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Abstract

In recent years, a number of models of speech segmentation have been developed, including
models based on artificial neural networks (ANNs). The latter involved training a recurrent
network to predict the next phoneme or uiterance boundary, and deriving a means of pre-
dicting word boundaries from its behaviour. Here, a different connectionist approach to
the task is investigated employing self-organising maps (SOMSs) (Kohonen 1930}, SOMs
differ from other ANNs in that they are unsupervised learners. The aim is to investigate
whether the SOM can become sensitive to where word boundaries occur, when trained on
phonetically transcribed speech.

1 Introduction

A number of models of speech segmentation have been developed in recent years.
For example, Brent’s (1999} INCDROP model learns to segment speech whilst
simultaneously building a lexicon from its input. It works qualitatively as follows.
Segment each utterance so as to optimise the following criteria:

I. Minimise the sum of the lengths of all hypothesised novel words in the seg-
mentation.

2. Minimise the mumber of the hypothesised words in the segmentation.

3, Maximise the product of the relative frequencies of the words in the seg-
mentation. The relative frequency of a word is the number of times the word
has occurred so far as proportion of the total number of times all words have
occurred so far.

Thus as INCDROP receives an utterance to segment, it segments it according
to the current lexicon and the above criterion, hypothesising new words where
necessaty. The INCDROP criteria can be derived from a probabilistic generative
grammar encoding the prior knowledge that sentences are constructed by selecting
words from some finite, but initially unknown lexicon and stringing thetmn together,
MBDP-1, an implementation of the INCDROP model achieved a segmentation
accuracy (in terms of correctly matched words—i.e. where both the start and end
of a word are correctly found without intervening boundaries) ranging from around
62% after processing 500 sentences to almost 80% after processing 9500 sentences
from the Bernstein-Rainer corpus (Bernstein-Ratner 1987) from the CHILDES
project (MacWhinney 2000). The figures for recall ranged from 45% to just over
80%.

Where INCDROP starts with an utterance and then segments it, Baichelder’s
(2002) model of segmentation, called Bootlex, involves clustering the string of
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phonemes into a set of words, and also simultaneousty builds up a lexicon. Bootlex
operates as follows:

L. Initialisation. Initialty, the lexicon simply contains the set of phonemes,
each having its own entry and a frequency of 1,

2. The first utterance is parsed into word tokens of one symbol each, based on
the initial lexicon.

3, For each word token in the utterance just parsed, the corresponding word
type in the lexicon has its frequency increased by 1.

4. Before the next utterance, the lexicon is augmented by adding to it new
words consisting of consecutive pairs of words in the utterance just parsed.
Each pair that is not already in the lexicon is added to the lexicon with a
frequency of 1.

5. The second utterance is parsed into words, using only the words in the lex-
icon, and a score for each possible parse is computed from its likelihood in
light of the experience to date, using the frequency counts recorded in the
lexicon. The word tokens which make up the highest scoring parse are used
to update the frequency counts in the lexicon (step 3 above) and to make
new entries (step 4 above).

6. For all remaining utterances, step 5 is repeated, each time using the lexicon
as just modified.

When this algorithm was applied to segmenting the Bernstein-Ratner corpus, it
achieved a word precision of 67.2% and a word recall of 68.2%.

Some researchers have also applied artificial neural networks (ANNs) to
the task. For example, Christiansen et al. (1998) trained simple recument net-
works (Elman 1990) to predict, given the current phoneme of an utterance as in-
put, the next phoneme in the utterance or, if at the end of the utterance, to activate
an utterance boundary wnit. Using the Korman (1984) corpus from the CHILDES
project (MacWhinney 2000), they trained their SRNs for a single epoch on 8181
utterances and tested it on 927 utterances,

During testing they found that the utterance boundary marker’s activation levels
were higher for lexical boundaries than for word internal positions. When the input
consisted of phonemic featares, plus stress and utterance boundaries (the network
was not automatically reset between utterances and thus had to learn to reset itself),
and the utterance boundary marker in the output layer was used to predict lexical
boundaries, they obtained a precision of 70.16% and a recall’ of 73.71% for the
word boundaries, and 42.71% and 44.87% respectively for words (i.e. where both
the word initial and the word final boundary are correctly predicted without any
boundaries in between).

