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Abstract

The problem of speech segmentation is a well-known challenge for various studies, such
as language acquisition: how do children correctly infer the position of word boundaries
in the continuous stream of speech? One solution to this problem, referred to as the
utterance-boundary strategy, is to reuse the information provided by the occurrence of spe-
cific phonemes sequences at utterance edges in order to hypothesize boundaries inside ut-
terances. In this paper, we describe a probabilistic and incremental implementation of this
approach and discuss the results observed for a word segmentation task on a phonemically
transcribed and child-oriented French corpus. We show in particular that the first bound-
aries inferred by this algorithm seem to be reliable enough to make useful generalizations
for later decisions.

1 Introduction

The problem of speech segmentation is a well-known challenge for various disci-
plines, such as linguistics, natural language processing, machine learning and lan-
guage acquisition studies. In the latter field, it can be informally stated as follows:
how do children correctly infer the position of word (or morpheme) boundaries in
the continuous stream of speech ?

According to Brent (1999), computational solutions developed so far make
use of three general classes of strategies, sometimes combined with one another:
a) the utterance-boundary strategy consists in reusing the information provided
by the occurrence of specific phonemes sequences or prosodic cues at utterance
beginnings or endings in order to hypothesize boundaries inside utterances (Aslin,
Woodward, Lamendola and Bever 1996, Brent and Cartwright 1996, Christiansen,
Allen and Seidenberg 1998); b) the predictability strategy assumes that speech
should be segmented where the uncertainty about what comes next (phoneme or
syllable, for instance) is maximal (Harris 1955, Gammon 1969, Saffran, Newport
and Aslin 1996, Hutchens and Adler 1998, Xanthos 2003); c) the word-recognition
strategy implies an explicit representation of lexical units, and specifies ways of
parsing utterances according to the lexicon and of adding novel items to it (Olivier
1968, Wolff 1977, De Marcken 1996, Brent and Cartwright 1996, Brent 1999).

From a cognitive point of view, it is likely that speakers use a “conspiracy”
of strategies for speech segmentation (see e.g. Shillcock et al. 2001, Goldsmith
2001), but unless we assume that children have an innate lexicon, and since one-
word utterances are not frequent even in child-directed speech1), word-recognition

1In their corpus of American English, Brent and Siskind (2001) find that “about 9% of infant-direct
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can only be performed once other heuristic procedures have sketched a first seg-
mentation. The utterance-boundary strategy is a potential approach to fill that slot,
though it has been raised that it could not handle some very frequent words that
occur only inside utterances (Brent 1999), and thus might be more appropriate for
phrase than for word segmentation.

The utterance-boundary strategy has mainly been implemented using connec-
tionist models2, unlike the predictability approach, for which many distributional
algorithms were designed as well as connectionist ones. In this paper, we describe
a probabilistic and incremental implementation of this strategy and discuss the re-
sults observed for a word segmentation task on a phonemically transcribed and
child-oriented French corpus. We show in particular that the first boundaries in-
ferred by this algorithm seem to be reliable enough to make useful generalizations
for later decisions.

2 Algorithm description

2.1 Evaluation of utterance-boundary typicality

In accordance with a psychologically plausible hypothesis (Brent 1999), our algo-
rithm processes the input incrementally, one utterance after another. Intuitively, the
idea is to segment utterances where sequences occur, which are typical of utterance
boundaries; this should enable us to discover new probable boundary markers, and
to improve further segmentation. The specificity of our approach is to formalize
this particular typicality in a distributional fashion.

Formally, let S := {s1, . . . , sK} be the set of phonemes (or segments) in a
language L. U ⊆ S∗ is the set of possible utterances in L. C := u1 . . . uT , where
ut ∈ U for 1 ≤ t ≤ T , is a corpus of L. For a given order r ≥ 1, the algorithm
works by gradually building three separate distributions3:

1. n(w) is the absolute frequency of an r-gram w ∈ Sr within utterances (no
overlap between utterances);

2. n(w|I) is the absolute frequency of an r-gram in utterance-initial position;

3. n(w|F ) is the absolute frequency of an r-gram in utterance-final position.

