BaseNP Chunking using [LP

Stasinos Th. Konstantopoulos

Humanities Computing, University of Groningen

Abstract

This paper reports on the application of Inductive Logic Programming (ILP) to the task
of BaseNP chunking. After ILP and NP Chunking are discussed, the experimental setup
for using ILP to construct a BaseNP tagger in Prolog is described. Finally, the resulés are
analysed quantitatively as well as qualitatively,

1 Introduction

Inductive logic programming (ILP) is a machine learning discipline that lies at
the intersection between inductive machine learning and logic programming. It is
inductive machine fearning because the objective of ILP algorithms is the extrac-
tion of knowledge from observations. It is logic programming in the sense that
the formalism in which the generated knowledge is represented is that of a logic
programme.

Text chunking is one of the many ways to retrieve parts of the syntactic struc-
ture of a sentence. [t amounts to identifying non-overlapping constituents in a sen-
tence without assigning internal structure to them. BaseNP chunking is one such
chunking task, where the chunks are bottom level, non-recursive noun phrases.

This paper deals with the application of [LP to the task of BaseNP chunking,
and it builds upon an earlier attempt (Konstantopoulos 2000) to apply ILP to
BaseNP chunking. The paper starts with a brief introduction to ILP and Aleph
in section 2, Aleph is the ILP system used for the experiments described here,
Section 3 proceeds to describe the task and section 4 the experimental setup. Fi-
natly, section 5 presents the results of the experiment and draws conclusions.

2 Inductive Logic Programming

ILP attempts to generate knowledge, a hypothesis, within the bounds of a given
theoretical framework and prior world knowledge, the background knowledge.
That is accomplished by an inductive algorithm, which can be seen as the reverse
of a deductive one. In other words, the purpose of an ILP algorithm is to construct
a hypothesis H such that

BAHED

where B is the background knowledge and D the data. For all practical purposes,
and for the rest of this paper, the ILP task is restricted to Prolog programmes; that
is, logic programmes consisting of definite Horn clauses. Furthermore, the training
data consists of true or false ground facts only (positive and negative examples, or
simply positives and negatives).

78 Stasinos Th. Konstantopoulos

21 Baeckground Knowledge

The background knowledge is the prior domain knowledge available about the
phenomenon we are trying to describe. It includes the background predicates as
well as semantic and syntactic bias.

The background predicates are Prolog predicates that provide the set of already
existing concepts upon which the constructed hypothesis will be based. In other
words, the background predicates define the literals that will be used in the body
of the hypothesised clauses,

Bias, on the other hand, imposes syntactic and semantic restrictions on the
clauses that may be considered by the algorithm. Synractic bias operates on the
form of the clauses constructed and is used to enforce restrictions like, for example,
‘these two literals cannot appear in the same clause’, Semantic bias deals with the
semantic interpretation of variables, that is their type and whether they are used as
input or output variables. See also section 4.6 for more on how bias is declared
and used.

2.2 The Evaluation Function

The evaluation function is used to measure a constructed clause’s ‘usefulness’,
based on an estimation of how well it would perform when queried on data unseen
during the training. The evaluation function should balance between overfitting
and overgeneralising, by favouring neither clauses that achieve high preciston at
the expense of coverage, nor vice versa,

If P is the number of positive examples covered by a clause and N the number
of negative ones, typical evaluation functions include simple coverage P — N, or
coverage with preference bias towards shorter clauses (P — N — L + 1, where I,
is the number of literals in the clause). More complex approaches to evaluation
include computing the Bayesian probability that a hypothesis is correct given the
data (Muggleton and Raedt 1994, 651) or the Laplace expected accuracy. Laplace
accuracy is a special case of the m-probability estimate (Cestnik 1990) for bal-
anced positive and negative data and no preference towards more general or more
spectfic clauses. This yields the Laplace accuracy formula, (P +1)/(P+ N +2)

2.3 The Search

ILP algorithms will typically be employing a sequential cover strategy that iterates
through steps of constructing a clause and appending it to the current hypothesis.
Each such step increases the hypothesis’ coverage, and the process continues until
some termination criterion—typically depending on the performance of the current
solution—is satisfied. Progol (Muggleton 1995) is such an ILP algorithm, and is
the one that will be described here as a typical example, Aleph (Srinivasan 2002)
is the ILP system uvsed for the experiment described below, and is implementing
the Progol algorithm.

