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Abstract

This paper presents two methods for automatic detection of plagiarism in student essays,
using Dutch text corpora to show their effectiveness. The first method is based on mea-
suring the overlap in word trigrams between two essays, excluding all trigrams from the
assignment text. This method proves efficient and robust, but relies on the availability of
the plagiarized source. The second method compares an essay’s linguistic profile to the
profile of the claimed author’s previous written texts. This approach proves promising, but
as yet not completely able to detect all cases of plagiarism.

1 Introduction

In a quite popular teaching method, students are not supposed just to read text on
the subject material, but rather to work with it. This brings them in closer contact
with the subject and makes them think, thus enhancing both their knowledge and
their insight. In the humanities, the method often takes the form of the students
writing essays, e.g. weekly. Any teacher working with this method quickly finds
that his workload increases with regard to ‘traditional’ teaching methods, as a) the
right exercises have to be developed (just once) and b) all the essays have to be
judged and feedback has to be given (every year and for every student). And there
is yet another drawback. The method only works if the students actually do the
exercises, write the essays. However, the students also notice that their workload
is high. Some of them may decide that ‘reusing’ an existing essay is much more
efficient than writing their own. If the number of students in a course is high
enough, the chance of being caught is perceived to be low and the student can get
the credits for the course without the work and hence without the experience.

If we want to make this teaching method work, therefore, we need to develop
techniques to automatically detect that an essay was not in fact written by the stu-
dent submitting it. There are various computer programs, some of them available
freely on the internet, which can help detecting plagiarism. In this paper, I will not
discuss these in any detail.1

Instead, I present two of techniques I developed myself. The first, discussed
in Section 2, assumes that the source of the plagiarism can be found in the set of
submitted essays as well, so that it is only necessary to detect suspiciously high
levels of overlap. The second, discussed in Section 3, does not refer to the source
at all, but rather checks the new essay against the writing patterns of the submitting
student.
1A survey of systems in 2003, along with various pointers to other internet resources, can be found at
http://www.fdewb.unimaas.nl/eleum/plagiarism/plagiarism.htm.
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2 Overlap Detection

In many courses, the exercises have been developed especially for the course. They
are therefore very specific and it is unlikely that anyone outside the course would
have produced an essay like the desired ones. This means that the search for pla-
giarized essays can be limited to the essays submitted for that course, in the same
or in previous years. In other words, there is a finite set of texts and we have to
spot pairwise overlaps which are large enough to cause suspicion of plagiarism.

2.1 Existing techniques

There are several computer systems which provide the needed over-
lap measurement. An example is Wcopyfind, which can be found at
http://www.plagiarism.phys.virginia.edu. It is a well-wrought system,
able to read various document formats and allowing adjustment of its parame-
ters. Basically, it looks for phrases (i.e. sequences of words rather than syntactic
constructs) which occur in both documents being compared. The user can specify
what the minimum and maximum sizes are for phrases to be checked, and at which
level of overlap the document pair should be flagged as suspicious.

The system also allows for attempts by the students to hide the fact that the
text is copied. At the simplest level, non-textual differences, such as those in
punctuation, upper/lower case or numbers can be ignored. Next, some students try
to confuse automatic checks by inserting ‘spelling errors’ in the text.2 Wcopyfind
is able to perform fuzzy matches so that such adjusted words can still be matched.
The user can set the desired level of fuzziness. Finally, the system even allows
for the use of a ‘word map’ to cater for cases where words have been replaced by
synonyms.

It is clear that this system provides something for everyone. An experienced
user can choose the parameter settings that provide the most effective and/or com-
fortable output. This strength, however, is also a drawback. An inexperienced user
is at a loss with so many choices. I myself prefer a system where a minimum of
choice, preferably none, can do the job. What this has led to will be the subject of
the rest of the following sections. Before that, I wish to point out another disad-
vantage of Wcopyfind and most, if not all, other existing systems: they compare
two texts and only those two texts. In my experience, students tend to copy parts
of the instructions into their essay, which of course leads to an immediate overlap
and confuses the detection of student text overlap. I will discuss this in more detail
in Section 2.3.

