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Abstract

A parallel communicating finite transducer system is a translating device where several
finite transducers work in paratlel, in a synchronized manner, and communicate with each
other by requests. The communicated data are the current state of the transducer and the
current confents of its output tape. Each computation step in such a system is either a usual
translating step or a communication step; moreover, the communication steps have priority
over the translating ones. Purthermore, whenever a component requests sorme data, that data
must be communicated, We investigate the computational power of these systems. Then
we consider systems restricted o subsequential transducers, as components, and compare
these systems with the general ones. These devices turned out to be useful in computational
linguistics. A short discussion on a possible relevance in the theory of discourse parsing
and some directions for further work closes the paper,

1 Introduction

In many areas of computer science {parallel and distributed computing, com-
puter networks, natural language processing, artificial intelligence - problem solv-
ing, human computer interaction, expert systems, computer supported cooperative
work, and recently in DNA computing and quantum computing) various models
based on cooperation and communication among agents have been considered.
Many of these areas are multidisciplinary being placed at various crossroads of
mathematics, computer science, biology, computational linguistics, and cognitive
psychology. Formal language theory has been involved in most of these circum-
stances e.g. in modelling aspects whose essence can be captured at the level of
abstract symbol systems (Csuhaj-Varjii et al. 1994, Durfee et al. 1989, Piun 1998).
Thus, Csuhaj-Varji and Dassow (1990) introduced cooperating distributed (CD)
grammar systems, inspired by the so-called “blackboard model” in problem soly-
ing theory (Durfee et al. 1989). Several grammars working together, following
a prescribed strategy form a grammar system. Two essentially different architec-
tures, depending on the protocols of cooperation and communication among the
components, have been studied during the years (see e.g. Csuhaj-Varji et al. 1994).
In the case of cooperating distributed grammar systems the cooperation is done by
means of the sentential form; components may rewrite, in turn, the sentential form
according to their own strategies. When a component is active, all the others are
inactive. Quite different is the cooperation in parallel communicating (PC) gram-
mar systems, where the components work in parallel on their own sentential forms,
and from time to time some components ask, by means of query symbols, for the
work of other ones. The contacted components have to send their current work
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(sentential form) to those components which asked for it.

An entire theory has been developed for both types of grammar systems (see
the monograph (Csuhaj-Varji et al. 1994) and more recently the chapter (Dassow
et al. 1997) in (Rozenberg and Salomaa 1997)). Connections belween grammar
systems and natural language processing and modeliing were presented in (Csuhaj-
Varja 1994, 2000, Csuhaj-Varji et al, 1999) and in (Jiménez-Lépez 2000).

The idea of considering several automata which cooperate in the aim of recog-
nizing a word, following different strategies, can be found in many papers though
it is not explicitly asserted. We mention here some of them: muliti-head automara
(Ibarra 1973), multiprocessor automata (Buda 1987), parallel communicating au-
tomata systems (Csuhaj-Varjd et al. 2000, Martin-Vide et al. 2002, Martin- Vide
and Mitrana 2001), or cooperating mulfi-stack pushdown automata (Dassow and
Mitrana 1999),

In Martin-Vide et al. (2002) systems of finite automata work in parallel on the
same input tape and communicate with each other by states, in order to recog-
nize the word placed on the common input tape. These systems have components
which communicate with each other under similar protocols to those considered
for parallel communicating grammar systems mentioned above. Every component
is entitled to request the state of any other component; the contacted component
comumunicates its current state and either remains in the same state (in the case
of the non-returning strategy) or enters again the initial state (in the case of the
returning strategy). In centralized systems only one component (the master of the
system) is allowed to ask a state from the others, We want to stress that each step
in an automata system is either a usual accepting step or a communication step;
moreover, the comumunication steps have priority to the accepting ones, We also
mention that whenever a component requests a state, the state must be communi-
cated.

In this paper, we propose a new approach by extending the concepts of par-
allelism and communication from the grammar systems area to systems of finite
transducers.

Sequential string-to-string transducers have been successfully used in the rep-
resentation of large-scale dictionaries, computational morphology, and local gram-
mar and syntax (Mohri 1996, 1997b, 1997a). The reader may also consult
(Krauwer and des Tombe 1981). Some algebraic aspects related to finite transduc-
ers have been reported in (Choffrut 1977, Reutenauer 1993, Schiitzenberger 1977).