The search for each clause is organised as a generate-and-test, general-to-
specific search between the fop clause and the bottom clause. The top clause is

BaseNP Chunking using ILP 79

the maximally general, empty-bodied clause that accepts all instances as posit-
ive. The bottom clause is a maximally specific clanse that accepts exactly one
example. The bottom clause is constructed by picking a positive example and
applying to it a generalisation operator—in Progol’s case the inverse resolution
operator (Muggleton and Buntine 1988, Mitchell 1997). The bottom clause is
guaranteed to be semantically correct (that is, to comply with the semantic bias
provided) due to the way it is constructed, which means that all the clauses visited
during the search are also going to be semantically correct,

The general-to-specific search is using the #-subsumption operator (Plotkin
1969, 1971) to structure the search space on the general-to-specific axis. This
reduces the problem to a search through the powerset of the body literals of bot-
tom clause, The search sirategy can be any of the usual search strategies (depth,
breadth, or best-first, random walks, and so on). The evaluation function is used
as heuristics for strategies like best-first that rely on heuristics.

The Progol 1LP algorithm can, then, be outlined as follows:

1. Pick a positive example and derive a bottom clause from it.
2. Search between the top and bottom clause by:

{a) Applying the traversal operator to the clause under consideration.
(b) Checking if the resulting clause satisfies the syntactic constrains and if
yes,

{c) Evaluating it using the heuristic.

and iterating until the clause under consideration is evaluated to be useful
enough,

3. Append the newly constructed clause to the theory and remove from the
positive examples pool the ones covered by the updated theory.

4. if the termination criterion is not satisfied, re-iterate.

When learning from consistent data the termination criterion is that all pos-
itives are covered. When handling noisy data, though, the objective is a ‘high
enough’ number of positives covered without covering ‘too many’ negatives. The
exact parameter values vary between applications and domains and reflect a prior
estimation of the noisiness of the data.

24 WhyILP?

The use of background knowledge and bias constitutes one of the strongest ad-
vantages of ILP. This is of relevance to the linguistic/theoretical as well as the
computational aspect of machine learning of natural language:

¢ Syntactic bias in general allows for the restriction of the hypothesis space
within the limits of a meta-theory or theoretical framework. From the point

80 Stasinos Th. Konstantopoulos

of view of theoretical linguistics, this makes it possible to confine the search
to one particular formalism. This is not to argue for any particular choice,
only that some choice needs to be made.

e From the perspective of natural language engineering, ILP offers an oppot-
tonity to capitalise on linguistic knowledge in order to reduce the compu-
tational cost of searching the hypothesis space. Many alternative learning
schemes, by contrast, cannot make any use of existing knowledge.

This is, of course, not to argue that control over the feature set, constraint salis-
faction and bias cannot be implemented in statistical or distributed-computation
approaches to machine learning. But the qualitative difference that 1LP makes, is
the ability to express those in an explicit and symbolic formalism (Prolog clauses)
that is considered——for reasons independent from its being employed by ILP-— to
be particularly suitable for knowledge representation.

3 Chunking

Text chunking is a form of shallow parsing that amounts to identifying non-
recursive, non-overlapping constituents chunks in a sentence, without assigning
internal structure to the chunks. As an example, consider the following snippet
taken from the Penn TreeBank (Marcus et al. 1993):

[Confidence] in [the pound] [is widely expected] [to take] [another
sharp dive] ...if [trade figures] for [September], [due] [for release} [to-
morrow]...

where the bottom phrases of the full parse are shown in brackets.

Chunking is much faster than full parsing and can be very useful for tasks
where the complete structure is not necessary or where the information gain from
accessing the complete structure is not enough to justify the cost of full parsing.
Such tasks would include information retrieval, text classification or optical char-
acter recognition. In text classification, for example, it is usually enough to ex-
tract bottom-level noun phrases (here ‘confidence’ and ‘the pound’) and use them
as keywords to classify the text, without paying attention to the relations among
them.

