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Abstract

A statistical estimator attempts to guess an unknown probability distribution by analyzing
a sample from this distribution. One desirable property of an estimator is that its guess
is increasingly likely to get arbitrarily close to the actual distribution as the sample size
increases. This property is called consistency.

Data Oriented Parsing (DOP) employs all fragments of the trees in a training tree-
bank, including the full parse-trees themselves, as the rewrite rules of a probabilistic tree-
substitution grammar. Since the most popular DOP-estimator (DOP1) was shown to be
inconsistent, there is an outstanding theoretical question concerning the possibility of DOP-
estimators with reasonable statistical properties. This question constitutes the topic of the
current paper.

First, we show that, contrary to common wisdom, any unbiased estimator for DOP is
futile because it will not generalize over the training treebank. Subsequently, we show that
a consistent estimator that generalizes over the treebank should involve a local smoothing
technique. This exposes the relation between DOP and existing memory-based models that
work with full memory and an analogical function such as k-nearest neighbor, which is
known to implement backoff smoothing.

Finally, we present a new consistent backoff-based estimator for DOP and discuss how
it combines the memory-based preference for the longest match with the probabilistic pref-
erence for the most frequent match.

1 Introduction

Probabilistic systems for syntactic disambiguation are usually based on non-
redundant, linguistically inspired grammars. The simplest of these (such as Prob-
abilistic Context-Free Grammars) treat the different grammar rules as statistically
independent. Since this results in sub-optimal predictions, more recent models
allow the probabilities of rules to be conditioned on their local context, e.g. on
the labels of parent- and sister-nodes, head-POS-tags or head-words (Black, Je-
linek, Lafferty, Magerman, Mercer and Roukos 1993, Collins 1997, Johnson 1998,
Charniak 2000, Collins and Duffy 2002).

Data-Oriented Parsing (DOP) (Scha 1990, Bod 1995) constitutes an alternative
approach to this problem. DOP systems employ unconditional probabilities, but
they achieve a fairly strong expressive power because they drop the assumption
of non-redundancy. DOP treats all (arbitrarily large, and possibly overlapping)
subtrees of an arbitrarily large treebank as accessible elements of a person’s past
linguistic experience, and assumes that all of them are potentially relevant for sub-
sequent disambiguation decisions.

DOP is thus reminiscent of non-probabilistic classification techniques like
k-nearest-neighbor and other forms of Memory-Based Learning (Stanfill and
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Waltz 1986, Daelemans 1995), which analyze new input by matching it with a
store of earlier instances. As emphasized in (Scha 1990), DOP should build a syn-
thesis between the memory-based approach and the statistical approach: “(1) The
analogy between the input sentence and the corpus should be constructed in the
simplest possible way, i.e.: the number of constructions that is used to re-construct
the sentence should be as small as possible. (2) More frequent constructions should
be preferred above less frequent ones.”

Non-probabilistic DOP systems which explicitly implement the first of these
desiderata were developed only recently (De Pauw 2000a, De Pauw 2000b, Bod
2000b). Most work on DOP has employed Stochastic Tree Substitution Gram-
mars, and has assumed that the preference for the simplest analysis will be a natu-
ral side-effect of choosing the right probability assignments. Various methods for
estimating the subtree probabilities have been proposed for the DOP model. The
motivation for these proposals, however, has been largely heuristic or practical.
A fundamental question has thus remained unanswered: Is it possible to use sta-
tistically well-motivated estimators for treebank-grammars with such a large and
redundant parameter space?

Background. Negative results about some DOP estimators have been estab-
lished already. Johnson (2002) investigated the DOP1 estimator (Bod 1995) which
estimates the substitution probability of a subtree for a non-terminal node di-
rectly as the relative frequency of this subtree among all corpus subtrees with
the same root-label. Johnson showed that this estimator is inconsistent and bi-
ased. Bonnema et al. (1999) discuss Maximum Likelihood Estimation (MLE) and
conclude that it cannot be used for DOP. They provide an example where the
Maximum-Likelihood Estimator completely overfits the probability model to the
training treebank, i.e. it assigns zero probability to all parses which do not occur
in the treebank.