There are a few approaches for constructing a finite transducer which has the
required properties for being used in some applications. A nice and comprehensive
picture of the state of the art in using finite-state methods in language processing
is the collective volume edited by Roche and Schabes (1997). We present two of
them very briefly and informally. One consists of building a series of cascaded
transducers. The output of a transducer is feed in the input of the next trans-
ducer, i.e., to write a series of transducers from the most general one to the most
specific. This approach is based to the closure of finite transducers under com-
position. However, composition of finite transducers generally outputs a trans-
ducer with a large number of states which might be hardly manipulated, in spite of
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the fact that in many applications one needs not expand a cascade of transducers
(Kempe 2000, Abney 1996).

Another way of building a desired transducer consists of approximating it-
eratively through a sequence of intersections. This approach successively ap-
proximates the desired transducer by constrocting a transducer for each specific
phenomenon of the problem which is to be solved and then intersects all these
transducers such that a common behavior is achieved. However, the most general
variants of transducers are not closed under intersection. Actually, approximation
techniques have been an important topic in natural language processing in recent
times (Johnson 1998, Evans 1997, Mohri and Nederhof 2001).

The new model we propose in this paper is based on a different view to compu-
tation, that is, it makes use of cooperation and communication. A parallel commu-
nicating finite transducer system is a translating device based on conununication
between finite transducers working in parallel. It consists of several finite trans-
ducers working independently but communicating with each other by request. The
strategy of cooperation of finite automata systems is slightly modified for finite
transducer systems: the contents of the output tape is communicated together with
the current state and appended to the contents of the receiver output tape.

‘We expect to achieve two main goals: to increase the computational power of
the components by cooperation and communication and to decrease the complexity
of the different tasks by distribution and parallelism,

The achieved results demonstrate that cooperation and communication consid-
erably enhance the computational power, parallel communicating finite ransducer
systems, even with a very small number of components and a simple input lan-
guage over an alphabet of not more than four leiters, are able to identify any re-
cursively language. Thus, the translation process can be made significantly more
effective with the help of distribution and communication. For example, some
well-known mildly context-sensitive languages can be cbtained with these tools,
even if we use only one-letter alphabets, that is, a signal. This means that some im-
portant non-context-free structures of natural languages can be effectively handled
by these very restricted distributed translating devices.

2 Preliminaries

We assume the reader is familiar with the basic concepts of formal language theory
and automata theory, in particular with the notions of grammars and finite astomata
(Rozenberg and Salomaa £997).

An alphabet is a finite nonempty set of symbols, The set of all words over
an alphabet V is denoted by V*. The empty word is written as ; and, VT =
V* — {e}. Sometimes, for a given alphabet V and a word & = ajas ...y, a; €
V,1<i<n,wewiteV = {ale € V}and z = 14z ... d,. Here V is a disjoint
copyof V.

A parallel communicating finite transducer system (a PCFTS, in short) of size
n, where nn > 1, is a construction

A= (V;U,A;_,Ag,.. '!A?'HI():
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where V' and U7 are the input and the output alphabets, respectively, and

o A, = (@, VU, fi,q;, F}),1 < i < n, are finite transducers with the set of
states J;, q; € J; (the initial state of transducer A;), F; C ¢J; (the set of
final states of A4;), and f; is the transition-and-output mapping of transducer
A; from € x (V U {e}) to finite subsets of (); x U*. Notice that J;, 1 <
i < n are not necessarily disjoint sets. If one discards the output alphabet I/,
and the mapping f; is restricted to a mapping from ¢J; x (V' U {e}) to finite
subsets of €};, then one obtains a finite automaton which will be termed as
the underlying finite automaton of A,. If f; is a function from ¢}; x V to
finite subsets of (J; x U7, i.e., A; reads exactly one symbol at each transition,
then A; is said to be a sequential transducer (in other works these devices
are called generalized sequential machines, see e.g. (Eilenberg 1974)).

o K = {K1,Ky,...,K,} C |, Qs is the set of query states. K;, for
1 <4 < n, is the query symbol pointing to A; in A.