Abney (1991) introduces the concept of chunks in the field of NLP and pars-
ing, motivated from psychological as well as a phonological (prosodic) evidence
presented in his paper. He defines chunks as non-recursive, non-overlapping con-
stituents with exactly one major head, where a major head is a content word (as
opposed to a function word) that is not between a function word and the content
word it selects. To return to our pound-confidence example, confidence and pound
are content words and they are both major heads, so that ‘confidence in the pound’
cannot be a chunk since it has two major heads, The function word the selects for
pound making ‘the pound” one chunk. Even if there were content-word modifiers
to pound (as, for example, in ‘confidence in the U.K. pound’) they would not be
major heads and would be inside the same chunk as pound.

BaseNP Chunking using ILP 81

In analogy to phrase chunks in general, Base Noun Phrases (BaseNP) are
defined here to be bottom level, non-recursive Noun Phrases including all the NP
elements up to and including the head noun. By this definition, relative clause
and prepositional phrase post-modifiers are excluded and recursion is avoided,
For example the Penn TreeBank snippet given above would include the follow-
ing BaseNPs:

[Confidence] in {the pound] is widely expected to take [another sharp
dive] if [trade figures] for [September], due for [release] [tomorrow]...

BaseNP chunking is a particularly interesting chunking task, due to the im-
portance of Noun Phrases in typical shallow parsing tasks, such as information
extraction and text classification.

3.1 Chunking as Tagging

One of the most important characteristics of the approach used to perform
chunking, is the way in which it represents chunks. The most straight-forward
way is bracketing, where the result is bracketed text with the restriction that brack-
ets cannot be embedded, Tn Abney’s paper (Abney 1991) the chunker is described
as a context-free grammar used o recognise individual chunks and identily their
head. These chunks would then be composed into a sentence by an atftacher.

Abney suggests using a context-free chunk recogniser, since it is a very natural
way to assign structure (that is, identify brackets and heads) to a phrase. It might,
however, not be necessary to use as heavy computational machinery as a CFG to
assign one-level structure, as is the case with chunking. One way to reduce the
computational complexity of the task is to use a finite stafe transducer that will
assign a syrfactic fag to each word.

3.1.1 Bracket Tagging

Brackets can be seen as fags that mark the words at beginning and the end of each
chunk:

Confidence/B in/E the/B pound is/E widely expected to take an-
other/B

so that words can be marked as opening a chunk (that is, being immediately after
the opening bracket) or closing it (being immediately after the closing bracker).
Adjacent chunks have to be appropriately treated, by either allowing double tag-
ging or introducing some special ‘E+B’ tag:

... due for release/B tomoirow/E+B ...

One such system is described by Muifioz et al. (1999, Section 3.3), where two
independent predictors (in fact, networks of linear predictors) are trained to as-
sign opening and closing ‘tag candidates’ with their associated confidence levels.
A second pass over the tagged sentence is finding the consistent bracketing with

82 Stasinos Th. Konstantopoulos

the highest overall confidence level. A similar approach is described by Tjong
Kim Sang and Veenstra (1999) where the learner employed is TIMBL (a memory-
based learner), except that its less sophisticated bracket matcher simply discards
all inconsistent brackets, aiming for preciston against recall,

3.1.2 Inside/Outside Tagging

The alternative approach is to make use of the fact that each word can only belong
to one chunk (since they neither overlap nor are embedded within each other) and
tag each and every word insiead of only the ones at the edges of the chunks. Words
are, then, tagged with Inside/Quiside tags:

Confidence/l in/O the/l pound/l is/O widely/O expected/O to/O
take/O another/I

and only using a special B tag to separate adjacent chunks:
... due for reiease/I tomorrow/B ...

This last tagging schema was introdnced by Ramshaw and Marcus (1995) in order
to apply Transformation-Based Error-Driven Learning—a machine learning tech-
nique originally used by Brill (1995) to construct part-of-speech taggers—to the
problem of chunking.

