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Abstract

In automatic speech recognition, a stochastic language model (LM) predicts the probability
of the next word on the basis of previously recognized words. For the recognition of dictated
speech this method works reasonably well since sentences are typically well-formed and
reliable estimation of the probabilities is possible on the basis of large amounts of written
text material. However, for spontaneous speech the situation is quite different: disfluencies
distort the normal flow of sentences and written transcripts of spontaneous speech are foo
scarce to train good stochastic LMs. Beth factors contribute to the poor performance of
antomatic speech recognizers on spontaneous input. In this paper we investigate how one
specific approach to disfluencies in spontaneous language modeling influences recognition
performance.

1 Introduction

The automatic recognition of spontaneous speech is currently one of the main top-
ics in speech research. Practical applications include voice operated (elephone
services, automatic closed captioning for TV programmes, control of handheid
devices, automatic transcription of meetings, etc. Yet, the recognition accuracy of
freely spoken language is quite poor when compared to that of dictated speech:
while the word error rate (WER) for large vocabulary speaker-independent dicta-
tion 1s about 5%, the WER for spontaneous speech recognition ranges from 15%
for broadcast news (Beyerlein et al. 1999, Gauvain et al. 1999) to 40% for meeting
and telephone conversation transcription (Yu et al. 2000).

Several factors confribute to an explanation of the low accuracy of spontan-
eous speech recognition. First, the acoustical environment for spontaneous speech
recognition is often ‘corrupted’ by background noise, echo, music, bandwidth lim-
itations, etc. As opposed to dictation, which is typically set in a rather quiet office
environment, applications with spontaneous speech input require added environ-
mental robustness (Gadde et al. 2002). Second, when comparing casual to dictated
speech, the articulation quality of the former is very often lower while the speaking
rate is higher. In addition, spontaneous speech reflects more emotions than read-
aloud speech. All these elements put heavier demands on the recognizer’s acoustic
models, for which only limited matching training material is available. Finally, the
same lack of stylistically matching training data holds for the spontaneous lan-
guage models. Written transcripts of casval langnage use are rather scarce, while
typical large vocabulary stochastic language models rely on vast amounts of train-
ing material (Adda et al. 1999). The occurrence of disfluencies in casual speech
makes the problem even worse.

This paper focuses on the latter problem as it describes some experiments in
spontaneous language modeling for antomatic speech recognition. In the literat-




40 Jucgques Duchatean, Tom Laureys, Kris Demuynck, and Patrick Wambacq

ure different approaches have already been purseed. Ma et al. (2000) try to deal
with spontanecus language by incorporating knowledge of discourse theory: sen-
tences typically start with given information whereas new information comes at
the end, Correspondingly, two ‘expert’ language models were trained on the rel-
evant sentence parts, yielding a slight 0.3% absolute improvement in WER for
recognition of spontaneous telephone conversations (Switchboard). Disfluencies
almost always occurred in the sentence’s given information part, Zechner and
Waibel (1998) explore N-best list rescoring on the basis of chunking information.
The underlying motivation is that the coverage of the chunker bears information in
order to discriminate between syntactically acceptable and syntactically anomal-
ous recognition hypotheses. The technique reduced the WER by 0.3% absolute on
Switchboard. Finally, Stolcke and Shriberg (1996) report on dealing with disfluen-
cies in language modeling by editing the prediction context. More specificaily, the
prediction context for a newly hypothesized word is ‘cleaned up’ by removing the
disfluencies in it. On the Switchboard task, no change in WER was found (so par-
allel to the other approaches, differences in WER are not significant}. The research
described in this paper extends the work by Stolcke and Shriberg by implement-
ing a more flexible manipulation of the prediction context: sentence restarts are
allowed at any point in the sentence {not only after the first and second word), and
repetitions and hesitations are only removed from the context when they do not
contain informational value.