! Christiansen et al. (£998) use the terms accuracy and completeness respectively for precision and
recatk,
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In this paper, a new connectionist approach is investigated, in an exploratory
manner, employing self-organising maps to create an unsupervised connectionist
model of speech segmentation.

2 The Self-Organising Map for Speech Segmentation

The SOM was chosen because it is both biologically plausible and it is an unsu-
pervised learner. Whilst other neural networks can also be considered to be more
biologically plausible than traditional symbolic methods, the SOM’s biological
plausibility extends both to the training of the SOM and its operation once trained
in that both the training process and the operation have direct analogues in pro-
cesses known to occur in the brain, This is not the case for, e.g, SRNs trained
with back-propagation, the main connectionist networks to be applied to speech
segmentation so far. Regarding unsupervised learning, the SOM is trained without
any error signal, in conirast to the SRNs which require an explicit error signal,
It should of course be noted that the non-ANN models of Brent and Batchelder
are also unsupervised in the sense that the SOM is, but they lack the biological
plausibility of the SOM.

it is thus interesting to consider whether the SOM might become sensifive
to the phonotactic regularities in language without an explicit error signal and
whether it can then be used for speech segmentation as it would provide a po-
tential model for how the child’s brain might do it.

2.1 The Standard SOM

The standard SOM, or Kchonen network (figure 1), operates as follows. The net-
work consists of two layers, an input layer and a map layer, the latter typically
organised on a 2-dimensional grid. The units in the map layer each have a set of
weights equal in size to the number of inputs. When an input is presented, the map
unit whose weights are closest to the input is selected as the winner (hence the
need for the number of inputs and number of weights on the map unil to agree),
The weights are typically initialised randomly in the range of values the inputs can
take.

During training, the winner, plus the units in its neighbourhood are moved
towards the input by an amount determined by the learning rate. The following
equation is used:

Wilt) = Wit — 1) + Hea(8))(X () — Wt — 1))

Where W;{t) is the value of the weight vector, £, at time t and H,(¢) is the
neighbourhood function for weight vector ¢, given winner ¢. In the work presented
here, the neighbourhood function is circular and involves a linear drop-off from the
winning unit to the edge of the neighbourhood, such that the winning unit’s value
for H,;(t) is L(t), the learning rate at time ¢, units outside the neighbourhood
are unchanged and units inside the neighbourhood have a value of H,;(t) that is
intermediate between L(t) and zero.
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Figure 1: The self-organising map. Each time an input is presented, the distance between
the input vector and the weight vector of each unit in the map layer is computed. The
winning unit (illustrated here in black) is the unit whose weight vector is closest to the
input vector. During training, a neighbourhood (illustrated by grey units) is defined for the
winning unit, and the weight vectors of the winning unit and the units in the neighbourhood
are pushed towards the input vector. The neighbourhood will start off large and be reduced
in size during fraining.
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The formula for the learning rate is;

L(t) = A(t) * 1\14;;

where A(t) is the initial learning rate and Maz is either the number of itera-
tions to be performed (in which case £ is incremented after each epoch), or in the
single-iteration experiments below, the number of sequences in the training set (in
which case ¢ is incremented after each sequence),

At the start of training, the neighbourhood covers the whole map and the learn-
ing rate is set high. As training proceeds, the neighbourhood and learning rate are
gradually reduced. The trained SOM forms a topological map of the input space,
reflecting the distribution of inputs over that space. For example, a densely popu-
lated area of input space will be mapped using more units than a sparsely populated
area, As such the trained SOM can be used for classification, and can also be used
for visualisation of datasets (where the location of the winning unit on the map for
each data point can be plotted).

2.2 Adapting the SOM for Speech Segmentation

With the standard SOM, each time a new inpul is presented, it simply replaces
the previous input. Thus the standard SOM has no memory and can only map
individual inputs and cannot map sequences, To rectify this, the behaviour of the
input layer is modified here.