3.2 Comparison

Tjong Kim Sang and Veenstra (1999) and Muiioz et al. (1999) have compared the
bracket tagging and the inside/outside tagging schemes by using the same ma-
chine learning technique to learn taggers for each of the two tagging schemes and
compare the results.

Qualitatively, the main ditference between the two approaches to syntactic tag-
ging described above have to do with the consistency of the resulting tagging.
Bracketing is more prone to result in inconsistent assignments (i.e. unbalanced
brackets) and thus requires more sophisticated post-processing to pick the brack-
ets from among the ‘bracket candidates’ proposed by the tagger. Inside/Outside
tagging, on the other hand, is more robust, since all possible taggings are valid,

The guantitative resulis are expressed in terms of precision, recall, and Fg-
score, which are the metrics typically used in information retrieval and machine
learning. Precision is the ratio of true positive predictions over all positive pre-
dictions. High precision means that the model is not too liberal with accepting an
example as positive. Recall, on the other hand, is the percentage of the positives
that are predicted as such. High recall means that the model is not too conservative
ahout accepting examples. The Fi-score is defined as

? 1 1)PR
) = S

where P is precision, R is recall, and 3 is the parameter balancing the importance
of the two.

BaseNP Chunking using ILP 83

The three metrics above, are then used to quantitatively compare the two tag-
ging approaches. Both comparisons seem to suggest that the two approaches
are equivalent. Mufioz et al. (1999) report a recall of 92.5% at 92.2% precision
(Fp=t = 92.4) for Inside/Outside tagging and 93.1% recall, 92.4% precision
(Fg—1 = 92.8) for bracket tagging. In the case of the memory-based learner
{Tjong Kim Sang and Veenstra 1999, Table 6), bracket tagging yielded 90.8% re-
call at 93.7% precision (Fg—; = 92.2) and /O tagging 92.3% recall at 92.5%
precision (Fg_y = 92.4)

One important factor is, of course, the correlation between invalid taggings and
wrong taggings. [n other words, in the case of bracket taggers for example, a very
strict bracket-matching scheme is going to improve precision, since the chunker
is taking fewer ‘risks’ when making a positive decision. The deciding factor on
whether this is going to improve performance is the price paid in terms of recall,
since the more security the chunker requires before answering positively, the fewer
positive answers there will be.

This drop in recall will be lower if invalid bracketings are more likely to also be
wrong bracketings, in which case strict bracket matching has a positive side-effect.
Tjong Kim Sang and Veenstra (1999, Table 6) compare three bracketing schemes
where one is stricter than the other two: the first assigns a bracketing only in the
presence of an opening and a closing bracket of matching phrase type, whereas the
other two allow mismatches. The guantitative results show that the precision gain
does indeed balance the recall drop, to the effect that the Fjz—1 score is in all three
cases around 92%.

4 Inducing a BaseNP Chunker

The task of automatically constructing a chunker has been reformulated in the
previous section as one of constructing a syntactic tagger, marking each word with
a tag denoting the kind of chunk it is in or marking it as not being in any chunk. The
basic motivation for this is that this way the task is formulated like a transduction
task rather than a parsing task, reducing its complexity from that of a context-free
langusage to that of a regular language. In other words, the most complex part of the
space of all possible tagging schemes has been excluded from our set of potential
tagging schemes and in exchange it is possible to implement the tagger with a
Finite State Machine (FSM) instead of more complex computational machinery.
This has a significant advantage since simpler machines are easier to learn as well
as more efficient to apply.

It does, then, beg the question why would one apply a Unification Grammar-
learning method like TLP to a task that can be tackled with much simpler FSM-
learning approaches. It can argued however, that it will be interesting to experi-
ment with inducing a chunker, for the sake of the formalism itself rather than the
formalism’s descriptive power. In other words, it might be interesting to try the
more complex mechanism because of the brevity, intuitiveness, or readability of
the rules and despite the fact that the language described by these rules is not com-
plex enough to necessitate their usage. In many respects this is analogous to the

84 Stasinos Th. Konstantopoulos

advantages of using a very powerful grammar formalism like HPSG to describe
natural language syntax, although there is barely an argument for its being even
context free.