The paper is organized as follows. First, we give a brief overview of the stand-
ard architecture of a large vocabulary continuous speech recognizer, particularly
emphasizing the role of the language model. In section 3 we explain in more detail
the problems of spontaneous language modeling and present our research on the
topic. Section 4 describes the experimental set-up and gives results on a recogni-
tion task, Finally, we conclude and discuss future research on the topic.

2 Automatic Speech Recognition Architecture

A typical architecture for large vocabulary automatic speech recognition systems
is shown in figure 1. We will briefly describe the search engine and the acoustic
models. The language model wilt be presented in more detail.

The core module in recognition systems for large vocabulary is the seqrch en-
gine. 'The task of this module consists of efficiently searching for the most likely
sequence of words, given an input speech signal. In practice, the engine goes
through the signal frame by frame (a frame is a 10 millisecond time slice of the
signal), hypothesizes known words from a phonemic dictionary, and stochastically
evaluates how probable they are, using the acoustic model to determine the match
with the speech signal and the language model to assess how likely the string of
words is in the langunage.

As a full evalnation of any possible sentence with words that can start and end
at any point in time is not feasible, the search engine will select during the search
the most promising words and partial sentences, and will only explore those (a
technique called beai search). Fortunately, in practice such a selection works
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Figure 1: Architecture of a standard speech recognition engine

pretty well, and feasible, real time recognition is mostly possible without pruning
away the sentence with the highest probability.

The first information source, the acoustic model, produces for each phoneme
the probability that that specific phoneme was pronounced in a given speech frame.
It first calculates some features that reflect the spectral content of the frame. Sup-
pose for instance that—for vowels—the first and second formant are calculated. In
practice about 30 features are used which describe the energy and enerpy change
(time derivatives) in different frequency bands.

Next, based on the calculated features, the probability of a phoneme is found
by evalnating the acoustic model for that phoneme. In the simple case with two
formants as features, this acoustic model can be the average and variance of both
formants (this is a two-dimensional gaussian distribution), which are estimated on
a large acoustic training database with many samples of the phoneme. In typical
acoustic medels, a mixture of 30-dimensional gaussians describes a phoneme.

The role of the language model (LM) is defined as discriminating between
likely and unlikely word sequences in a language.! While in small-scale con-
strained applications this is a feasible task for formal grammars, for large vocabu-
lary unconstrained speech recognition we have to apply stochastic language mod-
els in order to ensure coverage, Stochastic LMs define a probability distribution
P(W) over word strings W, reflecting the probability of W occurring in the spe-
cific language. So a stochastic LM ideally assigns a higher probability to an ac-

! Note that this implies more than discriminating between Hnguistically acceptable and unacceptable
word strings. The Ianguage model should also be able to pick the most likely string from fwo gram-
matically well-formed strings. For this season, training and testing materizl should stylistically be as
close as possible.
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ceptable sentence than to a nonsense expression. By applying the chain rule we
can decompose P{1V) as follows:

P(I’V) - P(wl,’iUg,...,wn)

= Plw)P(ws [ wy) ... Plawy, | wi,we, ... wae1)
= H Plw; fw,way .o wi 1),
i=1
where P(w; | wq,ws,...,w;—1) is the probability that word w; will follow given
the preceding sequence of words 1wy, ws, ... ,w;_1. This preceding sequence of

words is called the prediction conrext for w;.

As the LM’s probability distribution is estimated on large text corpora, it is
in practice infeasible to get reliable estimates for values of ¢ higher than say 4
or 5; longer prediction contexts will virtually never appear in the training corpus
and thus mostly be assigned probability 0. As a result, stochastic LMs adopt the
Markov assumption, stating that the probability of a word depends only on a fixed
number of previous words. This assumption turns the stochastic LM into an N-
gram, or more specifically into a unigram P (w;} (prediction context of 0 words), a
bigram P(w; | w;—1}) (prediction context of 1 word), ete. Taking into account the
available amounts of textual training data, most large vocabulary speech recogni-
tion work with trigrams up to five-grams, combined with a back-off to Fower order
N-grams if necessary.