2.2 Trigram overlap

Some years back I taught a course to some 150 students. Part of the score for that
course was determined by a case study by the students. After spotting a largely

2Actually, the simulated errors are usually so different from natural spelling errors that they themselves
can be used as a markers for plagiarism.
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Figure 1: Trigram overlap distribution, with instruction text correction. Only the low end
of the distribution is shown, but this covers practically all cases.

copied case study, I decided that an automatic check was needed. Because of
the shortcomings of existing systems, of which there were fewer at that time, I
built my own system. I followed a traditional approach in language technology
and modeled word sequence overlap with word trigram overlap. After conversion
to ASCII and tokenization, the set of all trigrams present in each text is taken.
The number of times each trigram occurs and the position in the text are simply
ignored. Then, all trigrams occurring in the assignment instructions are removed
(for the importance of this, see below). Finally, the overlap between two texts
is measured as the percentage of trigrams which occur in both texts. Apart from
simplifying calculations, the approximation by trigrams automatically corrects for
local rephrasings, spelling error introduction and reordering of parts of the text.
In my opinion, making enough changes to fool this system is more work than just
doing the assignment.

Figure 1 shows the distribution of overlap scores in pairs taken from the 474
texts collected over three years of teaching the mentioned course. If we assume
that the normal situation is that students write their own essay, the distribution
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indicates that we can expect an overlap between two independent texts of zero to
seven or eight percent. This number will vary with each assignment, but can be
easily determined from the distribution, probably even automatically. In this case,
the number is chosen on the basis of a visual inspection of the histogram, and the
fact that there is a clear gap with no text pairs between eight and ten percent.

So any two texts with an overlap higher than, say, ten percent can be flagged
as suspicious. This leads to 125 text pairs to be examined. 72 of these are simply
pairs of different versions of case studies by the same student, either because stu-
dents had to improve their case study before it was deemed adequate or because
students reused their own case study after failing the final exam in the previous
year. Of the remaining 53, 15 more can be put aside because they form repeated
reports of suspicious overlaps between one case study and different versions of the
same second case study. This leaves 38 overlapping pairs where suspicion is re-
ally needed. At the high score range, say 70% and higher, we find outright copies.
In the most blatant case, only the name of the student was changed and even the
formatting was still exactly the same. Most often, some attempts were made to
hide the plagiarism, e.g. by changing some numbers, introducing some ‘spelling
errors’ and such.3 At the lower ranges of overlap, down to about 11%, we find
milder cases of copying, e.g. a single section. This was often the first part, where
the planning was done, after which the two students went off and finished the work
by themselves. One interesting case in this range needs special mention. A very
inventive student made a collage of 20% from the instructions and 30% and 25%
respectively from two other case studies. Because a low threshold is usable with
the trigram overlap method, even this trick does not work.

2.3 Excluding the exercise instructions

As stated above, some students copy stretches of text from the instructions in order
to structure their essay, and these copied stretches can confuse the overlap mea-
surements. Figure 2 shows how much of each essay consists of instruction text.
In most of the essays, less than ten percent of the text consists of parts from the
instruction, but there are texts with percentages up into the twenties. One even
shows a staggering 47% instruction text. This was a rather minimalist and overly
optimistic attempt, which was returned to the student for a second try. Still, if no
special measures had been taken, it would have seriously confused the plagiarism
detection.

The effects on an overlap calculation without special measures becomes clear
in Figure 3. This is a repeat of Figure 1, but this time without removing the instruc-
tion text trigrams from the set first (and note the different range for the horizontal
axis). In this figure, it is much harder to determine a threshold for flagging suspi-
cious texts. With a strict threshold of 15%, we would need to check 588 text pairs
rather than the 125 mentioned above. And still we would have missed two cases of
copied text. At 20%, 215 text pairs need to be checked and 7 cases of copying are

3After the checking program was in place, I warned the students that I would check, but still an alarming
number of students reused their colleagues’ work.
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Figure 2: Amount of text copies from the instructions

missed. Only a threshold of 25% would have brought us back down to checking
113 text pairs, but then we would have missed 10 of the 38 cases of copying, a
false accept rate of 26%.