Relative frequencies may then be defined:

1. f(w) := n(w)/
∑

w̃∈Sr n(w̃) is the relative frequency of an r-gram within
utterances;

2. f(w|I) := n(w|I)/
∑

w̃∈Sr n(w̃|I) is the relative frequency of an r-gram
in utterance-initial position;

utterances are isolated words”. However, they also demonstrate that the portion of lexicon heard in
isolation is rather large.
2A significant exception is Brent and Cartwright (1996), where the search space of a word-recognition
strategy is restricted only to those sequences that occur at utterance edges. It differs from our approach,
however, in that we evaluate typicality rather than simply assess possibility.
3in fact, 3r distributions are recorded, see section 2.2 below.
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3. f(w|F ) := n(w|F )/
∑

w̃∈Sr n(w̃|F ) is the relative frequency of an r-gram
in utterance-final position.

Suppose now that we are examining an unsegmented utterance, wondering how
much the sequence w ∈ Sr, which occurs there, is typical of utterance endings4.
Intuitively, the more frequently a sequence occurs in utterance-final position, the
more likely it is to be typical of that context, so it seems that our typicality mea-
sure should be proportional to f(w|F ). But we also need to sort out the case of
sequences which are frequent in any position; to do this, we can simply divide
the frequency of w in utterance-final context by its frequency in any context, thus
obtaining the relevant typicality measure5:

(1) t(w|F ) :=
f(w|F )

f(w)

This measure is higher than 1 iff (if and only if) w is more likely to occur in
utterance-final position (than in an unspecified position), lower iff it is less likely
to occur there, and equal to 1 iff its probability is independent of its position. For
the segmentation procedure, this suggests a “natural” threshold of 1, which can
optionally be fine-tuned in order to obtain a more or less conservative result.

2.2 Border effect and symmetry

From a computational point of view, it should be noted that for r > 1, there is
a border effect for boundaries close to utterance edges. For instance, let u :=
α1 . . . αm (m ≥ 2) denote an utterance to be processed. Then we cannot compute
our typicality measure t(α1|F ) for the first potential boundary (between α1 and
α2), since we do not know the relevant frequencies for r̃-grams with r̃ < r. This
implies that we need not only to store the general distribution of r-grams and those
in utterance-initial and -final position, but also the corresponding distributions for
1 < r̃ ≤ r, which amount to 3r distributions. This will generally remain implicit
in the rest of the paper.

Implementations of the utterance-boundary and predictability strategies often
combine a “forward” statistics with its “backward” reflection (Harris 1955). Here
we do this by simply taking the average of both quantities (namely t(w|F ) and
t(w′|I), when investigating for a potential boundary between w and w′ ∈ Sr).
Note that, in cases such as those discussed previously, this can lead to an asym-
metric situation when w and w′ have different lengths l and l′. In order to compen-
sate for this, we suggest to weight the contributions of the forward and backward
measure accordingly:

(2) t(w, w′) :=
l

l + l′
t(w|F ) +

l′

l + l′
t(w′|I)

where w ∈ Sl and w′ ∈ Sl
′

and l, l′ ≤ r.
4We consider only the “forward” case; the derivation of the “backward” case is similar.
5Note that taking the log of t(w|F ) yields the pointwise mutual information (see e.g. Manning and
Schütze 1999) between the sequence w and the utterance-final position, which measures the specific
dependence between them.
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2.3 Parameters updating

As we said in section 2.1, our approach relies on the assumption that, generally,
the segmentation of an utterance yields new typical sequences which can be used
for further processing. This is implemented by gradually updating the parameters.

At the beginning of the corpus C, i.e. for t = 0, the system has no information
at all. When a first utterance u1 is observed, it can get first estimates of f(•),
f(•|I) and f(•|F )6. These are used to segment u1, and the sequences occurring
immediately before and after the newly inferred boundaries are added to the esti-
mates for f(•|F ) and f(•|I) respectively7. Hopefully, over time, these estimates
converge to the “true” (and unknown) distributions in word-final and -initial posi-
tion (denoted by f̂(•|F ) and f̂(•|I)).

To determine whether or not this convergence is actually observed in a real
corpus is the main purpose of the experiments described below. It is expected
that using the “true” distributions f̂(•|F ) and f̂(•|I) would yield the best possible
results of the approach we introduce. Our aim in this paper is not to assess whether
this limit is high enough for human or machine language processing, but how close
to it an utterance-boundary heuristic might lead.

3 Empirical evaluation

3.1 Experimental setup

The algorithm described in the previous section was implemented and evaluated
using a phonemically transcribed and child-oriented French corpus (Kilani-Schoch
corpus8). For the present research, we have extracted from the original corpus all
the utterances of Sophie’s parents (mainly her mother) while the child was be-
tween ages 1;6.14 and 2;6.25 (year;month.day). This was transcribed phonemi-
cally in a semi-automatic fashion, using the BRULEX database (Content, Mousty
and Radeau 1990) and making the result closer to oral French with a few hand-
crafted rules. Eventually the first 10’000 utterances were used for simulations.
This corresponds to 37’663 words and 103’325 phonemes (39 types).