It should be noted that implemented systems rarely deploy the full DOP model.
Limitations of space and time usually require that the subtree-set is restricted to
subtrees which satisfy certain criteria (maximum depth, minimal/maximal number
of terminal/non-terminal leaves, etc.). Thus, an implemented system may weaken
or loose some properties of the full DOP model. In order to understand the es-
sential features of DOP, however, it is interesting to investigate the unrestricted
model.

Preview. This paper investigates the possibility of consistent, non-overfitting es-
timators for the unrestricted DOP model. (We thus exclude subtree selection on
the basis of a priori criteria.) The paper strengthens the existing negative results
about DOP estimators. It proves that any unbiased estimator for the DOP model
will yield a probability distribution that completely overfits the treebank. The con-
structive part of the paper then identifies different ways to define a non-overfitting
and consistent DOP estimator. We briefly discuss an approach which uses held-out
estimation, and then focus on an approach which combines MLE with smoothing
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by means of backoff. We point out that this approach strikes a good balance be-
tween the probabilistic and the memory-based facets of DOP.
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bank
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Figure 2: Two different derivations of the same parse
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Figure 3: Fragments of the treebank in Figure 1

2 The DOP Model

Let be given a treebank TB, i.e. a finite sequence of utterance-parse pairs. Like
other treebank models, DOP acquires from TB a finite set F of rewrite produc-
tions, called subtrees or fragments, together with their probability estimates. A
connected subgraph of a treebank tree t is called a subtree iff it consists of one or
more context-free productions1 from t. The set F consists of all subtrees of all
treebank trees. Figure 3 exemplifies the set of subtrees extracted from the treebank
of Figure 1.

In DOP, the set of subtrees F is employed as a Stochastic Tree-Substitution
Grammar (STSG), with the same start symbol, nonterminal and terminal sets as
the treebank trees. A TSG is a rewrite system similar to a Context-Free Grammar

1Note that a non-leaf node labeled p and the sequence of its daughter nodes labeled c1, · · · , cn, together
constitute a graph that represents the context-free production: p → c1 · · · cn.
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(CFG), with the only difference that the productions of a TSG are subtrees of ar-
bitrary depth. Like in CFGs, a (leftmost) derivation in a TSG starts with the start
symbol S, and proceeds by replacing nonterminal symbols by subtrees using the
(leftmost) substitution operation (denoted ◦). Given trees ti and tj , the rewriting
ti ◦ tj is defined iff the leftmost nonterminal leaf-node µ of ti carries the same
label as the root node of tj ; the result is a tree consisting of ti with tj substituted at
node µ. The derivation (S ◦ t1 ◦ . . . ◦ tn) stands for a finite sequence of such left-
associative substitutions, i.e. (. . . (S ◦ t1) ◦ . . .) ◦ tn). Note that multiple leftmost
TSG-derivations may generate the same tree. (This constitutes an important con-
ceptual and computational difference between TSG’s and CFG’s.) For instance,
the parse in Figure 1 can be derived in at least two different ways as shown in
Figure 2.

Given a specific TSG, i.e., given a specific set F of fragments and a procedure
that re-combines these fragments, a Stochastic TSG (STSG) is defined on the basis
of the following three notions:

Fragment probability: To each t ∈ F , a real number 0 ≤ π(t) ≤ 1 is assigned,
such that for every non-terminal label A, π induces a probability distribution on
the set of fragments t whose root label Rt is A, i.e.,

∑

t : Rt=A π(t) = 1

Derivation probability: The probability p(d) of a derivation d is the product of
its fragment probabilities:

p(d) =
∏

t∈F

π(t)ft(d) (1)

where ft(d) denotes the number of times the fragment t occurs in the derivation d.