At the start of a sequence, presenting an input proceeds as normal. However
when the next input is presented, the value of the previous input and the pattern
representing the current input are added together as follows: I(t) = P(t) + I{t —
1) x 0.5, where I{¢) is the value of the input units at time ¢ and P(t) is the pattern
to input at time t. This proceeds until the end of the seguence, At the start of
the next sequence, the memory in the input units is cleared. When using binary
patterns as inputs, this ensures that information about the sequence of inputs thus
far is available at each step, although the current and most recent inputs will have
a high weighting.

Note that by updating the input units in this way, their qualitative behaviour is
similar to that of a leaky integrator, commonly used as a model of the mean mem-
brane potential of a neuron, However, The decay constant of 0.5 was chosen in an
ad hoc manner to balance losing information too quickly against the possibility of
potentially irrelevant information (it is assumed the most relevant information for
predicting boundaries lies close to the boundaries) being given too much weight.

3 Experimental Methodology

The modelling of speech segmentation is a field in its infancy and there are some
important issues about how one goes about evaluating a model that need to be
addressed.

One is where do you get the data from? The standard answer in the literature,
and the answer adopted here, is to use child directed speech, e.g. from interactions
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between a child and its parents, for which there are several large corpora in use,
This seems a reasonable starting point for research because this is speech the child
is likely to have paid attention to, it is also practical since it is relatively straight-
forward to collect the data. However it does miss out the ambient speech going on
around a child and which the child might also learn from.

Another issue s in what form are the utterances presented to the model? Ideally
the utterances will be presented directly in their spoken/audio form (which is what
the child hears), but this would make for some computationally expensive models
involving the modelling of acoustic processing as well as the cognitive process-
ing involved in fearning language. Again the speech segmentation literature has
simplified things and typically presents the model with a phonetic transcription of
each utterance, perhaps angmented with information about e.g. stress or prosedy,
leaving how the child gets from a sequence of noises to a set of phonemes as some-
thing to be explained elsewhere. In this work phonetic transcriptions are used. As
these are generated from a dictionary (see below), this fails to take into account is-
sues such as the differences in how words are pronounced in child-directed speech
from how they are pronounced in adult speech. Nevertheless, most of the mod-
els thus far use phonetic transcriptions and only some limited extra information
such as stress for their inputs since detailed information about prosedy and pro-
nunciation is rarely found in the corpora of child-directed speech, at least so far
as textual corpora are concerned. These points must be borne in mind as they are
weaknesses not merely of this model but of most of the models developed so far.
As the field develops, it is hoped a better match between what the child does and
what the models are doing can be developed.

4 Experiments

For all the experiments below, child directed speech was exfracted from the Ko-
rman corpus {Korman 1984) from the CHILDES database (MacWhinney 2000).
This speech came in orthographic form, so phonetic transcriptions were created
by translating each word into its phonetic form via the CELEX database (http:
J/www . kun.nl/celex/). If a word did not exist in CELEX, then the utter-
ance it occurred in was discarded. At the end of this process, 9644 utterances were
extracted, This data set was then split into 2 sets of 4822 utterances one for train-
ing, one for testing. Finally, since the sentences were not all distinct sentences,
any sentences that were in both the training set and testing set were removed from
the testing set. The testing set was thus reduced to 2610 sentences.

4.1  Preliminary Experiments

In this section the results of some preliminary experiments are described (see ta-
ble 1). Here the SOMSs were trained for 400 or 1000 iterations, with an initial
learning rate of (.5 (dropping linearly to zero at the end of training) and an ini-
tial circular neighbourhood covering the entire map, dropping to a neighbourhood
of radius 1 at the end of training. The neighbourhood function involved a linear
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drop-off from the centre to the edge of the neighbourhood. The phonemes were
represented by orthogonal vectors, The table gives results both for finding word
boundaries and for finding words (i.e. where both the word initial boundary and
the word final boundary are found with no intervening boundaries).

Finally, a baseline was run that assumed that all utterances consist of a single
word and the corresponding precision, recall and fscore computed. This baseline
was chosen because it is the lowest level of performance expected if you use indi-
cators of actual utterance boundaries as indicators of potential word boundaries as
is done here.

The columns in the table 1 are as follows:

Network: This indicates the size of the map layer in the SOMs. E.g. 10x10 means
there are 100 units arranged in a 10x10 grid.

Iterations: This indicates the number of iterations of training used.

