BoW +BF | 69.1+2.5 64.0t3.2 | 90.8:1.2 89.0t1.2
Qt + BoW + BF 66.9+-2.6 60.8:3.6 | 90.9+1.1 89.1H1.3
Qt + All Nonprosodic | 69.3t2.8 65.6:t3.9 | 91.0+£0.9 89.2:1.3

Table 5: Most prominent test performances (accuracy antbfe}trained on the CTP and
PTP tasks, based on non-prosodic features. BF stands farting factor; BoW stands for
bag-of-words vector; 5Q stands for the five before-previeystem question types.

(Hirschberg, Litman, and Swerts, 1999) are dubious abauptitential benefits
of using the ASR string in error detection, questioning ieethe model learned
training on this feature can generalize across systemssks.taOur experiments
have indeed shown this discrepancy.

(Litman, Walker, and Kearns, 1999) employ the ASR text feafas a set-
valued lexical feature in RPERwhere it also turns out to be the most predictive
feature in isolation (72% accuracy) for detecting poor speecognition. It is
noteworthy that for our task the ASR string feature is lessdfieial. However, a
feature of the same type, the set of bag-of-words is unddiyptiee ultimate win-
ner in our experiment matrix. An interesting question agsirom this is whether
this gain in favor of the BoW feature originates in the enogdiifferences (set-
valued versus binary representation) or the fact that thé&/Bector tends to con-
tain at least parts of what the user actually said (along @ithmisrecognised
alternatives), whereas the ASR string can be completelyriect.

4.3  Combination of prosodic and non-prosodic feature types

Table 6 shows the most prominent outcomes measured in thiéxroafeature
combination experiments with prosodic and non-prosodatuiees. The upper
section of the table illustrates the BoW vector combinechvaiértain prosodic
attributes. The middle section depicts the BoW vector comdiwith the dia-
logue history and certain prosodic attributes. The lowetiea lists results for
sets where either the dialogue history is combined with ecsiein of prosodic and
non-prosodic features, or all the non-prosodic featurescambined with one or
all prosodic features.

For the CTP task the baseline appears to be (slightly) beatelusively in
those cases when the five before-previous system quespies re used as fea-
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Current Turn/ CTP Previous Turn/ PTP

feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + BoW + All Prosodic 65.0+2.0 58.A42.4 | 90.8£0.9 89.G:0.9
Qt + BoW + Ipause 65.8+2.2 61.2£2.8 | 91.0+1.1 89.H1.1
Qt + BoW + Tempo 67.1+2.6 62.0t2.6 | 90.9£1.0 89.H1.1
Qt + BoW + Duration 66.8+2.2 60.6:3.3 | 91.1+1.6 89.4:2.0

Qt + BoW + 5Q + Ipause 67.8+2.5 63.5£3.0 | 91.0+1.0 89.2:1.1
Qt + BowW +5Q + Tempo | 68.6£2.7 63.6:4.2 | 90.8:1.3 89.G:1.3
Qt + BoW + 5Q + Duration| 69.5+3.0 64.3t4.3 | 91.14+1.3 89.4t1.5
Qt + All Nonpros + Dur 68.742.3 64.3:3.3 | 90.9+-0.7 89.G:1.0

Qt + All features 68.9+2.5 64.44.4| 90.6:0.9 88.A 15
Qt +5Q + BoW + All Pros | 68.2+3.1 63.1#4.4 | 90.8t1.2 89.Gt1.5
Qt +5Q + All Pros 67.6£2.8 63.8:3.4 | 85.8+1.8 82.5:2.6
Qt +5Q + BF + Dur 69.2+3.0 64.6£5.2 | 86.4+1.8 83.5:3.3

Table 6: Most prominent test performances in terms of acyuead F-score trained on
detecting miscommunication, based on feature type cortibmaets.

tures. These cases correspond to the set of Qt + 5Q and thesetkebelow it in
Table 5, as well as to the sets in the two lower sections ofeT@blTaken alone
or combined with any other feature, the F-score of these@ethe CTP task is
around 64%. The best F-score of 65.0%, obtained by combadingn-prosodic
features, is listed in Table 5, but all the other experiment$eature sets that in-
clude the six system questions (Qt + 5Q) perform non-siganifily better or worse
when tested in one-tailedtests. Likewise, combinations of prosodic and non-
prosodic features for the PTP task are not significantlyedifiit from the apparent
ceiling score of 91% accuracy and 89% F-score using nonegiogeatures only
(cf. the relevant feature sets in Table 5 and Table 6), pemttiat the combination
includes the bag-of-words vector.