The chunker will nevertheless be formulated as a syntactic tagger, as described
above, and not as a CFG. In other words the descriptive power that Horn clauses
offer will be focused not on the structure assigned on the phrase being parsed,
which will be minimal, but on the justification (that is, formal logic proof) provided
for each chunking decision made.

Learning such a tagger can be fitted in the context of a single-predicate learning
ILP system that does not perform predicate invention or background knowledge
refinement: the target predicate is the relation between a word and its syntactic tag,
and the examples can be easily extracted from a parsed or chunked corpus. This
section describes employing such an ILP system {Aleph, see section 2.3 above) to
learn a BaseNP chunker from a corpus of chunked text.

41 Experimental Setup

Based on the analysis in section 3.2 above, the Inside/Outside tagging scheme
has been chosen for this experiment, since (a) there appears to be no perform-
ance advantage in choosing bracket tagging, and (b) Inside/Outside tagging has
the advantage that it requires no post-processing. This is especially the case with a
machine learner like Aleph, where there is no probability assigned to each tagging
decision made, making it more difficult to apply any informed bracket balancing
scheme.

The target concept (the syntactic tagger) is represented as a tagger/4 pre-
dicate that relates a word and its context to a syntactic tag:

tagger/4 (+LeftContext, +Word, +RightContext,
?8yntacticTag)

where the input argnments are the word to be syntactically tagged and its context.
The tagger is meant to be used in a left-to-right pass over a sentence that has
already been part-of-speech-tagged, so that the left context carries chunk tags as
well as part-of-speech tags, where the right context holds part-of-speech tags only.

The contexts are Prolog lists of word terms, and each such term encapsulates
the word-form, the part-of-speech tag, and the syntactic tag. The word to be tagged
is also a word term. Examples of of these two kinds of word terms are:

w{confidence,nn, inp;} .
w{widely, rb) .

where the two part-of-speech tags stand for ‘commnion noun, singular’ and *adverb’.
The tag-set used here is the one in the Penn TreeBank——from which the dataset was
extracted—described at length by (Santorini 1990). The syntactic tag is simply one
of bap, inp or o, as explained above.

BaseNP Chunking using ILP 85

4.2 The Dataset
Given the above, one example can be constructed from each word in the dataset:

tagger ([word (confidence,nn, bnp) i,
word (in,in),
[word (the,dt), word(pound,nn), ...],
o)

Negative data is constructed by simply flipping the syntactic tag in a positive
example. For this purpose, bnp and inp tags are taken to be in the same ‘class’
of tags, i.e. the class of tags that mark words inside a BaseNP. Substituting one
for the other might generate too many false negatives, which is aveided by always
choosing a tag from a different class to generate a negative example with. When
flipping an o tag the choice between bnp and inp is made so that the result is
a valid tagging, i.e. no inp tag is put immediately after an o tag. This way the
positive example above would yield the following negative one:

tagger ({word{confidence,nn,bnp)},
word (in, in),
[word{the,dt}, word{pound,nn}, ...],
bnp)

The implications of this way of generating negative data is that there are no
examples of inconsistent (with respect to the the tagging scheme) tagging in the
negative data, but only examples of wrong tagging. In other words, the clauses
constructed by the ILP system do not need to ensure that there will be no inp tag
immediately following an o tag, since that can be easily checked and fixed on the
tagged text.

The data is taken from the same corpus as for the chunking experiments of
Ramshaw and Marcus (1995), a derivative itself of the Penn TreeBank (Marcus et
al. 1993).

4.3 List-Access Background Predicates

The two arguments of the tagger/4 predicate that specify the context are lists
of word terms, so the background predicates must include methods for accessing
and manipulating lists. There are two ways to look at a Prolog list; either as a
random-access array the members of which can be accessed by their offset from
the beginning of the array or as a linked list where each element is pointing to the
next element in the list. The latter approach was used here, based on the head/2
and rest /2 relations provided by Prolog.