Precision: This gives the number of correct boundaries (or words) found as a
percentage of the the fotal number found.

Recall: This gives the number of correct boundaries (or words} found as a per-
centage of the total number that actuatly appear in the test set.

Fscore: Where I = fscore, I = recall and P = precision, this is calculated as:
_ 2PR
I'= 518
As can be seen from table 1, the networks are performing considerably better
than the baseline and larger networks involve improved performance. The longer
training runs make a small, but insignificant, boost to performance here.

4.2  Single Heration Training

In this section, the SOMs are trained for only a single iteration, with the learning
rate and neighbourhood decreasing during that iteration. The motivation for this
is being that this was the training regime used by Christiansen et al. (1998}, and
they still obtained reasonable performance. Also, one can argue for example that
because there are a large number of utterances in the training data, the need to train
over repeated iterations is lessened, especially when weight updating occurs after
each utterance. As before the initial learning rate is 0.5 and the neighbourhood is
circular and initially covers the whole map. The phonemes are also represented by
orthogonal vectors. The results are given in table 2. Due to the decreased training
time the opportunity was taken to train larger networks.

As can be seen, the use of only a single iteration of training has resulted in a
drop in performance of only 1-3 points on the fscore for networks of the same size,
and the scores are still well above the baseline figures given in table 1. Also, when
increasing network size, performance peaks at 800 units (32x25 units). Thus it
appears that whilst there is a small hit in performance, the single iteration training
does work.
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Table 1: Results of preliminary experiments. All networks start with initial learning rate
of 0.5 and initial neighbourhood covering entire map. All results are averaged over 5 runs
from different initial weights. Baseline results assume each utterance is a word.

Boundaries
Network | Herations | Precision(%) | Recall(%) | Fscore
10x10 400 41.55 99,15 58.55
10x10 H}0O0 41.61 99.57 59.09
10x20 400 44.50 98.04 61.21
10x20 1000 44,54 98.45 61.33
20x20 400 49.79 96.03 65.57
baseline | nfa 100 20.24 33.66
Words

Network | lterations | Precision(%) | Recall(%) | Fscore
10x10 400 10.91 26.04 15.38
10x10 1000 10.97 26.24 15.47
10x20 400 13.79 30.36 18.97
10x20 1000 14.08 31.09 19.39
20x20 400 19.77 38.10 26.02
baseline | n/a 2.53 0.51 0.85

Table 2: Single iferation training. All networks start with initial learning rate of 0.5 and ini-
tial neighbourhood covering entire map. All results are averaged over 5 runs from different
initial weights.

Boundaries
Network | precision | recall | fscore

10x10 40.77 99,53 | 57.84
10x20 42.89 08.82 [ 59.81
2020 46.61 97.24 | 63.02
32x25 49.22 9534 { 64.92
40x40 48.99 94,67 | 64.56

Words
Network | precision | recall | fscore

10x10 10.18 2483 | 1443
10x20 12.44 28.65 | 17.35
20x20 16.18 33.73 | 21.86
32x25 19.05 37.09 | 25.13
40x40 18.93 36.57 | 24.94
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Table 3: Single iteration training with representation distinguishing vowels and consonants.
All networks start with initial learning rate of 0.5 and initial neighbourhood covering entire
map. All results are averaged over 5 runs from different initial weights.

Boundaries
Network | precision | recall | fscore

20x20 48.17 94.93 | 63.91
32x25 51.16 91.22 | 65.55
40x40 55.63 8794 | 68.15
64x%50 5(2.89 91.45 | 65.38

Words
Network | precision | recall | fscore

20x20 17.47 3440 | 23.17
32x25 200,37 36.32 | 26.10
40x40 24.66 38.97 | 30.20
64x50 19.79 3550 ; 2541

4.3  Changing Input Representation

In this section, the experiments are as in the previous section but now the phonemes
are represented by vectors which indicate whether a phoneme is a vowel or con-
sonant, see table 3. Here, the performance has been boosted, and the performance
now peaks when the network size is 40x40 (1600 units) rather than 32x25 (800
units) previously,

4.4  Finding Both Staris and Ends of Words

In this section, the model was extended to use a 1 phoneme lookahead and to find
both the starts and ends of words. After the SOM was trained the fraining set was
presented again, and if a unit was active at the start of an utterance it was recorded
as a unit that when active marks the beginning of a word. If a unit was active
on the penultimate phoneme of an utterance it was marked as predicting a word
ending after the phoneme in the lookahead buffer and if a unit was active on the
final phoneme of an utterance it was marked as predicting a word ending after the
current phoneme.