3 Author Verification

As we have seen in the previous section, detection of plagiarism on the basis of
overlap measurement is possible, but only if we are in the possession of the source
text. With very specific assignments, this will probably be enough. As soon as the
assignments are more variable, however, we open up the opportunity of copying
texts from the internet or beyond. We could search on the internet for texts similar
to the submitted essays, but this is both computationally costly and not guaranteed
to be sufficient. In other words, we have no source text to compare to. Fortunately,
there is an alternative. Plagiarized texts will not only tend to be like the source
text, but also unlike the normal writings of the student in question.4 In this section,

4As an anonymous teacher (not of the English department) stated: ”Sometimes I spot plagiarism be-
cause the English in the essays is much too good for our students.”
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Figure 3: Trigram overlap distribution, without instruction text correction

I attempt to verify the authorship of an essay on the basis of a linguistic profile of
the author’s other texts.

3.1 Linguistic profiling

In linguistic profiling, the occurrences in a text are counted of a large number of
linguistic features, either individual items or combinations of items. These counts
are then normalized for text length and it is determined how much (i.e. how many
standard deviations) they differ from the mean observed in a profile reference cor-
pus. For the authorship verification task, the profile reference corpus consists of
the collection of all previously available essays by the students and all new essays.
For each text, the deviation scores are combined into a text profile vector. The fea-
turewise average of the profile vectors of all known texts by an author (the positive
examples) is used as the author profile. The system then determines the distance
between the text profiles for new texts and the various author profiles. Rather than
using the normal distance measure, I opted for a non-symmetric measure which
is a weighted combination of two factors: a) the difference between sample score
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and author score for each feature and b) the sample score by itself. This makes it
possible to assign more importance to features whose count deviates significantly
from the norm. The following distance formula is used:

∆T = (Σ|Ti − Ai|
D|Ti|

S)
1

(D+S)

In this formula, Ti and Ai are the values for the ith feature for the text sample
profile and the author profile respectively, and D and S are the weighting factors
that can be used to assign more or less importance to the two factors described.
The distance measure is then transformed into a similarity score by the formula

ScoreT = (Σ|Ti|
(D+S))

1
(D+S) − ∆T

In this way, the score will grow with the similarity between text sample profile
and author profile. Also, the first component serves as a correction factor for the
length of the text sample profile vector.

The order of magnitude of the score values varies with the setting of D and S.
Furthermore, the values can fluctuate significantly with the sample collection. To
bring the values into a range which is suitable for subsequent calculations, I also
determine scores for all texts known not to be by an author (the negative examples).
I then express all scores as the number of standard deviations they differ from the
mean of the scores of the negative examples.

3.2 Profiled features

The first type of features used for profiling are simply lexical features. Sufficiently
frequent tokens, i.e. those that were observed at least a certain amount of times (in
this case 5) in some language reference corpus (in this case the Eindhoven corpus;
Uit den Boogaart 1975) are used as features by themselves. For less frequent
tokens I determine a token pattern consisting of the sequence of character types,
e.g., the token Uefa-cup is represented by the pattern #L#6+/CL-L, where the first
L indicates low frequency, 6+ the size bracket, and the sequence CL-L a capital
letter followed by one or more lower case letters followed by a hyphen and again
one or more lower case letters. For lower case words, the final three letters of the
word are included too, e.g. waarmaken leads to #L#6+/L/ken.5

In addition to the form of the token, I also use the potential syntactic usage of
the token as a feature. I apply the first few modules of a morphosyntactic tagger
(in this case Wotan-Lite; van Halteren et al. 2001) to the text, which determine
which word class tags could apply to each token. For known words, the tags
are taken from a lexicon; for unknown words, they are estimated on the basis
of the word patterns described above. The three (if present) most likely tags are
combined into a feature, e.g. niet leads to #H#Adv(stell,onverv)-N(ev,neut) and
waarmaken to #L#V(inf)-N(mv,neut)-V(verldw, onverv). Note that the most likely

5These patterns have been originally designed for English and Dutch and will probably have to be
extended when other languages are being handled.
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tags are determined on the basis of the token itself and that the context is not
consulted. The modules of the tagger which do context dependent disambiguation
are not applied.