Building upon the head /2 predicate, the linked-list access methods consist of
the head pos/2, head_synt/2 and head wform/ 2 predicates, that refrieve
the part-of-speech tag, syntactic tag or word form of the head element, respectively,
The rest /2 predicate is made available as is, It should be noted that the left
context list is reversed, so that its head is the word closesi to the focus word. So,

86 Stasinos Th. Konstantopoulos

for example, the data extracted from the third word of the ‘confidence in the pound’
sentence would be:

tagger {[word (in, in, inp}, word(confidence,nn,bup)],
w{the,dt),
[word (pound, nn) ,word(is,vbz), ... 1,
bnp) .

This approach (when compared viewing the list as a random-access array) con-
stitutes implicit preference bias towards shorter dependencies, since the search is
in the general-to-specific direction, This means that shorter {more general) clauses
will the visited first, and the shortest clause that is good enough (according to the
evaluation function) will be chosen. It also imposes a limit on the longest de-
pendency, since Aleph allows to set a limit on the layers of new variables. The
following clause, for example:

tagger (A, word(nn,_), _, inp) :-
rest {A,B), rest{B,C), C=word(dt, ,b).

is referring to a determiner two positions to the left, and introduces a ‘chain’ of
input-output variables to do so. This chain is built with two layers of new vari-
ables (B and). In the experiment described here, a maximum of 7 layers of new
variables is set, which imposes a prior limit on the word distance within the text
to which a rule can refer. There is no prior motivation for picking any particular
value for this limit, so it should be seen as a working assumption the validity of
which needs to be confirmed at the end of the experiment by examining the longest
rest-head chains that appear in the rules, It should be stressed however that al-
lowing for longer chains has a dramatic effect on the size of the bottom clause and,
subsequently, that of the search space.

44 List-Manipulation Background Predicates

Besides access to the elements of the context lists, the back-
ground includes the list manipulation predicates provided in the Pro-
log library, like reverse/2 and member/Z. Furthermore, the
current _phrase/2 ({(+Context, -Phrase) predicate is provided,
maiching a context list with the BaseNP up to this point {or an empty list if the
last context word is marked as being outside a BaseNP. This predicate is only
applicable to left context lists, since it is using the syntactic tags already assigned
to extract the BaseNP,

The resulting sub-lists can then be accessed in the same manner as the full lists
themselves. Potentially interesting pieces of information that can be extracted in
this way are, for example, whether the BaseNP under consideration is definite or
not:

is definite NP{Context) :-
current phrase (Context, A), re-
verge (A, B), head(B, the).

BaseNP Chunking using ILP 87

Table . The Baseline PeS to Syntactic Tag Map

Part of Syntactic | Part of Syntactic
Speech Tag Speech Tag
determiners bnp nouns inp
wh-determiners bnp adjectives inp
existential ‘there’ bnp comparative adj. bnp
pre-determiners bnp supetlative adj. inp
apostrophe-s bnp cardinals inp
pronouns bnp Toreign words inp
possessive pronouns bnp symbols ($, &, etc) bnp
wh-pronoun bnp

possessive wh-pronoun bap

or whether there is already an adjective in the BaseNP or not;

has_adjective{Context) :-
current phrase (Context, A), member{w(jj. ,)}, A).

4.5 The Baseline Theory

A ‘naive’ tagger can be easily derived from the training set, by simply matching
each part-of-speech tag to its most likely syntactic tag. For this particalar experi-
ment, the part-of-speech tags that were matched against bnp or inp tags are listed
in table 1, with the remaining tags being marked as being outside a BaseNP.!

‘When used as the baseline theory it scores remarkably well, especially with re-
spect to accuracy, (see results below) which suggests that it is encoding interesting
information that could be useful to the Tearner,

The baseline tagger is included in the background as the naive/2 predicate,
matching each part-of-speech tag against its most probable syntactic tag;

%% naive/2 (?PoSTag, ?78yntTag)
naive(nn, ing).
naive (dt, bnp}.

and so on.

4,6 Semantic Prior Knowledge

The semantic bias is declared with mode declarations that specify the manner in
which a predicate is meant to be used. The information each predicate’s mode

! Including part-of-speech tags that might appear in the test data but were not encountered in the training
data.