Table 4 gives the results for this experiment. As before, a single iteration of
training was used, an initial learning rate of 0.5 and an initial neighbourheod cov-
ering the entire map. As can be seen, the overall performance is worse than before,
with the fscores being 5-7 points lower than in the previous section for networks
of the same size. Indeed the performance here is worse than in any of the previous
sections, though still well above baseline.




60  James Hammerton

Table 4: Single iteration training with representation distinguishing vowels and consonants
and both the starts and ends being found. All networks start with initial learning rate of 0.5
and initial neighbourhood covering entire map. All results are averaged over 5 runs from
different initial weights.

Boundaries
Network | precision | recall | fscore

20x20 38.88 95.20 | 55.21
32x25 43.59 90.62 | 58.86
40x40 49.45 87.77 | 63.25

Words
Network | precision | recall | fscore

20x20 742 18.13 | 10.53
32x25 11.38 23.63 | 1536
40x40 17.64 31.29 | 22.56

5 Discussion

Considering that this is a set of exploratory experiments, the results are encourag-
ing overall. Clearly the SOMs do become sensitive to the phonotactic regularities
in the utterances, even when trained on only one presentation of the training data,
as indicated by the consistently well above haseline performance across all the ex-
periments, The performances compare reasonably with other connectionist models
but do not compare as well with the models of Brent and Batchelder. There is a
significant gap in performance between the connectionist models and the more
analytic models such as INCDROP and Bootlex.

It should be pointed out however that where the connectionist models process
the utterances phoneme by phoneme, the models of Brent and Batchelder process
a whole utterance at a time. The latter thus get to act on more information than the
former and ane would expect them to do betier as a result, From a cognitive point
of view one might question whether a child does in fact wait until it has heard an
entire ntterance before segmenting it, and moreover whether the child may create
multiple possible parses and then select the most optimal one, though Batchelder
{private communication) points out that for child-directed speech which is rela-
tively simple, it may not be that implausible to do so. Of course it is not clear how
one would test these points directly and the one undeniable fact about children
is that they do learn to do the task very well. Thus the high performance of the
meodels such as Bootlex and INCDROP presents a challenge to the connectionist
models, including this one.

One might go further and even question whether childrer do segmentation at
all. However the data are fairly clear on this point. Sentences and utterances are
clearly composed of smaller units similar to those which we call words. The very
fact that (sufficiently developed) children and adults can create novel combinations
of words or use newly learned words with fluency in their native languages is
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strong evidence for this ability. Thus the question becomes at what age do children
develop the awareness of words. For an upper bound on this, the data suggests that
by the age of 24 months, children start making their own two word utterances (see
Jannedy et al. 1994, 282),

One thing the SRN-based models, INCDROP and Bootlex have in common
and which may be a problem for the model presented here, is the fact that the
former can (at least in principle) be treated as online learners rather than batch
learners. For example, both INCDROP and Bootlex can simply be set to the task
of segmenting a corpus of text and they will learn as they do it. In principle it
should be possible also to apply the SRN in a similar manner, though one would
need analyse the activation of the utterance boundary markers over a window of
e.g. the several previous utterances to do the segmentation.

However the SOM training regime draws more heavily on the batch training
paradigm, The reduction in size of the neighbourhood and fearming rate over time
during training do not fill very well with an online learning situation. Moreover, the
need to calibrate the map (i.e. work out which units are active on utterance bound-
aries) also does not fit well with the online learning paradigm either. Nevertheless
one could try e.g. having a phase where the learning rate and neighbourhood size
decline, and thereafter remain at a small fixed rate, plus re-calibrate the map after
each utterance to try and force the SOM into an online learning paradigm. A better
approach might be to employ a version of the SOM where the neighbourhood and
learning rate effects fall out naturally from its operation.