The finite transducers Ay, Ag, ..., A, are called the components of the system
A. We refer to A; as the ith component or component ¢ of A, 1 < ¢ < n. If
there exists just one 1 < ¢ < n such that K C @), then the system is said to
be centralized, the master of this system being the component . For the sake of
simplicity, whenever a system is centralized, the first component is its master. If
the following conditions:

(7) card(fi(s,a)) < lforalls € Q;anda € V U {e},
(24) if card(fi(s,e)) # 0 for some s € Q;, then
card(fi{s,a)y =0foralla € V,

hold for all 1 < i < n, then the system is said to be deterministic.

Given a PCFTS A, the system consisting in the underlying finite automata of
all components is called the underlying parallel communicating finite automata
system {pcfas, in short) of A.

By a configuration of a parallel communicating finite transducer system, as
above, we mean an 3n-tuple

(Slymluylu 52,T2,Y2,-- -, 8n, T, yn)
where

— 8; € €2, is the current state of the component 4,

— x; € V* is the remaining part of the input word which has not been read yet
by the component ¢,

— y; € U* is the contents of the output tape of the component ¢, I <1¢ < n.

We define two binary relations on the set of all configurations of A in the
following way:

) PR R R S P
(519$13y15321$2,y25"'ssnna‘nsyn)l_(511$17y11829$21y2:'":Snamnayn)
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iff one of the following two conditions holds:

(i) Kn{s,s2,...,8,} =@0and
o = airg, a0 € VU {e}, ¥ = wiz, (85, 2) € filsi,ai), 1 <i<n
(it)  forall1 <i < nsuchthats; = K and s;, ¢ K we put &; = s;,,
and y; = Y, 85 = Sy, and y. = y,, for all the other 1 < » < n,
andz; =z, 1 <t < n,

and

, N B R roor
(31,361,1«'1,32@2:3!2: o -,Snalnayn) Fr (81,$1,y1,52,$2,y2,---,Snammyn)
iff one of the following two conditions holds:

(4) K n{s1,82,..,3n} = D and
2 = 4z, 0 € VU{e), ¥i = 9%, (s, 20) € fi(ss,a:), 1<i<n

(#)  forall 1 <i < nsuchthats; = K, and 55, ¢ K we put s} = s5,,

I ’ I I ro
840 = Ui Yy = Yilys, and y; =€, 8. = &, and y, = Y,

foralltheother 1 <r < m, andz, ==, 1 <t <.

The difference between the two relations defined above can easily be noticed
when the current states of some components are query states: these components
enter into communication with those components which are identified by the ap-
pearing query states. The component identified by the query state is forced to send
its current state to the requesting one, supposing that it is not a query state, and
this state becomes the new current state of the receiver component, Moreover, this
contacted component sends also the contents of its output tape which is appended
to the contents of the output tape of the receiver. The new current state and the
contents of the output tape of the sender component remains the same in the case
of relation - whereas it becomes the initial state and empty string when relation
I has been applied. In other words, in the returning case, the sender components
restart their work from the current input symbol.

A PCFTS with moves based only on the relation b, is said to be returning,
while a PCFTS with moves based only on the relation b is called non-remurning.

In the following we shall denote the reflexive and transitive closure of relations
and -, by * and -, respectively.

Remember that if A is a finite transducer, then it defines a transduction function
T4 which returns for each input word x the set of all words which occurred on the
ouiput tape of A at the end of a successful computation on . If there is no such
successful computation on , then Ty (z) = .

Now, each PCTFS A of size n as above defines n transduction func-
tions. Informally, the transduction of = by the ith component of 4 consists
of all strings 3; € U™ such that the system starts in an initial configuration
(q1,%.€,42, %, €, ..., gn, &, €) and reaches a final configuration, that is, a configu-
ration of the form (s1,€, 1, 82,€, Y2, ..., Sn, &, Yn) With 5; € F}.
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Formally, if A4 is a non-returning PCTES, then

T.;EIZ)(?’) - {Eh. evu” E ((]],.’!7,6, 92,-13}6,---1%,33,8) =
(51,5,?11,52,53?12,---:Smﬁa?}n)au"'j S Ejal S J S n}
forany 1 <i <n.