88 Stasinos Th. Konstantopoulos

carries is its arguments’ mode, type, and non-determinacy, Mode specifies a term
as being an input variable, output variable or ground term. The fype is a label
gach variable bears and much match the type of an argument before the variable
is considered as a value for that argument., The non-determinacy of a predicate
sets an upper bound on the number of times it can succeed; that is, the number of
discreet variable substitutions that satisfy the predicate.

The tagger/4 predicate is declared as:

:- mode (3, tagger (+wslist,w{+pos,+word) ,+wlist, -
stag)) .

The first argument sets an upper bound on the number of successful calls of this
particular calling form of the predicate, and is chosen to reflect the fact that the
output variable can be bound to any of its three possible values for each instance of
input variables. The second argument is specifying a form that the predicate calls
may take. +T arguments are input variables of type T and - T output variables of
type T.

A determinate predicate would be one that can succeed in one way only, for
example:

;- mode (1, head synt(+wslist, -stag)).
:- mode (1, head pos(+wslist,-pos)).
:- mode (1, head pos(+wlist, -pos)).

These examples also demonstrate how the variable types are being used to restrict
the applicability of head_synt /2 the left context only, since the the right context
has not been syntactically tagged yet.

5 Results and Conclusions

The setup described above was used to train on a data set of 6338 positive and
6337 negative examples. The evaluation function used was the Laplace expected
accuracy (section 2.2). The resulting tagger consisted of 160 clauses, 11 of which
constitute a substantial generalisation and cover the vast majority of the positive
examples. The remaining 149 are ground clauses that are simply verbatim re-
iterating the outlying positive examples that could not be generalised in any useful
way.

The constructed theory was then tested by syntactically tagging 2012 unseen
sentences and calculating the BaseNP precision and recall rate of the syntactic
tagger. The theory achieved a recall rate of 85.32% with 78.62% precision, im-
proving the 75.38% recall with 75,01% precision of the ‘naive’ theory taken as the
baseline.

One thing to be noted about these results is that perfect part-of-speech tagging
is assumed, which will generally not be the case. More moderate results are expec-
ted against input pre-processed through a part-of-speech tagger, rather than input
extracted from the part-of-speech tagged corpus.

BaseNP Chunking using ILP 89

Regarding the more qualitative aspects of the resulting theory, some of the con-
structed rules are reasonable and intuitive, whereas others are not. One commonly
recurring pattern is the conditional use of the naive /2 predicate, so that the con-
structed theory is effectively specifying the contexts in which naive/2 is correct
and limiting its application to those cases.

Some of the most convoluted rules of this kind look like this one here:

tagger (A, w(B,C},D,E) :-
head pos(D,F), head_synt(A,G), rest{(D,H}, head pos(H,F),
rest(H,I), head pos(I,J), naive(J,G), naive(B,E).

%% [laplace estimate] [0.95122]

which stipulates that the syntactic tag E should be what naive/2 predicts, given
that:

¢ head pos(D,F}, rest(D,H), headpos{H,F): the part-of-
speech-tag of the two first words to the right is the same, no matter what it
is.

¢ head_synt (A,G), rest(H,I), headpos(I,J), naive(J, G):
the syntactic tag of the first word to the left is the same as the tag predicted
by naive/2 for the third word to the right, no matter what it is.

This rule (and others like it) are an example of a theory that is not representable
in a formalism weaker than Horn clauses, due Lo its usage of variables. Although
it is always possible to unroll such rules in series of ground rules (in the same way
that in finite domains Unification Grammars can be re-written as longer CFGs),
Horn clauses are more concise and readable. This last observation doesn’t, how-
ever, mean that all the rules are necessarily intuitive or interesting, only that the
formalism allows for potentially interesting rules.

One problem to be noted with the experiment conducted is the absence of syn-
tactic bias. It is difficult to specify syntactic bias because of the way the data is
represented: by breaking up the sentence bracketing task into that of tagging indi-
vidual words, the theory constructed is, in a way, ‘distributed’. In other words, it
is not easy to identify clearly the role of each clause in identifying a BaseNF, and
the bracketing is the effect of the interaction between clauses rather than the result
of the application of the appropriate clause for each particular case.