Tree probability: The probability of a parse-tree x with a set of derivations D(x)
is the sum of the probabilities of its derivations:

p(x) =
∑

d∈D(x)

p(d) (2)

One of the simplest and most influential DOP grammars, called DOP1 (Bod 1995),
employs π(t) = count(t)

P

t′: R
t′

=Rt
count(Rt′ )

where count(t) stands for the frequency

count of subtree t in TB. This estimator was shown to be inconsistent (Johnson
2002). This raises the question whether and how π(t) may be estimated in a con-
sistent manner.

3 An Excursion into Estimation Theory

A statistics problem is a problem in which a corpus that was generated in accor-
dance with some unknown probability distribution is to be analyzed so that some
inference about the unknown distribution can be made. In other words, there is
a choice between two or more probability distributions which might have gener-
ated the corpus. In fact, there is often an infinite number of different distributions
which might have generated the corpus. (Statisticians bundle these into one single
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probability model.) On the basis of the corpus, an estimation method selects one
instance of the probability model as its best guess about the original distribution.

This section provides the elements that are necessary for further discussion
of DOP estimators. We start out by reviewing some definitions from Estimation
Theory, including the properties of bias and consistency of estimators. Subse-
quently we state an important theorem concerning the relation between Maximum-
Likelihood estimation, Relative-Entropy Estimation and relative frequency.

Corpora and Probability Models

Let N be the natural numbers (including zero), and let X be a countable set. Then,
each function f : X → N is called a corpus, each x ∈ X is called a type, and
each value of f is called a type frequency. The corpus size is defined as |f | =
∑

x∈X f(x). These definitions generalize the standard notion of the term corpus
(used in Computational Linguistics) and of the term sample (used in Statistics).
A ”corpus” in the ordinary sense has of course a finite number of actual type-
occurrences, and thus a finite value for |f |.

Let c =<x1, . . . , xn>∈ Xn be a finite sequence of type instances from
X . Then, the occurrence frequency of a type x in c is defined as c(x) =
| { i | xi = x} |. Clearly, c is a corpus in the sense of our definition above, since
it has all the relevant properties: the type x does not occur in c if and only if
c(x) = 0; in any other case, there are c(x) tokens of x in c. Finally, the corpus
size |c| is identical to n, the number of tokens in c.

The probability of a corpus f : X → N given a probability distribution
p : X → [0, 1] is denoted as Lp (f) =

∏

x∈X p(x)f(x). The disjunctive
probability of a set of corpora F is denoted as Lp (F ) =

∑

f∈F Lp (f).

A probability model on X is a non-empty set M of probability distributions
on X . The elements of M are called instances. The unrestricted model is the set
M(X ) of all probability distributions on X , i.e.

M(X ) =

{

p : X → [0, 1]

∣

∣

∣

∣

∣

∑

x∈X

p(x) = 1

}

A probability model M is called restricted iff it is a proper subset of M(X ).
Note that in earlier (less formal) discussions on statistical aspects of DOP, the

term ”probability model” was often used to indicate a specific estimation method,
rather than the general DOP probability model in the sense defined here. The title
of (Bonnema, Buying and Scha 1999) is a case in point.

Estimators and Their Properties: Bias and Consistency

Let Cn be the set X n = {<x1, ..., xn> |xi ∈ X}, i.e, Cn comprises all corpora of
size n. If M is a probability model on X , then each function estn : Cn → M is
called an estimator for M .
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Given a model instance p ∈ M , the estimator’s expectation2 is calculated by

Ep(estn) =
∑

f∈Cn

Lp (f) · estn(f) .

Note that the expectation is not a scalar but a distribution (because estn(f) (for any
f ∈ Cn) is a distribution also). Hence, the sum

∑

f∈Cn
is in fact a point-wise sum

over distributions which also results in a distribution. We will not employ special
notation for this situation to avoid complicating the formulae more than necessary.

The estimator is called unbiased for p ∈ M iff

Ep(estn) = p .