Op top of the individual token and tag features I use all possible bi- and tri-
grams which can be built with them, e.g. the token combination kon niet waar-
maken leads to features such as wcw=#H#kon#H#Adv(stell,onverv)-N(ev,neut)
#L#6+/L/ken. The lexical features currently also include features for utterance
length. Each utterance leads to two such features, viz. the exact length (e.g.
len=15) and the length bracket (e.g. len=10-19).

Since the number of features quickly grows too high for efficient processing,
I filter the set of features by demanding that a feature occurs in a set minimum
number of texts in the profile reference corpus (in this case two). A feature which
is filtered out instead contributes to a rest category feature, e.g. the feature above
would contribute to wcw=OTHER. For the current corpus, this filtering leads to a
feature set of about 100K lexical features.

A second type of features represents the syntactic structure of the utterances
in the texts. I used the Amazon parser to derive syntactic constituent analyses of
each utterance (Coppen 2003). I did not use the full rewrites, but rather constituent
N-grams. The N-grams used were:

• left hand side label, examining constituent occurrence

• left hand side label plus one label from the right hand side, examining dom-
inance

• left hand side plus label two labels from the right hand side, in their actual
order, examining dominance and linear precedence

For each label, two representations are used. The first is only the syntactic
constituent label, the second is the constituent label plus the head word. This is
done for each part of the N-grams independently, leading to 2, 4 and 8 features
respectively for the three types of N-gram. Furthermore, each feature is used once
by itself, once with an additional marking for the depth of the rewrite in the anal-
ysis tree, once with an additional marking for the length of the rewrite, and once
with both these markings. This means another multiplication factor of four for a
total of 8, 16 and 32 features respectively. After filtering for minimum number of
observations, again at least an observation in two different texts, there are about
900K active syntactic features, nine times as many as for the lexical features.

3.3 Test Corpus

At the time of writing of this paper, no suitable corpus of student essays produced
in an actual course was available. However, a good alternative is provided by the
first component of the Dutch Authorship Benchmark Corpus (ABC-NL1; Baayen
et al. 2002). It contains widely divergent written texts produced by first-year and
fourth-year students of Dutch at the University of Nijmegen. Each of the eight
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authors was asked to write nine texts of about a page and a half. In the end, it
turned out that some authors were more productive than others, and that the text
lengths varied from 628 to 1342 words. The authors did not know that the texts
were to be used for authorship attribution studies, but instead assumed that their
writing skill was measured. The topics for the nine texts were fixed, so that each
author produced three argumentative non-fiction texts, on the television program
Big Brother, the unification of Europe and smoking, three descriptive non-fiction
texts, about soccer, the (then) upcoming new millennium and the most recent book
they read, and three fiction texts, namely a fairy tale about Little Red Riding Hood,
a murder story at the university and a chivalry romance.

For the initial test of linguistic profile for the purpose of authorship verification,
ABC-NL1 is actually better than ‘real’ course essays. After all, for the ABC-NL1
texts, we know who wrote what text. For ’real’ data, our benchmark might itself
be polluted by plagiarism. However, it is clear that, if the method works for the
benchmark corpus, later tests with course essays will follow.