If if A is a returning PCTFS, then

TR_(/_?(Q:) - {%EU* | (Q1a$:€:Q2,$,E»---,Q'mmyf) F:
(SlxgxylaSQ:Esst e ,Sn,E,yn),Sj S ijl SJ < n}
forany 1 <4 < n.
Note that because of the possible communication, ij} is not necessarily equal to
T'4,. The above transduction mapping can be extended to a language £ C VV* by

19~ 1w, TRYE) - | TR,
zel el

Furthermore, we define the

It

transduction system mapping: T 4 (Tfil), Tf), e ,Tin)),
TRy = (TRY,TRY,..., TR
We shall denote by:

— RCPCFTS(n) the class of all returning centralized parallel communicat-
ing finite transducer systems of size n;

— RPCPFTS(n) the class of alf returning paraflel communicating finite trans-
ducer systems of size 1;

— CPCFTS(n) the class of all non-returning centralized paraliel communi-
cating finite transducer systems of size n;

— PCFTS(n) the class of all non-returning parallel communicating finite
transducer systems of size n.

Clearly, RCPCFTS(n} <€ RPCFTS(n} and CPCFIS(n) C
POFTS(n) for any n > 1. We add the prefix D to the notation in order to
denote deterministic variants and replace #' by 5 when we refer to parallel com-
municating sequential transducer systems,

We present an example for the above notions.

Example 1 Let A = ({x},{a,b,c}, A1, Az, A3, {K1, K, K3}), be a non-
returning and non-centralized PCFTS where

A = ({ql’K21K3=T}1 {T}s {a,b,c}, .fl: q1, {7‘})5

Ay ({(]2,Kg,?‘},{$},{b},f2,q2,{?"}),
As ({as,r}, {=}. {c}, 3,43, {r}),

il
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with the following transition-and-output functions

flgne) = {(ga)}  falee,e) = {(g2,0)}  falga,€) = {{ga:0)},
filgna) ={(Kze)} folg, =) = {(Ks,8)}  falas 2) = {(r,e)}.

It is easy to see that TS)({:E}) = {a™"c" | n. > 1}. That is, a parallel communi-
cating finite transducer system is able to compute a non-context-free language by
reading an input consisting of a symbol only,

3 Computational Power

Parallel communicating finite transducer systems turn out to be powerful computa-
tional devices. Among other things, it can be shown that these systems, even with
a very small number of components and with relatively simple input langnages
over a four-letter alphabet, are are able to determine any recursively enumerable
language.,

In the sequel, we define two operations on words and languages useful in our
considerations concerning the computational power of PCFTSs. A homomor-
phism which erases some symbols and leaves unchanged the others is said to be a
projection. For two disjoint alphabets V and V', mapping h : (VUVY — V*is
a projection, since it erases the symbols from V7, We denote this mapping by pry.
The other operation is a well-known operation in formal language theory and in
parallel programming theory, called the shuffle operation. A shuffle of two strings
is an arbitrary interleaving of the substrings of the original strings, like shuffling
two decks of cards. More precisely, for two strings x,y € V* and two symbols
a,beV,

(i) zlle =elllx = =, (i1) azll by = af{z W by) U b(az Wy).

For two languages L1, Lq we define Ly Wl Ly = UOV,ELhyeL2 z iy,
Consider an alphabet V and its barred copy V = {a | a € V'}. The twin shuffle
language over V is defined by

TS(V)= ] =Wz,

TCV*

where each word % is obtained from 2 by replacing each letter from V by its barred
copy from V.

The following representation of recursively enumerable languages is well
known (Engelfriet and Rozenberg 1980):

Theorem 1 Each recursively enumerable language L C T* can be written as
L = pre(TS(V) N R), where V is an alphabet including T and R is a regular
language.