In sum, Table 6 confirms the findings of Tables 4 and 5 that —tbmpt type
condition imposed on the rule induction— (i) no (combinatid) prosodic features
plays an essential positive role in attaining top scoresithreetask; (ii) the com-
bination of @ and the five before-previous system question types is éabantl
sufficient for attaining an above-baseline score on the G§R; and (iii) the com-
bination of @ and the bag-of-words vectors is essential and sufficierrefaching
a ceiling score on the PTP task.

5 Discussion

In this paper we studied the usefulness of a wide range ofifesfor machine-
learning-based error detection in spoken dialogue systehte features come
from various sources, representing the dialogue histdry §ix most recent sys-
tem question types), output of the ASR (recognized bag-afdg, acoustic con-
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1. if Q () =R,thenPr. (977/0)
2. if Q@) =1A “naar” € BoW(t-1)A “naar” € BoW(t) A “uur” ¢ (131/12)
BoW(t) then Pr.

3. if Q@) =1A"naar € BoW(t-1) A “vanuit” € BoW(t) then Pr. (39/6)

4. if Q@) =1A “uur” € BoW(-1) A “om” € BoW(t-1) then Pr. (4417)

5. if Q@) =1A “van” € BoW(t) A “den” € BoW(¢t) then Pr. (13/5)

6. ifQ@E)=1A"uur" ¢ Bow() A “ik” € BoW(t) A “niet” € BoW(t) (11/2)

then Pr.

7. if Q@) =EA"“nee” € BoW(t) A “ja” ¢ BoW(¢t)then Pr. (88/9)

8. if Q) =EA“uur” € BowW(t-1) A “morgenochtende BoW(¢-1) (10/2)

then Pr.

9. if Q@) =EA"“uur” € Bow(t) thenPr. (16/5)
10. if Q (¢) = O A “naar” € BoW(t-1) then Pr. (38/9)
11. if Q@)= OA “wil"” € BoW(-1) then Pr. (6/1)
12. if Q ) = O A “naar” ¢ BoW(t) A “februari” € BoW(¢) then Pr. (3/0)
13. if Q) =M A “klopt” € BoW(t-1) then Pr. (4/0)
14. if Q () =M A “s avonds”e BoW(t-1) then Pr. (4/0)
15. ifQ @) =M A“k” € Bow(-1)thenPr. (8/2)
16. if Q@)=Y A “twee” € BoW(t-1) A “niet” € BoW(t) then Pr. (2/0)
17. else-Pr. (2064/220)

Figure 2: TheriPPERrule set for the PTP task, on the basis of the most recentraygtes-
tion (Qt) plus the word graph of the current (Ba\\and the previous user input(Ba\ 1).
For translations of lexical items see the text. Théi) numbers at the end of each line in-
dicate the number of instances the rule covejsand the number of false predictions).

fidence score, branching factor and amount of initial pansthé word graph)
and various prosodic characteristics (pitch, loudnesspte duration). Two tasks
were distinguished: predicting whether the current userance will cause com-
munication problems (CTP) and identifying whether the pres user utterance
caused communication problems (PTP). The CTP task is mfifieudti than the
PTP task, since for predicting whether the previous userantce caused prob-
lems the classifier can use the properties of the currentuttEance, which may
contain various cues indicating that something went wrong.