3 Language Models for Spontaneous Speech

First we sum up the challenges involved in spontanecus language modeling in
general. Then we describe the model we developed for dealing with disfluencies
in the prediction context.

3.1  Chalienges

The chailenges of statistically modeling spontaneous langnage are numerous. We
discuss the grammatical and stylistic differences between written and spoken lan-
guage, and the different types of disfluencies covered in the described research.

In section 1 we already touched upon the issue of lack of stylistically matching
training data for stochastic spontaneous language modeling. In practice, stochastic
LMs for large vocabulary recognition tasks are trained on minimaily 10M words of
(stylistically matching) text.? Whereas large collections of written electronic texts
allow for the training of accurate dictation LMs, such text corpora are not available
for casual spoken language. As a result, stochastic LMs for spontaneous speech re-
cognition are trained on stylistically different written material and/or on too small
an amount of available literal transcripts of conversations, meetings, etc. The
grammatical and stylistic differences between written and spoken language have

2 Nowadays training on hundreds of millions of words is not unusual,
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heen described in detail by Biber {(1988). Biber presents a quantitative analysis
of 67 linguistic features in 23 spoken and written registers. By examining con-
sistent co-occurrence patterns between these features he was able to identify lin-
guistic dimensions (narrative/non-narrative concerns, explicit/situation-dependent
reference, etc.) and to interpret them in functional terms. Along most of the six
dimensions Biber discerns, spontaneous conversations and written material (press
releases, prose, etc.) are far apart. A simplified example showing the difference
in linguistic feature frequency between genres can be found in figure 2, adapted
from Huang et al. (2001).

many nominalisations and passives

-
SCEENTIFIC PANEL
TEXT DISCUSSION
few pronouns - - many pronouns
and contractions ~ and contractions
FICTION CONVERSATION

few nominalisations and passives

Figure 2: Register continuum with typical features

One solution that has recently been explored to collect more spontaneous lan-
guage data, incorporates data from the internet and more in particnlar from news-
groups (Vaufreydaz et al, 1999). Although newsgroup langunage use is definitely
more casual and interactive than, for example, newspaper fext, it is still far from
optimal for training stochastic spontaneous language models.

Among the features distinguishing spontaneous from read speech, we want to
highlight the occurrence of speech disfluencies. The disfluency types we focus on
in this work are listed below:

repetitions: Thar is what what [ think.
hesitations: That is what m 1 think.

sentence restarts: That is what. .. Yeah I think so.

Note that we did not include all types of disfluencies (e.g. speech errors, substi-
tutions, ... ). This decision is motivated by the fact that about 85% of the disfluen-
cies in our train/test corpus Switchboard (described in more detail below) are of the
three types listed above (Shriberg 1996). The selected types therefore adequately
reflect the modeling problem we want to cope with here.
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One of the hypotheses explaining the difficulty of spontaneous language mod-
eling by means of N-grams points explicitly to disfluencies: as N-grams base their
word prediction on a lecal context of N-1 previous words, intervening disfluencies
render this context less uniform, Or put differently, the prediction of a next word
would be more accurate if based on a context from which disfluencies are removed
and which is extended to the left with regular words to make up for the removed
disfluencies. So when using a trigram LM in the case of the hesitation mentioned
above, we hypothesize that ‘T" would be better predicted by the context ‘is what’
than by ‘what um’. The disfluencies themselves are predicted the same way as
regular words.