A sequence of estimators estn is called asymptotically unbiased for p ∈ M iff

lim
n→∞

Ep(estn) = p .

Moreover, a sequence of estimators estn is called consistent for p ∈ M iff for all
x ∈ X and for all ε > 0

lim
n→∞

Lp ({f ∈ Cn : |estn(f)(x) − p(x)| > ε}) = 0 .

As Johnson (2002) noted, there is no unique definition of “consistency”. The dif-
ferent definitions, however, share the intuition that an estimator is to be called
consistent, if it outputs “in the limit” exactly the probability distribution p ∈ M
that generates its input-corpora. For the sake of simplicity, we use a definition that
operates on the types x ∈ X , but that avoids the introduction of loss functions.

Maximum Likelihood Estimation

A Maximum Likelihood estimate for M on f is an instance p̂ ∈ M which assigns
a maximum probability to the corpus f , i.e., Lp̂ (f) = maxp∈M Lp (f) .

Relative-Frequency Estimation

The relative-frequency estimate on a non-empty and finite corpus f is defined by
p̃ : X → [0, 1] where p̃(x) = f(x)

|f | .

The following theorems clarify the relation between the relative-frequency es-
timate p̃ and Maximum Likelihood Estimation.

Relative-Entropy Estimation

The relative entropy of probability distribution p with respect to probability distri-
bution q is defined as D(p||q) =

∑

x∈X p(x) log p(x)
q(x) . Interestingly, ML estima-

tion is equivalent to finding the distribution p such that the relative entropy of p̃

with respect to p is minimized.

2The term expectation is justified because the corpus probabilities Lp (f) constitute a probability dis-
tribution on Cn, i.e., Lp (Cn) =

P

f∈Cn
Lp (f) = 1 .
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Theorem 1 An instance p̂ of a probability model M is a ML estimate for M on f ,
if and only if

D(p̃||p̂) = min
p∈M

D(p̃||p) .

Proof: First, D(p̃||p) =
∑

x∈X p̃(x) log p̃(x)
p(x) =

∑

x∈X p̃(x) log p̃(x) −
∑

x∈X p̃(x) log p(x) . So minimizing D(p̃||p) with respect to p is equivalent to
minimizing −

∑

x∈X p̃(x) log p(x) . Finally, as this equals − 1
|f | log Lp (f), mini-

mizing D(p̃||p) is equivalent to maximizing Lp (f), q.e.d.

Theorem 2 (Information Inequality) Let p and q be two probability distribu-
tions. Then D(p || q) ≥ 0; and D(p || q) = 0 iff p = q.

For a proof see, for instance, (Cover and Thomas 1991).

Theorem 3 The relative-frequency estimate p̃ is a Maximum Likelihood estimate
for a (restricted or unrestricted) probability model M on f , if and only if p̃ ∈ M.
In this case, p̃ is a unique ML estimate.

Proof: The proof is constructed by combining the theorems 1 and 2 mentioned
above.

4 Estimation Theory and DOP

The probability model of a DOP grammar bundles probability distributions on the
set X of derivable parse trees. Each model instance p is induced by a function π

on the set F of tree fragments such that the equations (1) and (2) in section 2 are
satisfied. I.e.:

MDOP =







p∈M(X )

∣

∣

∣

∣

∣

∣

∃π : ∀x : p(x) =
∑

d∈D(x)

∏

t∈F

π(t)ft(d)







If we restrict the fragment-set F to fragments of depth 1, the DOP-grammar turns
into a probabilistic CFG, and every tree has one unique derivation. The probability
model of a CFG is thus given as:

MCFG =

{

p ∈ M(X )

∣

∣

∣

∣

∣

∃π : ∀x : p(x) =
∏

r∈F

π(r)fr(x)

}

(In formulas for CFG’s we use r, for ”rule”, instead of t for ”tree”, to index the
elements of the fragment set.)