Based on this result and the proof of Theorem 4 in Martin-Vide et al. (2002) one
can immediately infer the next theorem.
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Theorem 2 Let L be a recursively enumerable language over an alphabet T,
Then, there exists an alphaber V including T such that the following statements
hold:

1. There exists A € RCPCFTS(3) such that TRA(V*) = (L, {c}, {e}).

2. There exists A € CPCFTS(3) such that T 4(V*) = (L, {}, {e}).

Proof. In the proof of Theorem 4 in Martin-Vide et al. {2002) for an arbitrary
alphabet V' and an arbitrary regular langnage R one gives a returning and
centralized pefas and a centralized pefas, both with three components, each of
them accepting the language TS (V) 1 R, Now, it suffices to transform the master
component into a finite transducer such that at each step it writes the current
symbol, if that symbel is in 7', and the empty word, otherwise, and to transform
the other components in finite transducers which write always the empty word, B

We do not know whether or not two components suffice in any of the variants. This
remains an open problem.

In this representation, all the components of the system depend on the language
L since both V and R depend on it. This can be avoided by making use of the
following representation of recursively enumerable languages which can be easily
derived from the previous one. We denote by B the alphabet consisting of symbols
Oand 1.

Theorem 3 For each recursively enumerable language L there exists a finite
transducer Ay, such that L = T4 (TS(B)).

This representation allows us to give the following characterizations of recursively
enumerable languages in terms of PCFTSs which have only one component that
depends on the given language.

Theorem 4 Let L be a recursively emmmerable language over an alphabet
V. Then, there exists A € RCPCFTS(3) such that TR4((B U B)*) =

(L, {e} {eh).

Proof Let A = (Q,B UB,V, 6,350, F) be a finite transducer such that I =
TA(T'5(B)). We define the returning and centralized PCFIS

A=(BU B, Ay, Ao, A, {I(l, K, Ks}),

where

I

Al ({QLKZa-*KEsTOaTl}UF‘nBUBaI/:flaQ'l:F):
AQ ({QZ:TU:TI}aBUB)KfZ:Q?){qZ}})
AS = (Q,BUB,V,f:S,Su,{SG}),
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with the transition-and-output functions defined as follows

filar,e) = {{q1,€), (K3,€)} f2lae,€) = {(q2,8)}
filar,a) = {{q1,€), (Ka,€)}, a € B fa(gz,a) = {(ge,€)}, 0 € B
fl{'ra,;a) = {(QLS)}: acB fQ(qﬂaa’) - {(7'075)}5 eeB

filge,g) = {{(K3,€)}

fals,a) = d(s,a), 5€QacBUB
f3(3?5) = 6(S=E)U{(S=E)}53€Q'

Tt is easy to observe that the pcfas consisting of the underlying finite automata
of the first two components of A accepts a word = over B U B if and only
if the word obtained from x by erasing all symbols 0,1 is the barred copy of
the word obtained from x by removing all symbols 0,1. When this task was
successfully accomplished, then the first component is in ¢; and has £ on its
output tape. Now, the first component, the master, checks whether the second
component is in its final state, that is, in go, and if this is the case, then it checks
whether the third component is in a state from F. The current state as well as
the contents of the output tape of this component are sent to the master. Since
the set of final states of the first component is £, we infer that the computation
is successful if and only if all these checking processes finish successfully.
Therefore, T'R4((B UB)*) = (L, {¢}, {e}). &

Theorem S Let L be a recursively enumerable language over an alphabet
V. Then, there exists A &€ CPCFTS(4) such that TA((B U B)*) =

({e}: {ebideh L),

Proof. We give an informal proof. First, a epefas of size 3 which accepts
the language T5(B) is constructed as follows. The first two components check
whether or not the input string is in =z lll §j, where « is a scaitered substring
{subsequence) of i whereas the first and the third component checks whether or
not the input string is in z Il §, where y is a scattered substring of x. Moreover,
whenever, a component enters a final state, it stops reading since the transition
mapping is not defined for final states. The construction in the second case of
the proof of Theorem 4 from Martin-Vide et al. (2002) can easily be modified to
satisfy the above requirements, Now, we transform these finite automata into finite
transducers which write always the empty word on the output tape and add the
third component of the PCFTS from the previous proof without changing the set
of final states, In spite of the fact that this new component works independently
from the other ones and does not exchange any information with them, due to the
system synchronization it follows that whenever the input word is from T'5(B)
and the last component is in a final state, the contents of the output tape of the last
component is a word in L and vice versa. -]
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It is easy to modify the centralized PCFTS from the proof above such that
TA{(BUB)*) = (L, {c},{e}, L). On the other hand, the second or the third
component (or both} of the above system can be modified in the aim of simulating
both the work of the automaton and the work of the last ransducer. This can
be done here because the system is non-returning so that the current state of the
modified component can encode also the current state of the fourth component,
Thus, after removing the fourth component we obtain a centralized PCFTS with
three components A’ such that