In order to evaluate the results of the algorithm (and the effect of various pa-
rameters changes) for word segmentation, we compared its output to the segmen-
tation given in the original transcription using traditional measures from the signal
detection framework. The precision is the probability that an inferred boundary
actually occurs in the true segmentation, and the recall is the probability for a true
boundary to be detected.

Three simulations were run, in an attempt to answer two main questions:

1. How good is the segmentation that our algorithm would perform if it knew

6These notations denote the whole distributions of relative frequencies defined in section 2.1.
7More complex updating procedures could be designed, for instance by decrementing the frequencies
of r-grams previously observed and found later to overlap a boundary.
8Sophie, a French speaking Swiss child, was recorded at home by her mother every ten days in situa-
tions of play (Kilani-Schoch and Dressler 2001). The transcription and coding were done according to
CHILDES conventions (MacWhinney 2000).
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Figure 1: Precision and recall when the “true” distributions in word-initial and -final posi-
tion are known (r = 2, 3, 4).

the “true” distributions in word-initial and -final position from the start9 ?

2. Do the distributions inferred on the basis of sequences in utterance-initial
and -final position actually converge to the true distributions in word-initial
and -final position10 ?

The results are discussed in the next section.

3.2 Results

3.2.1 First experiment: full information

In this set of simulations, we estimated the distributions of phonemes in word-
initial and -final position from the whole corpus; these were used as approxima-
tions of the corresponding “true” distributions (f̂(•|I) and f̂(•|F )). The segmen-
tation was then effected without subsequent updating of the parameters (apart from
the r-grams distribution). This should provide the best possible segmentation that
we might expect using our algorithm alone.

As can be seen on figure 1, for various orders and a threshold of 1, the precision
quickly reaches a stable level, whereas the recall keeps growing with the number
of utterances processed (within the limits of our corpus), presumably because the
r-grams distribution gets more representative.

Using higher orders amounts to enhance the precision to the prejudice of the re-
call: concretely, higher orders yield larger phrase-like chunks with “safer” bound-

9This amounts to asking how much possible structural properties of speech, such as the high frequency
of some words that always occur inside phrases (e.g. Eng. a, the) can damage the performance of the
approach.

10Note that this is evaluated here only on the basis of segmentation results; another possibility would be
to compute some (dis-)similarity measure over actual distributions.
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Figure 2: Precision and recall when distributions in utterance-initial and -final position are
used, but without generalizing the newly discovered boundaries (r = 2, 3, 4).

aries. In general, we can say—at least in this “full information” configuration—
that the algorithm favors the precision, which is probably a desirable property,
since the ratio of (true) boundaries to (true) non-boundaries in the corpus is
(37’663-10’000):(103’325-37’663) = 0.42:1. In other words, for equal precision
and recall, we get more than twice as many false alarms as misses11.

3.2.2 Second experiment: no update

The second set of simulations is intended to show how well the algorithm performs
if it does not know the true distributions in word-initial and -final position and
uses instead the distributions in utterance-initial and -final position, but without
updating them to discover new typical boundary markers12.

As shown on figure 2 (see also table 1, p. 177), the performance of this proce-
dure does not compare with that of the previous, supervised one. At the end of the
corpus, differences in precision range between .15 for r = 2 and .05 for r = 4,
and differences in recall range between .4 for r = 2 and .2 for r = 4. In other
words, the decrease is more severe for low orders, and for the recall than for the
precision. This situation does not change much over time, as the same evolution is
observed: stable precision and increasing recall.

3.2.3 Third experiment: update

This experiment demonstrates the normal functioning of the algorithm we propose.
As in the “no update” configuration, there is no previous knowledge of the distribu-

11Furthermore, undetected boundaries could be detected in a later stage of processing, whereas rectify-
ing false alarms would imply a totally different mechanism.