A striking property of DOP’s probability model is that it includes the probabil-
ity distribution p̃ which assigns to every tree its relative frequency in the treebank
TB (and which, therefore, assigns probability zero to all tree-types which do not
occur in TB).
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Theorem 4 Let TB be a treebank such that all trees have the same root label.3

Moreover, let the treebank grammar generate at least one full parse-tree outside
the treebank. Let MDOP and MCFG be the probability model of the DOP and the
CFG grammar read-off from TB. Then the relative-frequency estimate p̃ on TB is
an instance of MDOP, but it is not an instance of MCFG.

Proof: For the CFG case: By definition, p̃ assigns positive probabilities to the trees
in the treebank. Each instance of MCFG, however, which assigns positive proba-
bilities to the treebank trees, necessarily assigns positive probabilities to all deriv-
able parse-trees x ∈ X . In more detail, such a model instance p ∈ MCFG sat-
isfies p(x) > 0 for all x ∈ X as it can be shown that p(x) =

∏

r π(r)fr(x) with
π(r) > 0 for all r:

Assume that there is a rule r0 with π(r0) = 0. As the CFG is read off
the treebank, the rule r0 is read off a treebank tree x0 (i.e. fr0

(x0) >

0). As p ∈ MCFG assigns positive probabilities to the treebank trees,
it follows that

p(x0) > 0 and p(x0) =
∏

r

π(r)fr(x0) = · · ·π(r0)
fr0

(x0) · · · = 0

Clearly, this is a contradiction, showing that the assumption is false.

We conclude that p̃ 6∈ MCFG as p̃ assigns probability zero to at least one full
parse-tree outside the treebank.

For the DOP case: As defined above, MDOP consists of all probability dis-
tributions p which (for some function π on F) can be written as: p(x) =
∑

d∈D(x)

∏

t∈F π(t)ft(d). We show that p̃ can indeed be specified in this fash-
ion, if π is chosen as:

π(t) :=

{

p̃(t) if Rt = S;
arbitrarily else.

π assigns zero probability to all trees rooted with S, except the full parse trees from
the corpus.Thus, every tree has only one derivation, and this derivation consists of
one step. Therefore,

∑

d∈D(x)

∏

t∈F π(t)ft(d) =
∑

d=x

∏

t∈{x} π(t)1 = p̃ q.e.d.

This theorem illustrates the expressive power of redundant Stochastic Tree-
Substitution Grammars. Whereas DOP, in principle, can capture any frequency
distribution over treebank trees, probabilistic CFGs cannot do this. This power has
a serious disadvantage, however. As the following theorem shows, the Maximum
Likelihood Estimator when applied to the DOP model will yield an overfitting
probability distribution.

Theorem 5 Let TB, MDOP and MCFG be given as in Theorem 4. Then the
relative-frequency estimate p̃ on TB is the unique Maximum Likelihood estimate
for MDOP on TB. However, it is not a Maximum Likelihood estimate for MCFG

on TB.
3Every treebank tree can be augmented with a new root labeled with a fresh non-terminal symbol.
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The proof is constructed by combining theorems 3 and 4.

To be able to formulate a corollary of this theorem, we now introduce the no-
tion of complete overfitting. An instance p of a probability model completely
overfits the treebank iff it assigns probability zero to all full parse-trees outside the
treebank:

p(x) = 0 for all x ∈ X with fTB(x) = 0

Theorem 6 Let TB, MDOP and MCFG be given as in Theorem 4. Then the
Maximum Likelihood estimate for MDOP on TB completely overfits the treebank.
This is not the case, however, for a Maximum Likelihood estimate for MCFG on
TB.

Proof: Apply Theorem 5 to DOP, and re-inspect the proof of Theorem 4 for the
CFG case.