Yet, as shown by Siu and Ostendort (1996) and Shriberg and Stolcke (1996),
in some cases disfluencies are good predictors for following words. Hesitations,
for example, sometimes fend to precede less frequently used words (depending,
among other factors, on the sentence position of the hesitation), Tn addition, repe-
titions are not always grammatically incorrect (e.g. [ hope that that work is done.)
So simply removing disfluencies from the prediction context seems too crude. In
our model we tried to incorporate this observation by allowing the system to pick
the most probable option when both a context with disfluency and a cleaned-up
context were available,

3.2 The Proposed Model

We explain in detail how the proposed model works by taking the case for repe-
titions as an example. The model for repetitions is sketched in figure 3. In this
figure, the LM is presented as a Markov Model: in the circles the prediction con-
text for the next word is given, on the arcs the next word is shown. As can be
seen on the figure, we assume that a trigram langnage model is used. The upper
path iltustrates the normal LM procedure. Suppose that word ‘B’ is repeated, then
the prediction of the next word ‘C’ is based on the context ‘B B’. The removal of
the repetition is demonstrated by the lower path. The prediction of ‘C’ is made
on the basis of the modified context ‘A B’; the repeated word ‘B’ is removed. As
mentioned above, we also investigated selecting the most probable prediction con-
text, this is the context with the most probable transition to the newly hypothesized
word according to the stochastic LM. So in that case the prediction of ‘C’ is based
on the most probable of both contex(s mentioned,

The analogous models for hesitations (symbol 1h) and sentence restarts (the
symbol < § > is used to represent the context at the beginning of a sentence) are
depicted in figures 4 and 5 respectively. The top arc gives the normal LM pro-
cedure, the bottom arc handles the disfluency particularly. The figures show that
in these cases, it takes one word more for both options fo join again, 1t should be
noted that in the model for sentence restarts, a sentence restart is allowed following
any word, even though this generates many hypotheses.




Handling Disfluencies in Spontaneous Language Models

Figure 3: The model for repetitions
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Figure 4: The model for hesitations
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Figure 5: The model for sentence restarts
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4 Experiments and Results
4.1  Experimental Setup

The adapted LM was evaluated by means of recognition experiments with the
ESAT speech recognizer. The Switchboard corpus, a collection of informal tele-
phone conversations in American English (Godfrey et al. 1992), was used for
training and testing. For the evaluation, gender independent acoustic models were
trained on 65 hours of Switchboard data. A global phonetic decision tree defines
the 8351 tied states in the cross-word context dependent and position dependent
models.® A Good-Turing smoothed trigram language model was built on the basis
of 2M words taken from Switchboard literal conversation transcripts.* The recog-
nition lexicon, which consisted of 23K words, was closed (no out-of-vocabulary
words).

For the test set 5 phone calls (10 different speakers) were selected which were
not part of the training material. They formed 22.9 minutes of speech and con-
tained 4977 words in 531 sentences, About 6% of these words were disfluen-
cies, Note that due to the rather small percentage of disfluencies we should not
expect enormous changes in WER when applying specific disfluency modeling
techniques.

Before turning to the real recognition experiments, we set up a smatl-scale ex-
periment to investigate whether the probabilities in the trigram language model,
estimated on a rather small 2M word text database, were reliable enough to dis-
tinguish between the different prediction contexts compared in the experiments,
We did this by analyzing sentence restarts after the hesitation w4 in a Switchboard
test set. The test set contained 72 occurrences of vk in the middle of the sentence.
From a manual examination we learned that in 189% of these cases the sentence re-
started following the hesitation, and in the remaining 82% of the cases the sentence

Jjust went on.
C
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Figure 6: The model for the language model evaluation

3 For more details on acoustic modeling, see Huang et al. (2001).

4 Note that we stuck to the text material which was stylistically (matching iopic, word usage, ...)
closest to the test material, even though this consists of only 2M words. Including material from a
(stylistically) different source would be a separate research topic by itself, as explained in section 3.1,
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Table 1: WERs for the different disfiuency types with varying context manipulation

unchanged | changed | choice
repetition 39.2% 39.0% | 392%
hesitation 39.2% 39.4% | 39.2%

restart 39.2% n/a 39.5%

Next, we made the language model choose between both contexts with the
model depicted in figure 6. We found that both for the sentence restarts and for the
continued sentences, the LM was able to select the correct transition in the model
in 84% of the cases. This clearly indicates that most information on the optimal
LM prediction context can be found in the trigram language model.