From the above it is clear that rules enforcing a theoretical framework such
as, for example, X-bar theory’s ‘each XP must include a head X° cannot be easily
represented as syntactic bias in the current setup. In general, it has difficuities
with rules that are not local, either horizontally (long-distance dependencies) or
vertically (that is, ones that make reference to complex tree structures like X-bar
theory does).

As it has already been argued in section 2.4, however, providing an intuitive
formalism to declare syntactic bias is one of the strongest points of ILP and if
it is not possible to take advantage of it, the motivation for choosing ILP for the
task is undermined. Further experiments on the task of BaseNP chunking need

90 Stasinos Th. Konstantopoulos

to be focused on defining more complex and more linguistically informed back-
ground theories within this formulation of the problem, as well as devising other
formulations that might be better fitted to the ILP framework.

A related issue is that the theory is not as human-readable as one might ex-
pect for a logic programme, making the task of qualitatively evaluating the result
much more difficult that it would be if the theory was a DCG or some other less
‘distributed’ formalism,

References

Abney, 5. (1991}, Parsing by chunks, in R. Berwick, S. Abney and C. Tenny (eds),
Principle-Based Parsing, Kluwer Academic Publishers, Dordrecht,

Brill, E. (1995), Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging, Computational Lin-
guistics 21 (4), 543-66.

Cestnik, B. (1990), Estimating probabilities: A crucial task in machine learning,
European Conference on Artificial Inteiligence, pp. 147-149.

Konstantopoulos, S. T. {2000}, NP chunking using ILP, ir P. Monachesi (ed.),
Computational Linguistics in the Netherlands 1999, Utrecht Institute of
Linguistics OTS, Utrecht, pp. 109-116,

Marcus, M., Santorini, B, and Marcinkiewicz, M. A. (1993), Building a large an-
notated corpus of English: the Penn Treebank, Computational Linguistics
19 (2), 313-330.

Mitchell, T. (1997), Machine Learning, second edn, McGraw Hill, New York,
chapter 10, Learning Sets of Rules,

Muggleton, S. (1995}, Inverse entailment and Progol, New Generation Computing
13, 245-286.

Muggleton, S. and Buntine, W. (1988), Machine invention of first-order predicates
by inverting resolution, Proceedings of the S5th International Conference on
Machine Learning, Morgan Kaufmann, San Francisco, pp. 339-352.

Muggleton, S. and Raedt, L. D. (1994), Inductive Logic Programming: Theory
and methods, Journal of Logic Programming 19 (20), 629-679.

Mufioz, M., Punyakanok, V., Roth, D. and Zimak, D. (1999), A learning approach
to shallow parsing, Proceedings of EMNLP-WVLC '99, College Park.

Plotkin, G. (1969), A note on inductive generalization, in B. Meltzer and D. Michie
(eds), Machine Intelligence, Vol. 5, Edinburgh University Press, Edinburgh,
pp. 153-163.

Plotkin, G. (1971}, A further note on inductive generalization, in D. Michie,
N. Collins and E. Dale (eds), Machine Intelfigence, Vol. 6, Edinburgh Uni-
versity Press, Edinburgh, pp. 101-124.

Ramshaw, L. and Marcus, M. (1995), Text chunking using transformation-based
learning, Proceedings of the Third ACL Workshop on Very Large Corpora,
Cambridge, pp. 82-94.

Santorini, B. (1990), Part-of-speech tagging guidelines for the Penn Treebank pro-

BaseNP Chunking using ILP 91

ject, Technical report, University of Pennsylvania, Philadelphia. 3rd Revi-
sion, 2nd Printing.

Srinivasan, A. (2002), Aleph, http://www.comlab.ox.ac.uk/oucl/
regearch/areas/machlearn/Aleph/. Last update: November
2002,

Tjong Kim Sang, E. and Veenstra, J. (1999), Representing text chunks, Proceed-
ings of the Ninth Conference of the European Chapfter of the ACL, Bergen,
pp- 173-179.