In the remainder of this paper, we investigate whether there are other estimators
for the DOP model that do not completely overfit the treebank, but that satisfy
some of the good properties of the ML estimator. We start with a general result:

Theorem 7 Let estn : Cn → M be an estimator. Let f0 ∈ Cn be a corpus, and let
x0 ∈ X be a type outside the corpus such that

estn(f0)(x0) > 0

Then the estimator is biased for all model instances p ∈ M that assign a posi-
tive probability to the corpus but a zero probability to x0 (i.e., Lp (f0) > 0 and
p(x0) = 0 ).

Proof: Assume that estn is unbiased for a model instance p ∈ M satisfying
Lp (f0) > 0 and p(x0) = 0. We will show that this assumption leads to a contra-
diction. First, it follows by definition that

∑

f∈Cn

Lp (f) · estn(f) = p .

Next, let Xp = {x ∈ X | p(x) > 0} be the support of the model instance p. Then
∑

x∈Xp

∑

f∈Cn

Lp (f) · estn(f)(x) =
∑

x∈Xp

p(x) .

So,
∑

f∈Cn

Lp (f) ·
∑

x∈Xp

estn(f)(x) = 1 .

As
∑

x estn(f)(x) ≤ 1 and
∑

f Lp (f) = 1, it follows that
∑

x∈Xp

estn(f)(x) = 1 whenever Lp (f) > 0 .
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So especially
∑

x∈Xp
estn(f0)(x) = 1 and thus estn(f0)(x) = 0 for all x 6∈ Xp .

Finally, as x0 6∈ Xp and estn(f0)(x0) > 0, there is a contradiction, q.e.d.

We now apply Theorem 7 to the DOP model.

Theorem 8 Let MDOP be read off from a treebank fTB ∈ Cn, and let all trees
have the same root. Then each estimator estn : Cn → MDOP that does not
completely overfit the treebank is biased for some instance p ∈ MDOP.

Proof: If the estimator does not completely overfit the treebank, there is a full
parse-tree x0 ∈ X outside the treebank, satisfying

estn(fTB)(x0) > 0

As p̃ ∈ MDOP and p̃(x0) = 0, it follows by Theorem 7 that estn : Cn → MDOP

is biased for p̃, q.e.d.

It thus turns out that in the context of extremely rich models such as DOP,
lack of bias is not a desirable property for an estimator: it precludes assigning
probability mass to unseen events. In other words: in designing estimators for
DOP, we should explicitly introduce bias towards predicting trees that were not
observed in the corpus. Note, however, that we may still aim at consistency.

5 Approaches to Avoiding Overfitting

There are various ways to combat overfitting in learning, e.g. selecting model pa-
rameters and introducing prior preferences (Duda, Hart and Stork 2001). To con-
sider the options for the DOP model, we start out from the formula that searches
for the DOP model instance p∗ that maximizes an objective function Φ over tree-
bank TB and model instances p:

p∗ = arg max
p∈MDOP

Φ(p, TB) (3)

where MDOP is the space of all possible DOP probability distributions over parse
trees. The MLE assignment is achieved when Φ(p, TB) = Lp (TB), i.e., when
Φ is the likelihood function. Due to the theorems in Section 4, we know that an
unbiased instance of the DOP model – in particular the MLE estimate – results in
complete overfitting. To avoid complete overfitting we may adapt formula (3) in
two possible ways.

First of all, we may constrain MDOP such that “the overfitting instances” are
excluded, and employ the MLE. Because here we are interested in exploring a
memory-based DOP, i.e., a DOP model that employs all fragments, we will not
consider this option any further in this paper.