Concerning the CTP task, we see that none of the prosodiarésayield
above-baseline scores with our learning method. The bestbvesult for this
task is obtained by training on all non-prosodic featuregh(van accuracy of
69.3% and an F-score of 65%). However, the improvement ig ariew points
above the baseline, and this implies thadriori prediction of problems is all but
impossible for the current system. Earlier work, e.g., fidiberg, Litman, and
Swerts, 2000; Hirschberg, Litman, and Swerts, 1999) hawsltlbat prosody can
help for both tasks, arguing that utterances which are predwith a marked into-
nation have a higher chance of being misrecognized and,avergf users speak
with marked prosody this is also often an indication of pesbs$ in the previous
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turn. The descriptive statistics for our prosodic data dowsthat problematic and
unproblematic utterances are significantly different freach other, but the learn-
ing algorithm fails to profit from these differences to thengaextent as it does
from other sources of information. A potential cause for hating been able to
demonstrate the alleged added value of prosody is that epus@onsists of rela-
tively short dialogues (2-10 turns) from more than 400 défe speakers, whereas
the corpus analysed by Hirschberg and co-workers consishger dialogues with
20 speakers. It might well be that prosody is more helpful nvbl&logues are
longer, so that the system is better able to distinguish sqmes regular speaking
style from his/her problem-signalling speaking style.

The classifier does much better on the PTP task. We see thatiggurosodic
features in isolation perform above baseline, and whemitrgion all prosodic
features we obtain 84.7% accuracy and 80.8% F-score. Seéaap that using
prosody is beneficial for this task. However, the benefitsrofpdy are relatively
small when compared to those of other features. In partictie combination
of the dialogue history and the bags-of-words obtains 9lat&tracy and 89.4%
F-score. Combined with the only the most recent prompt tyipe bag-of-words
feature is able to capture situational patterns which ettserhad to be represented
by high-level features. We appligdPPERt0 the complete data in order to illus-
trate the rules learnt when training on the bag-of-wordtufies cf. Figure 2.

Rule 2 captures situations when the user corrects the systesply to its Im-
plicit verification question: the lexical item “naar” (‘tprep.”) is present both
in the current and in the previous word graph, whereas thigdéitem “uur”
('o’clock’) is not in the current word graph. Presumably thestem made an im-
plicit verification of the user’s previous input on the aafistation, at the same
time prompting for the time of travel, which the user is natigg in this situation,
as s/he is concentrating on correcting the system. Rule facteizes the user
repeating his/her input in reply to an Implicit verificati¢of departure and arrival
station) with a marked lexical usage: “vanuit” (‘from’) ihe full form is present
in the current word graph, whereas “naar” was present in tbeipus utterance’s
graph. Rule 6 points out problematic situations where thregreal pronoun “ik”
('I') suggests that the user formulates the input with a-flddged syntactic struc-
ture, a usage that is characteristic of problematic sibuat{Krahmer et al., 1999),
as well as the parallel presence of the explicit disconfiiomanarker “nee” ('no’)
and absence of the explicit confirmation marker “ja"('yag’yule 7.

Rule 10 sheds light on problematic turn sequentions wheregly to a Yes/No
question ‘Do you want information about another conne@ionsers often re-
spond ‘Yes, from X to Y’, however, the system is unable to grime the station
names unsolicitedly given in the context of the Yes/No qgoastalthough it is
clear from the rule that 'tprep.” (“naar”) was in the word graph—, reacting with
the usual Open question-prompt in the next turn: ‘From whereshere do you
want to travel?’. Once in the Open question context, the Af&ndails to recog-
nize the lexical item “naar”, which is thus absent in the wgrdph (even though
most probably the user did provide an answer for this slat},tkaces of other,
unsolicited information are present in the graph (for exbntpe intended day of
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the travel, Rule 12).

We assume that the BoW set implicitly contains a wide spetioéicues in-
dicating problems, such as context shifts reflected by tfierdnces between the
current and the previous word graph, semantic diversitytesstic structure, repe-
titions, omissions, corrections, and whether or not théesyshas recognized the
necessary slot-filling item.

Our general result is that given the imposed-first-rule gtaun method, we
can reach the level of the best results using varied setatfres, but these should
at least include (1) the five before-previous prompt typestie CTP tasks, and
(2) the two sets of bag-of-words for the PTP task. It is notsgme to get a
significantly higher F-score than obtained with these femsets. On the other
hand, performing no active selection but simply gather gdamssumed-to-be-
comprehensive set of features did not produce significatiffgrent results (cf.
(Batliner et al., 1999) for a similar finding in a multi-fea¢uprosody task). From
a performance perspective, feature selection withPiRRon the studied tasks has
not been necessary. From an explanatory data analysisqugika&n however, in-
specting rules induced from selected features can pinploéntost salient infor-
mation that qualifies best to be related back to developeg®&.
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