(L1, L, {}) for some langnage L,
if the second component was modified

vy ) (La,{e}, L) for some language Lo,
Ta((BUB)") = if the third component was modified
(L3, L, L) for some language L3,

if both components were modified

Itis known (Martin-Vide et al. 2002) that T°S(B) can be accepted by a pefas (non-
returning, non-centralized) with two components only. Therefore, we have

Theorem 6 Let L be a recursively enumerable language over an alphabet V.
Then, there exists A € PCFTS(3) such that T4((B UB)*) = ({e}, {¢}, L)

The last three results, unexpected in a certain sense, might have some bio-
logical relevance. In this respect, we remember that genetic information of any
organism is encoded in DNA molecules which are sequences formed by four nu-
cleotides: adenine (A), cytosine (C), guanine (), and thymine {T). Furthermore,
these four nucleotides are grouped in two pairs of Watson-Crick complementary
bases (A,T) and (C,G). Therefore, one may consider any word in (B U B)* as
encoding of a DNA molecule in a very natural way (see also Piiun 1998). In this
view, the last three results may be interpreted in the following way: Any recur-
sively emumerable language is nothing else than the translation of the set of all
genoms via a parallel comumunicating finite transducer system, These observa-
tions lead to the following interesting questions. How to interpret the well-known
mildly context-sensitive structures in natural languages in this frame, that is, how
to describe them as translations of genom sequences and which are the properties
of the genoms convenient for this purpose.

Finally, a natural question arises, namely: Do the above results remain valid
for parallel communicating finite transducer systems with a smaller number of
components?

3.1 One-Letter Input Alphabet

So far we have examined the power of parallel communicating finite transducer
systemns with input alphabets having at least four letters. A natural question is,
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whether or not by using alphabets with fewer symbols, especially one-letter in-
put alphabet, we are able to reach remarkable computational power. If the input
alphabet consists of only one letter, then the mput string can be considered as a
sequence of a signal, and in this respect, only the length of the string is important.
We shall see that even with one-letter input alphabet, these systems demonstrate
considerable computational power.

When the input alphabet V' consists of one letter, one can easily prove that
each language generated by a parallel communicating grammar systems with right-
linear components (Csuhaj-Varjd et al. 1994) is the transduction of ¥V done by
the first component of a PCFTS.

A parallel communicating grammar system of size r > 1 is a construct

Y= (N}I{) T? (Slapl)a (821P2)= sy (Snapn)):

where N, T are two disjoint alphabets, 5;, 1 < i < n are the axioms of the
components of v, F;, 1 < ¢ < n, are finite sets of production rules over N U T,
and K = {(}1,Qa, ..., 2} is the set of query symbols; their indices point to the
components of v, Moreover, N, T", K are mutually disjoint.

Now we give the informal definition of the functioning of the centralized and
returning (to axioms) variants of parallel communicating grammar systems.

For two n-tuples (Z1,2a,...,25), (UL, ¥2,. ., ¥n) 1,1 € (NUK U
TY, z,y; € (NUT)*, 2 < ¢ < n, the derivation in a parallel communicat-
ing grammar system as above is defined as follows:

(271: T2, . '1$n) :>’)‘ (y11y2: e ,?}n)
if one of the next two cases holds:

¢ no query symbol appears in xy, and then we have a component-wise deriva-
tion, z; = p, 9,1 < 1 < n, except in the case when z; € T and then
Yi = &4

e in the case of query symbols appearing, a communication step is performed
as these symbols impose: each occurrence of Q; in a4 is replaced by zj,
supposing that z; does not contain any query symbol, and, after that, the § th

component resumes working from its axiom. Moreover, the communication

has priority over the effective rewriting.

To avoid the many technical details, we have preferred this informal defini-
tion instead of a formal one. The reader interested in the formal definition can
consult (Csuhaj-Varji et al. 1994), Following the definition of the parallel com-
municating finite transducer systems, the reader can easily infer the definitions of
non-centralized orfand non-returning variants.