We therefore focus on the second option: allow Φ to exhibit preference for any
p ∈ MDOP such that p(TB) < 1, and where the mass 1 − p(TB) is reserved for
unseen parses. Clearly, by deviating from the MLE, there is risk of inconsistency.
However, there exist various smoothing techniques (re-estimators) that are known
to preserve consistency.
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Smoothing as Estimation Held-out estimation, known from other areas of sta-
tistical NLP, and its close relative leaving-one-out (Ney, Martin and Wessel 1997)
are smoothing methods that can be adapted to DOP. Held-out estimation avoids
overfitting the training corpus by splitting it into two parts: the extraction part
and the held-out part. The extraction part is used to obtain the space of events
E (i.e. all subtrees F in the case of DOP), and partitions this space into equiv-
alence classes according to frequency. The held-out part is used for obtaining
(discounted) probability estimates for all events e ∈ E. Crucially, the probabilities
are estimated through MLE over the held-out part. In the limit, when the size of
the training corpus approaches infinity, under the condition that both the extrac-
tion and the held-out parts are allowed to approach infinity, the held-out estimator
will approach the MLE itself, and is thus consistent. In fact, this is the reason why
held-out estimation is considered a reasonable smoothing tool for language models
using Markov orders over word sequences.

Consistent estimation for DOP by smoothing methods is in line with the find-
ings of (Zavrel and Daelemans 1997) concerning the surprising similarity between
smoothing by Katz backoff (Katz 1987) and by Memory-Based Learning (MBL)
(Daelemans 1995).

As we shall see in the next section, the analogy between Memory-Based Learn-
ing and the estimation of DOP parameters by smoothing goes further than the sur-
face impression suggests.

6 Consistent DOP Estimators

As mentioned before, consistency considerations imply that smoothing must be
applied to parse probabilities (p) rather than subtree probabilities (π). Yet, direct
smoothing of p does not solve the overfitting problem, since it is not clear how
it results in smoothed subtree probabilities π. This is the issue addressed in the
current section.

We present two new estimators and discuss their strengths and limitations. The
first of these combines Maximum-Likelihood with held-out estimation, and the
second is an application of backoff smoothing and resampling.

Held-out DOP This estimator has four steps:

(1) The training treebank is split into a held-out part and an extraction part,

(2) The set of all subtrees is extracted from the extraction part,

(3) Probabilities for these subtrees are obtained by Maximum-Likelihood Esti-
mation over the held-out part, and

(4) Steps 1 to 3 are repeated to obtain averages.

This algorithm is consistent because repeated held-out estimation over MLE
preserves consistency. Like in the case of Hidden Markov Models, MLE for DOP
takes place under hidden derivations, and must be realized via an Inside-Outside
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algorithm; cf. also (Baker 1979, Bod 2000a)). However, there are no guarantees
that Inside-Outside is consistent. In fact, it is not guaranteed to arrive at the MLE
(Wu 1983).

In (Zollmann 2004), the maximum-likelihood problem in Step 3 is simplified
by making assumptions on the multiple derivations per parse property of DOP.
This way, Inside-Outside can be avoided, resulting in an efficient estimation of the
parameters. A formal proof of consistency is provided together with experimental
results showing improvements over the original DOP estimator.

Backoff DOP In DOP, because all treebank subtrees are included, a subtree
t ∈ F of any depth > 1 can always be obtained by a derivation involving two4

other subtrees t1, t2 ∈ F such that t = t1 ◦ t2 (see Figure 4). By defini-
tion, p(t1 ◦ t2 | Rt1) = p(t1 | Rt1) · p(t2 | Rt2). Clearly, if this formula is
an approximation of p(t | Rt), then it must involve an independence assumption
p(t2 | t1) ≈ p(t2 | Rt2)!̇ This independence assumption is a so-called backoff that
takes place from complex context t1 to simpler context Rt2 (similar to the back-
off from e.g. trigrams to bi-grams or uni-grams in Markov models). The backoff
p(t2 | t1) ≈ p(t2 | Rt2) represents an asymmetric relation between t and t1 ◦ t2
(we say then that t1 and t2 participate in a backoff of t). As shown in (Sima’an
and Buratto 2003), this asymmetric relation can be used to impose a partial order
on the space of subtrees, just like Markov orders impose a partial order on the set
∪n

k=1{k-grams} (for some finite n). A subtree ti participates in a lower Markov
order than another subtree tj iff one of two situations holds: (1) ti participates in
a backoff of tj , or (2) there exists a subtree tk that participates in a lower order
than tj such that ti participates in a backoff of tk. Note that, unlike an n-gram,
a subtree can participate in multiple Markov orders and hence we will consider a
unique copy of the subtree in each order in which it participates. Figure 5 exhibits
examples.