3.4 Results

The verification quality at the best parameter settings found so far is shown in Fig-
ure 4.6 The figure is a so-called Receiver operating Characteristic (ROC-curve).
The horizontal axis represents the False Accept Rate (FAR) at various thresholds,
the percentage of cases where somebody who has not written the test text is ac-
cepted as having written the text. The vertical axis shows the False Reject Rate
(FRR), the percentage of cases in which the correct author is judged not to have
written the text. The shape of the curve is as expected as, with increasing thresh-
old settings, FAR will go down, while FRR goes up. The quality is visible in the
curvature, the closer it reaches to the bottom left corner (0.0, 0.0), the better. The
curves in Figure 4 are the best for lexical features, the best for syntactic features
and the best combination.7

In some other applications, the overall quality is summed up in a single number,
the Equal Error Rate (EER), i.e. the rate at where FAR and FRR are the same. In
our curves, the EER appears to be slightly lower for the lexical features than for
the combination, with the syntactic features far behind. This would imply that
the syntactic features have no useful contribution at all. However, the EER may
be misleading, since it does not take into account the consequences of the two
types of errors. Given the application, plagiarism detection, there are in fact two
interesting thresholds. The first is the threshold below which it is clear that the
text is not by the student in question. Any student producing a text scoring below
this threshold can be accused of plagiarism without fear of false accusations. The
quality of the system is higher if the percentage of plagiarizing texts below the
threshold is higher. In terms of the ROC curve, this is the FAR at the point where
FRR is zero. The second threshold is the one above which we are sure that the
6Because of computation time restraints, only part of the parameter space has as yet been explored.
7Interestingly, the parameters used for the best combination model are not those which are best for the
single type models.
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Figure 4: Receiver Operating Curves (ROC) for linguistic profiling with various types of
features

student in question did write the essay. Any text scoring over this threshold can
be safely accepted. The quality of the system is higher if the percentage of bona
fide texts below the threshold is lower. In terms of the ROC curve, this is the FRR
at the point where FAR is zero. The “Single threshold” partition of Table 1 shows
these percentages for various systems, and demonstrates that the combination of
syntactic and lexical features outperforms the lexical features after all.

It must be said that judging the quality of the models by the characteristics of
the curves ignores the fact that in an actual application, an actual threshold will
have to be selected. The results in Table 1 are based on the idea that a single
threshold will have to serve for all runs of the system. As the range of scores
for the measured texts rather varies with each run, this seriously hampers the sys-
tem. It would be much better if a mechanism could be found which automatically
chooses the threshold for each specific run. What might become possible then can
be estimated by supposing an oracle threshold: for each run of the system, an or-
acle provides the optimal threshold. Basically, since the oracle threshold will be
at the score for the text by the author, we are examining how many texts by other
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Table 1: Remaining errors at optimal low and high thresholds

FAR at FRR=0 FRR at FAR=0

Single threshold
Lexical 15% 74%
Syntactic 25% 81%
Combination 8% 53%

Oracle threshold
Lexical 0.8% 4.2%
Syntactic 1.4% 9.7%
Combination 0.2% 1.4%

authors score better than the text by the actual author. The “Oracle threshold” par-
tition of Table 1 shows that in this situation the verification quality can become
very high indeed.

3.5 Comparison with Other Methods

The authorship verification task described here is very similar to a task called
authorship attribution, best known from humanities computing. There, the most
likely author for a given text has to be chosen from a (usually small) set of po-
tential authors who have been selected on the basis of extra-linguistic information
(cf. e.g. Mosteller and Wallace 1984; Holmes 1998). Research into authorship
attribution is becoming more popular and initiatives are underway to bring more
structure to the field. One of these initiatives was the so-called Ad-hoc Authorship
Attribution Contest organized by Patrick Juola in 2004, the results of which he
presented at the ALLC/ACH conference in Göteborg. The contest used several au-
thorship attribution problems, most focusing on complete books from established
authors from various languages and time periods, but also three problems using
student essays.