The language generated by a system +y as above is

L) = {o € T(S1, 80, Sn) =" (@02, .., an),n € (NUTY",
2<i<n}.
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As we have stated above, each language generated by a parallel communicating
grammar systems with right-linear components (Csuhaj-Varju et al. 1994) is the
transduction of a* done by the first component of a PCFTS. Furthermore, the
input alphabet can be reduced to a singleton set formed by a string of length one
in the case of non-centralized variants. We do not know whether or not there
are PCFTSs which can translate a¥ in languages which cannot be generated by
parallel communicating grammar systems with right-linear components. However,
if the components are sequential transducers, we have the next result:

Theorem 7 1. A language I is generaied by a returning parallel communicating
grammar system <y with n right-linear components if and only if there exists a
returning PCSTS of size n, A, such that TR 4(a™) = (L, La, La, ..., Ly) holds
Jor some languages L;, 2 <1 < n. Moreover, A is centralized if v is.

2. A language L is generated by a non-refurning parallel communicating
grammar system  with n right-linear components if and only if there exists a
non-returning PCSTS of size n, A, such that Ta(a’) = (L, Lo, La, ..., Ly) holds
Jor some languages L;, 2 < i < n. Moreover, A is centralized if -y is.

By this result, it can be shown that certain non-context-free constructions
which appear in both natural and programming languages (Gazdar and Pullum
1985, Joshi 1985) can be obtained as a translation of the universal language over
the one-letter alphabet via a PCSTS. Example 1 in Section 2 is one of these struc-
tures. This result presents a connection between parallel communicating genera-
tive devices and translating devices. A comparison of the size complexity of the
above two types of computational tools would be of interest,

4 Conclusions and Further Work

We start this last section with a brief discussion on a possible relevance of the
parallel communicating finite transducer systems introduced in this paper in the
theory of discourse parsing. [t is known that text is not just a simple sequence of
clauses and sentences, but it rather follows a highly elaborated structure. Mosi of
the cinrent natural language processing systems process an unresiricted text on a
sentence-by-sentence basis. One can easily imagine two sequences of sentences
which differ from each other in the order of the sentences, only, such that most
of the natural ianguage processing systems derive in both cases syntactic trees
and consiruct semantic representations for each of the individual sentences with-
out noticing any anomalies. However, only one sequence is fully acceptable. If
we would like to build a proficient natural langnage processing system, it seems,
therefore, obvious that we need to enable these systems to derive inferences that
pertain not only to the intra-sentential level, but to the extra-sentential level as
well. A transducer system which outputs trees appears to be a good candidate for
such a task. Bach component might be used for deriving intra-sentential inferences
while the communication among them might enable the inference derivation to the
extra-sentential level.
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Parallel communicating finite transducer systems provide more interesting
problems for further study. One possibility is when we put the cascade of transduc-
ers in the parallel communicating frame, that is, the transducers work in parallel,
in a synchronized manner, and whenever a query symbol appears at some com-
ponent, then both the state and the recent output of the connected component is
communicated, but this string will be appended to the left of the input string of the
receiver (this will be read first). This model will give information on the possible
distribution of the work in cascade systerns.

Since communication is not always complete in real life, those transducer sys-
tems which communicate incomplete information are of interest as well. In this
case only a (proper) subword of the output string is communicated. For parallel
communicating grammar systems, there is no difference between communicating
complete and incomplete information (Csuhaj-Varjd and Vaszil 2002), but it is
an important question whether or not the same holds for parallel communicating
transducer systems. These investigations can have a lot of practical relevance,

We close with some technical problems which appear of interest to us. Due to
space limitations, we just mention them as possible directions for further work.

1. Given a finite transducer A and a PCFTS of size n, 4, is
TaoTa=(Tao T, Tao TS, ..., Tao 1)
a transduction system function?

2. Is the unton of two transduction system mappings still a transduction system
function?

3. What one can say about the total transduction mapping of a PCETS A de-
fined by

Uty = TPUTPu . urd
UTR4 = TRYuTRPu.. .uTR{?

4. What is the complexity of minimizing transducer systems?
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