Based on the backoff relation, a backoff estimator for DOP consists of the
following steps:

(1) INITIALIZATION. Start out with the full training treebank trees themselves
as the current set of subtrees Fcu and estimate the probabilities of every
t ∈ Fcu by simple relative frequency,

(2) DISCOUNTING. Use e.g. leaving-one-out for discounting the probabilities of
every t ∈ Fcu, thereby reserving mass Prsv for unseen events,

(3) BACKOFF. Define the set Fbkf to consist of all subtrees t1, t2 ∈ F such that
t1 ◦ t2 constitutes a backoff of some t ∈ Fcu, and then employ the Katz
backoff formula (Katz 1987) to distribute the reserved mass Prsv to each
ti ∈ Fbkf (just like for n-gram backoff), and

4Note that a subtree can be generated through derivations involving more than two subtrees. However,
note that all the derivations of a subtree can be simulated by a series of steps that each involve a pair
of subtrees (break the subtree into two, break any of the two into two and so on). Hence, we adopt this
simplifying assumption for the sake of arriving at a simpler model.
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Figure 5: The Markov order imposed by the backoff re-
lation between subtrees decreases from left to right. The
left-most tree is backoffed to the boxed subtrees in the mid-
dle: two possible backoffs. Subsequently, the larger subtree
in each of the two boxes is backed-off again to the encir-
cled pairs of subtrees. Note the different copies of the same
subtree in different Markov orders.

(4) RECURSION. Rename the set Fbkf as Fcu and repeat steps 2–4 until the set
Fbkf is empty.

Backoff DOP estimation can be seen as a generalization of the wellknown Katz
backoff for word n-grams (Markov chains over word sequences). Backoff DOP is
also consistent and non-overfitting as it smooths MLE over parses using held-out
estimation.

Backoff DOP is attractive because it provides a kind of likelihood-weighted
approach to the empirically attractive shortest derivation DOP. By definition, the
backoff mechanism gives preference to the shortest derivation as much as the train-
ing data allows, i.e. when the data is insufficient more mass is reserved for unseen
parses, and longer derivations become more prominent. The more data there is, the
shorter the derivations and the more the model starts to behave like a lookup table.
The less data, the more independence assumptions come into play (longer deriva-
tions) to achieve the desired coverage. In light of (Zavrel and Daelemans 1997),
Backoff DOP is the probabilistic estimator that comes closest to the memory-based
k-nearest backoff behavior.

These theoretical considerations are reinforced by an empirical result: A
smoothing method that resembles the one described here was presented in the BO-
DOP1 model (Sima’an and Buratto 2003), obtaining good results on the OVIS
corpus. (BO-DOP1 performed substantially better than DOP1 and than the model
proposed in (Bonnema et al. 1999).) The difference between the two methods is
mainly in the Initialization step (1): BO-DOP1 uses DOP1 as the starting point
for its backoff process, rather than the relative frequency of trees. Therefore, we
may surmise that BO-DOP1 inherits DOP1’s inconsistency. Therefore, unlike the
backoff estimator described above, BO-DOP1’s theoretical status is dubious, and
we expect that it is not the optimal DOP estimator.
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7 Conclusion

We proved that any unbiased parameter estimator (including Maximum-
Likelihood) for a DOP model that employs all treebank subtrees will not gener-
alize over the treebank. We also argued that smoothing techniques are reasonable
for estimating the DOP parameters. Finally, we presented two new consistent
smoothing-based estimators and discussed their properties.

Future work will concentrate on exploring the empirical aspects of the new
estimators, and on alternative methods for restructuring and/or constraining the
DOP model by data-driven algorithms.
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