4.2  Results and Discussion

The resulting WERs for the recognition experiments are summarized in table 1.
For each of the three disfluency types, three types of context manipulation were
investigated: leaving the context unchanged (the baseline experiment), changing
the context according to the model, and choosing the most probable of the two
former options. Note that a forced context change according to the model is not
applicable to the case with sentence restarts, as this would mean that all words are
predicted as if they were the first word in the sentence.

As can be seen from the table, only a forced removal of repetitions from the
context yields an improvement in WER (0.2% absolute). This result is consistent
with other research (Stolcke and Shriberg 1996). On the other hand, cleaning up
hesitations leads to slightly worse results. As abready discussed in section 3.1, this
higher WER can be attributed to the fact that, depending on their sentence position,
hesitations can offer reliable cues for lexical choice.

As for the models that leave the recognizer the choice between two prediction
contexts, the presented results do not show a consistent behaviour. It seems that
there is a trade-off between an improvement in WER because the information in
the language model is used more optimally (as shown in section 4.1), and a deteri-
oration because introducing optiens may tend to overgenerate possible hypotheses.

We will illustrate this idea of overgeneration with an example. Suppose that
the speech signal for a well-formed and well-pronounced sentence matches acous-
tically to a string of words, except for a few superfluous phonemes (they are in fact
not superfluous: the string of words is wrong). Then the acoustic match can be im-
proved (often drastically) by adding a short word to the string of words. However
this extra word will typically not fit the language model, and hence the senfence
with the extra word will be rejected. But when the recognizer is allowed to re-
start the sentence at any point, for instance following the extra word, chances are
much higher that at least one of the generated possibilities fits the language model.




48 Jacques Duchatean, Tom Laureys, Kris Demuynck, and Patrick Wambacq

In that case, the recognizer doesn’t have any (statistical) ground left to reject the
sentence.

The danger of overgeneration is especially high for the model with sentence
restarts as it allows to reset the context to a new sentence following any word. This
explains the slightly higher WER when offering options to this type of disfluency.
It may be a good idea to restrict offering choices here, for instance to cases where
the previous word indicates a probable sentence restart (like uh), or to cases in
which there are acoustic-prosodic cues pointing to the presence of a disfluency.

5 Conclusions and Future Research

In this paper we investigated whether spontaneous language modeling could be-
nefit from a specific approach to disfluencies. We tried to improve on a plain tri-
gram LM by manipulating prediction contexts containing repetitions, hesitations
or restarts. First, disfluencies were automatically removed from the LM predic-
tion context. This turned out to be beneficial for repetitions, while having a bad
effect on contexts containing hesitations. In a second experiment we offered both
the manipulated and non-manipulated prediction context and let the search engine
pick the one with the most probable transition to the newly hypothesized word.
This way we tried to anticipate the fact that in some cases disfluencies are strongly
correlated with lexical choice. The results for the latter experiment were rather
disappointing. We think this is largely due to leaving too many options open to the
system. Building in some context-dependent restrictions might be beneficial here.

A first step in our future research will be the combination of our restart model
with acoustic-prosodic information. The current option of starting a new sentence
at each point overgenerates, This overgeneration could be reduced by including
acoustic information on sentence and/or phrase breaks. Further, we will set up
some experiments on the inclusion of additional LM training material. Experi-
menting with ‘casual’, more or less interactive text data from the internet might be
an option here. A stochastic LM trained on additional carefully selecied matching
data could not enly improve recognition as such, but might also lead to a more
accurate automatic condext selection. Finally, we will build language models for
speech recognition of spontaneous language use in Dutch, The CGN corpus (Cor-
pus Gesproken Nederlands/Spoken Dutch Corpus)® offers some new possibilities
in this respect.
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