The ABC-NL1 corpus was used for Problem M, but in a slightly different form,
viz. in a lower-case-only format. Six topics, two from each general type, were
used as training material and the remaining three topics, i.e. 24 texts, served as
test samples. Linguistic profiling appeared to be the best method for this problem,
with 21 out of 24 samples correctly attributed. Several other methods were close
behind, with 19 (Coburn; cf. Ceglowski et al. 2003), 17 (Kešelj and Cercone; cf.
Kešelj et al. 2003) and 14 (Stamatatos) correct attributions respectively.

Problems A and B also used student essays. The training data consisted of three
fixed-topic 400–1200 word essays by each of thirteen students. Test samples for
problem A consisted of one further similar essay from each student. Test samples
for problem B consisted of a term paper from each student, which was longer (c.
1800 words) and had no fixed topic.

Here, Kešelj and Cercone’s method performed best, with 11 out of 13 for prob-
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lem A and 7/13 for problem B. Linguistic profiling followed closely for problem
A, with 9/13, but was far behind for problem B, with only 3/13 correct, just like
Stamatatos’ method with 9/13 and 2/13. Coburn’s method, however, failed for both
A and B, with 5/13 and 2/13. Since the texts in problems A and B fall in the same
general category, argumentative essays, the question is why there is such a marked
difference in recognition quality. A possible explanation is that the fact that the
term paper is deemed especially important makes the students pay more attention
to it, leading to better structuring and better language. If this really influences the
recognizability of each student to such a degree, care has to be taken that enough
training material of the correct type is present before decisions on plagiarism are
made on the basis of author profiles. Still, there might well be a completely differ-
ent explanation, and a careful examination of the training and test texts is therefore
needed.

Another interesting observation is that the methods which did best on the scarce
data student essay problems were outperformed on the problems involving com-
plete books, most notably by Koppel and Schler’s method (Koppel and Schler
2003; Koppel et al. 2003). A closer look at the various methods, and the par-
ticulars of the individual problems, will have to show an explanation for these
differences.

4 Conclusion

The two methods described above support the detection of plagiarism very effec-
tively. However, one should not think that the teacher has no further role in the
process. The trigram overlap method detects overlap, not plagiarism. It would
seem that accidental overlap is filtered out adequately, so that only 38 of the about
160K essay pairs need to be examined. However, there are still other possible rea-
sons for the overlap than outright plagiarism. The teacher will have to check each
essay pair with a suspiciously high overlap to determine whether or not there are
grounds for accusations. In some cases, there has only been mild cooperation. In
others, too much text has been copied and it has to be determined which of the
students has to be punished. This may become clear from the rest of the essay, or
from inept attempts at hiding the plagiarism, but often the students involved have
to be confronted. In my experience they deny their actions only rarely and admit
the copying, usually providing excuses at the same time. In the rare case of denial,
the overlap method provides sufficient proof of plagiarism that punishment can be
justified.

In the case where the source text is not available, matters are not so simple. The
linguistic profiling method is promising, but only provides a rough classification.
The teacher will have to choose a threshold for flagging suspicious essays. The
choice lies somewhere between a) deciding that no false accusations can be made
and accepting that 8 percent of the plagiarism attempts will get through and b)
deciding that every perpetrator has to be caught and manually checking all texts in
the doubted 8 percent of the plagiarism attempts plus 53 percent of the bona fide
texts. Furthermore, if linguistic profiling, or our manual check, shows that it is
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very unlikely that the student in question did indeed write the essay in question,
there is still the burden of proof. We can, of course, start a search for potential
sources, which can be more intensive because fewer essays need to be checked
in this way. But if our search fails, and we cannot present the source text which
was plagiarized, it will be very hard to convince non-experts that the student has
to be punished. We can only hope that confrontation leads to a confession by the
student.

What is needed now is first a clear stance on by the universities, not only stating
what the penalties for plagiarism are, but also stating the level and type of proof
needed, and obliging the students to submit all essays electronically so that they
can be checked. It should also be made clear to the students that their work will be
checked, but preferably not in which way. Once these prerequisites are in place,
the two methods presented in this paper can provide the support the teachers need
to then also catch the attempts which are still made.
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