Returning to the results presented above, there are a number of points to ob-
serve:

e The recall is consistently higher than the precision. The model clearly has
a bias towards generating boundaries that may be correct, A similar bias
is demonstrated in Christiansen et al’s (1998) work but it is not as pro-
nounced as it is here. For example, when Christiansen et al. train using only
phonemes and utterance boundary markers as input, they obtain a precision
of 65.86% and a recall of 71.34%. Here the recall is typically above 90%
with the precision being in the 40s or 50s.

¢ Increasing network size does not always improve performance. As noted
with the single iteration training, the performance peaked and then declined
after a certain network size. Use of a more informative input increased the
size of network where performance peaks but does not get rid of the phe-
nomenon. The phenomenon is most probably due to the SOM equivalent of
over-training—namely that if the map is too large, it will map the training
data so closely that performance on the test data will be harmed.

¢ Finding both the beginnings and endings of words whilst using a one
phoneme lookahead counter-intuitively offered the worst performance here.
Why should this be the case? One possibility is that the bias towards gener-
ating too many boundaries has been reinforced, however both recall and pre-
cision values are low suggesting that overall performance has been harmed.
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Future experiments will seek to try and explain this phenomenon.

0 Conclusion and Future Work

This paper has demonstrated that a SOM can become sensitive to phonotactics in
child-directed speech and that it can be applied to the problem of speech segmen-
tation with reasonable, though not state-of-the-art, results.

In future work, it is hoped that the limitations of this model can be addressed,
its performance improved and the model extended as follows:

¢ Extracting more data from the Korman corpus. A significant number of
sentences were discarded {rom the Korman corpus due to their containing
words that did not occur in the CELEX phonological dictionary. By using
a grapheme to phoneme converter it may be possible to incorporate these
sentences by passing unknown words to the converter. This should help to
improve the performance of the system.

e Incorporating more information. For example, by using phonetic features
to describe each phoneme and incorporating stress, it may be possible to
improve the performance of the model. Indeed, Christiansen et al. (1998)
get significantly better performance when they incorporate such information
than when they do not.

o Performing experiments to try and find out why finding the beginnings and
ends of words performed so much worse than the finding only the ends of
words. E.g. obtaining performance on the training data and separating the
finding of starts from the finding of ends.

¢ More closely matching the training regime used by Christiansen et al.
(1998). There are a number of differences between the training regimes
used here and in Christiansen et al.’s (1998) work, the latter of which more
closely matches what a child is actually doing when learning language.

- Firstly, Christiansen et al. do not take care to ensure that there are no
sentences that are in both the training and the testing sets. From a
machine learning point of view this seems invalid. However from the
point of view of modelling how children learn language it is valid. By
using a single iteration of training and by simply splitting the non-
distinct sentences into training and testing set they aimed to match
the ecological conditions under which a child learns language more
closely than the standard approach manages.

— Secondly, Christiansen et al. do not reset their network between utter-
ances. Thus their system operates continuously and must learn to reset
itself if necessary. However it may not make much difference to perfor-
mance with the SOM model to do this. Intaitively, as the SOM receives
more and more input, the information from earlier inputs decays geo-
metrically and thus the most recent inputs will have the biggest impact
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on the network’s performance. However to a large degree this is also
true with SRNSs since their memory will also decay quickly over time.

e Looking more closely at the methodology of traming/testing the networks.
The basic methodology used here was chosen simply to get a feel for how
well the networks would perform reasonably quickly. However, even after
matching Christiansen et al.’s (1998) methodology more closely, there is still
considerable difference between what the child is doing and what the models
are doing. Also, even from a pure machine learning point of view, there
needs to be a more rigorous comparison of this model to the other models,
using the same data sets and splits between training and testing data.

e Incorporating the model into a model of lexical acquisition. Brent and
Batchelder’s models both incorporate the building up of a lexicon into their
mode] of speech segmentation, a considerable advantage over this and other
connectionist models. A challenge therefore is to develop a connectionist
model that also develops a lexicon that can be used in the segmentation pro-
cess. This in fact would be a major challenge for a connectionist model as
it requires some form of connectionist representation for the words being
found and a memory in which to store those words, neither of which are
easily done with connectionist systems.
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