12The distributions are actually updated, but only to reflect the utterance boundaries observed in the
input, and not those resulting of the segmentation.
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Figure 3: Precision and recall when distributions in utterance-initial and -final position are
used and updated to account for the newly discovered boundaries (r = 2, 3, 4).

tions in word-initial and -final position, but this time the distributions in utterance-
initial and -final position are updated to reflect the newly inferred boundaries. The
results are plotted on figure 3 (see also table 1 below).

precision recall
order mode 3300 6600 10000 3300 6600 10000

full info 0.72 0.73 0.73 0.83 0.86 0.87
2 no update 0.56 0.58 0.58 0.43 0.46 0.47

update 0.55 0.54 0.53 0.59 0.63 0.65
full info 0.78 0.78 0.77 0.6 0.66 0.67

3 no update 0.71 0.72 0.71 0.35 0.39 0.41
update 0.71 0.71 0.69 0.53 0.6 0.64
full info 0.87 0.86 0.85 0.48 0.52 0.52

4 no update 0.82 0.81 0.80 0.26 0.3 0.32
update 0.8 0.8 0.78 0.38 0.44 0.47

Table 1: Summary of the results for the three versions of the algorithm, for r = 2, 3, 4 and
after approximately 1/3 of the corpus (3300 utterances), 2/3 (6600) and the whole set of
utterances.

Though it does not reach the performance of the supervised algorithm, this
approach leads to a much better recall than previous procedure, even increasingly
better as the corpus size grows. There is of course a slight loss of precision, but
it doesn’t counterbalance the gain. For instance, with r = 3, after processing the
whole corpus, we get a recall of .64 for a precision of .69, to be compared with .41
and .71 respectively for the “no update” procedure. Even if we take into account
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the different frequencies of (true) boundaries and non-boundaries in the corpus,
updating the parameters improves the overall accuracy13 by 2.9%.

It is not surprising that the unsupervised algorithms (“update” as well as “no
update”) are not as efficient as the “full information” case, for the reason men-
tioned in section 1: some very frequent words only occur in utterance-internal
position, and this is precisely the information that makes the difference between
these conditions. However, the better results observed in this last experiment show
that generalizing the effected segmentation actually helps recovering part of the
missing information—at least in French and for our child-oriented corpus.

4 Conclusions and further issues

In this paper, we have described a probabilistic and incremental implementation
of the utterance-boundary strategy for speech segmentation. The method we pro-
posed is unsupervised—in that it does not require an explicit knowledge of the
target segmentation—and quite simple as it relies only on (possibly conditioned)
r-grams statistics, with no other parameter (recall the “natural” threshold of 1).
Yet it gives interesting results in terms of precision and recall, even on a corpus
of modest size, though they are clearly too low for a “standalone” segmentation
procedure.

We observed that, within this framework, using utterance-boundary typical se-
quences (second experiment) yields a lower precision and a much lower recall
than using “true” word-boundary typical sequences (first experiment)14. However,
we showed that updating the parameters to take into account the newly inferred
boundaries gets much closer to the supervised performance, with a considerable
gain in recall for a rather small decrease of precision with respect to the “no up-
date” condition (third experiment).

From the point of view of language acquisition, we believe that the utterance-
boundary strategy is well suited as a very first heuristic for segmentation, since
it can make correct inferences after processing only a few utterances. Like other
strategies, based on assumptions about the metrical structure of the input language
(Cutler 1994, Frauenfelder and Content 1999), it relies on perceptually salient
features of the data rather than on the less obvious statistical properties used by
predictability-based strategies.

However, as witnessed by the recall observed in our experiments, the utterance-
boundary strategy has a clear tendency to “under-segment” the data - at least in
French. As mentioned earlier, this is due to the fact that some words never oc-
cur in utterance-initial or -final position. We have shown that generalizing the
results of previous inferences could help making up for this, but still many of
the chunks produced by our algorithm are phrases and not words. Thus it seems
necessary to hypothesize more strategies in order to get closer to a word-level

13defined as the probability for the system to make a correct decision.
14By the way, we find it surprising that this quite simple method should give so high results in its
supervised version. It suggests that the “typicality” approach can encode efficiently the information
brought by a given segmentation; this could be an interesting starting point for another kind of research.
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segmentation. The utterance-boundary strategy could then be seen as a tool for
“pre-segmentation”—a way of simplifying the data to be processed using other
strategies.
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90, 551–566.

Cutler, A.(1994), Segmentation problems, rhythmic solutions, Lingua 92, 81–104.
De Marcken, C.(1996), Linguistic structure as composition and perturbation, Pro-

ceedings of the 34th Annual Meeting of the Association for Computational
Linguistics, pp. 335–341.

Frauenfelder, U. and Content, A.(1999), The role of the syllable in spoken word
recognition: Access or segmentation ?, Actes des IIèmes Journées d’Etudes
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